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Abstract. Single image dehazing is a challenging ill-posed restoration
problem. Various prior-based and learning-based methods have been pro-
posed. Most of them follow a classic atmospheric scattering model which
is an elegant simplified physical model based on the assumption of single-
scattering and homogeneous atmospheric medium. The formulation of
haze in realistic environment is more complicated. In this paper, we pro-
pose to take its essential mechanism as “black box”, and focus on learn-
ing an input-adaptive trainable end-to-end dehazing model. An U-Net
like encoder-decoder deep network via progressive feature fusions has
been proposed to directly learn highly nonlinear transformation func-
tion from observed hazy image to haze-free ground-truth. The proposed
network is evaluated on two public image dehazing benchmarks. The
experiments demonstrate that it can achieve superior performance when
compared with popular state-of-the-art methods. With efficient GPU
memory usage, it can satisfactorily recover ultra high definition hazed
image up to 4K resolution, which is unaffordable by many deep learning
based dehazing algorithms.

Keywords: Single image dehazing · Image restoration ·
End-to-end dehazing · High resolution · U-like network

1 Introduction

Haze is a common atmospheric phenomena produced by small floating particles
such as dust and smoke in the air. These floating particles absorb and scatter the
light greatly, resulting in degradations on image quality. Under severe hazy con-
ditions, many practical applications such as video surveillance, remote sensing,
autonomous driving etc. are easily put in jeopardy, as shown in Fig. 1. High-level
computer vision tasks like detection and recognition are hardly to be completed.
Therefore, image dehazing (a.k.a haze removal) becomes an increasingly desir-
able technique.
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Fig. 1. Examples of realistic hazy images

Being an ill-posed restoration problem, image dehazing is a very challeng-
ing task. Similar to other ill-posed problem like super-resolution, earlier image
dehazing methods assumed the availability of multiple images from the same
scene. However, in practical settings, dehazing from single image is more realis-
tic and gains more dominant popularity [1]. Therefore, in this paper, we focus
on the problem of single image dehazing.

Most state-of-the-art single image dehazing methods [2–8] are based on a
classic atmospheric scattering model [9] which is formulated as following Eq. 1:

I (x) = J (x) t (x) + A · (1 − t (x)) (1)

where, I (x) is the observed hazy image, J (x) is the clear image. t (x) is called
medium transmission function. A is the global atmospheric light. x represents
pixel locations.

The physical model explained the degradations of a hazy image. The medium
transmission function t (x) = e−β·d(x) is a distance dependent factor that reflects
the fraction of light reaching camera sensor. The atmospheric light A indicates
the intensity of ambient light. It is not difficult to find that haze essentially
brings in non-uniform, signal-dependent noise, as the scene attenuation caused
by haze is correlated with the physical distance between object’s surface and the
camera.

Apart from a few works that focused on estimating the atmospheric light
[10], most of popular algorithms concentrate more on accurately estimation of
transmission function t (x) with either prior knowledge or data-driven learning.
Based on the estimated t̂ (x) and Â, the clear image Ĵ is then recovered by using
following Eq. 2 .

J (x) =
I (x) − Â · (

1 − t̂ (x)
)

t̂ (x)
=

1
t̂ (x)

I (x) − Â

t̂ (x)
+ Â (2)

Though tremendous improvements have been made, as we know, the tradi-
tional separate pipeline does not directly measure the objective reconstruction
errors. The inaccuracies resulted from both transmission function and atmo-
spheric light estimation would potentially amplify each other and hinder the
overall dehazing performance.

The recently proposed AOD-Net [11] was the first end-to-end trainable image
dehazing model. It reformulated a new atmospheric scattering model from the
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classic one by leveraging a linear transformation to integrate both the transmis-
sion function and the atmospheric light into an unified map K (x), as shown in
Eq. 3.

J (x) = K (x) I (x) − K (x) + b (3)

where the K (x) was an input-dependent transmission function. A light-weight
CNN was built to estimate the K (x) map, and jointly trained to further minimize
the reconstruction error between the recovered output J (x) and the ground-
truth clear image.

Going deeper, we consider the general relationship between observed input
I and recovered output J as J (x) = Φ (I (x) ; θ), where Φ (∗) represents some
potential highly nonlinear transformation function whose parameters set is θ.
Then the relationship represented by AOD-Net could be viewed as a specific
case of the general function Φ.

In this paper, we argue that the formation of hazy image has complicated
mechanism, and the classic atmospheric scattering model [9] is just an elegant
simplified physical model based on the assumption of single-scattering and homo-
geneous atmospheric medium. There potentially exists some highly nonlinear
transformation between the hazy image and its haze-free ground-truth. With
that in mind, instead of limitedly learning the intermediate transmission func-
tion or its reformulated one from classic scattering model as AOD-Net did, we
propose to build a real complete end-to-end deep network from an observed hazy
image I to its recovered clear image J . To avoid making efforts on find “real”
intermediate physical model, our strict end-to-end network pay much concerns
on the qualities of dehazed output.

We employ an encoder-decoder architecture similar to the U-Net [12] to
directly learn the input-adaptive restoration model Φ. The encoder convolves
input image into several successive spatial pyramid layers. The decoder then
successively recovers image details from the encoded feature mappings. In order
to make full use of input information and accurately estimate structural details,
progressive feature fusions are performed on different level mappings between
encoder and decoder. We evaluate our proposed network on two public image
dehazing benchmarks. The experimental results have shown that our method
can achieve great improvements on final restoration performance, when com-
pared with several state-of-the-art methods.

The contributions of this paper are two-fold:

– We have proposed an effective trainable U-Net like end-to-end network for
image dehazing. The encoder-decoder architecture via progressive feature
fusion directly learns the input-adaptive restoration model. The essential for-
mulation mechanism of a hazy image is taken as “black box”, and efforts are
made on restoring the final high quality, clear output. At this viewpoint, our
proposed network is in a real sense the first end-to-end deep learning based
image dehazing model.
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– Our proposed network can directly process ultra high-definition realistic
hazed image up to 4K resolution with superior restoration performance at
a reasonable speed and memory usage. Many popular deep learning based
image dehazing network can not afford image of such high resolution on a
single TITAN X GPU. We owe our advantage to the effective encoder-decoder
architecture.

2 Related Work

Single image dehazing is a very challenging ill-posed problem. In the past, various
prior-based and learning-based methods have been developed to solve the prob-
lem. On basis of the classic atmospheric scattering model proposed by Cantor [9],
most of image dehazing methods followed a three-step pipeline: (a) estimating
transmission map t (x); (b) estimating global atmospheric light A; (c) recovering
the clear image J via computing Eq. 2. In this section, we would focus on some
representative methods. More related works can be referred to surveys [13–15].

A milestone work was the effective dark channel prior (DCP) proposed by He
et al. [2] for outdoor images. They discovered that the local minimum of the dark
channel of a haze-free image was close to zero. Base on the prior, transmission
map could be reliably calculated. Zhu et al. [3] proposed a color attenuation prior
by observing that the concentration of the haze was positively correlated with
the difference between the brightness and the saturation. They created a linear
model of scene depth for the hazy image. Based the recovered depth information,
a transmission map was well estimated for haze removal. Dana et al. [6] proposed
a non-local prior that colors of a haze-free image could be well approximated by
a few hundred distinct color clusters in RGB space. On assumption that each of
these color clusters became a line in the presence of haze, they recovered both
the distance map and the haze-free image.

With the success of convolutional neural network in computer vision area,
several recent dehazing algorithms directly learn transmission map t (x) fully
from data, in order to avoid inaccurate estimation of physical parameters from a
single image. Cai et al. [7] proposed a DehazeNet, an end-to-end CNN network
for estimating the transmission with a novel BReLU unit. Ren et al. [8] proposed
a multi-scale deep neural network to estimate the transmission map. The recent
AOD-Net [11] introduced a newly defined transmission variable to integrate both
classic transmission map and atmospheric light. As AOD-Net needed learn the
new intermediate transmission map, it still fell into a physical model. The latest
proposed Gated Fusion Network (GFN) [16] learned confidence maps to combine
several derived input images into a single one by keeping only the most signifi-
cant features of them. We should note that, for GFN, handcrafted inputs were
needed to be specifically derived for fusion and intermediate confidence maps
were needed to be estimated. In contrast, our proposed network directly learns
the transformation from input hazy image to output dehazed image, needn’t
learning any specific intermediate maps.
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3 Progressive Feature Fusion Network (PFFNet)
for Image Dehazing

In this section, we will describe our proposed end-to-end image dehazing net-
work in details. The architecture of our progressive feature fusion network is
illustrated in Fig. 2. It consists of three modules: encoder, feature transforma-
tion and decoder.

Fig. 2. The architecture of the progressive feature fusion network for image dehazing

The encoder module consists of five convolution layers, each of which is fol-
lowed by a nonlinear ReLU activation. For the convenience of description, we
denote the i-th “conv+relu” layer as Convi

en, i = {0, 1, 2, 3, 4}. The first layer
Conv0

en is for aggregating informative features on a relatively large local recep-
tive field from original observed hazy image I. The following four layers then
sequentially perform down-sampling convolutional operations to encode image’s
information in pyramid scale.

Di = Convi
en (Di−1) , i = {0, 1, 2, 3, 4} ,where, D−1 = I (4)

We denote ki, si, ci as the receptive field size, step size, and output channels
of layer Convi

en respectively. In this paper, empirically, for conv0
en, we set k0 =

11, s0 = 1, ci = 16. Consequently, the corresponding output D0 keeps the same
spatial size as input I. For convi

en, i = {1, 2, 3, 4} layers, we keep their receptive
field size and step size the same. And each one learns feature mappings with
double channels more than its previous layer. The super-parameters are set ki =
3, si = 2, ci = 2ci−1, i = {1, 2, 3, 4}. As a result, we can easily calculate that if
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the size of input hazy image is w × h × c, the size of the output of encoder D4 is
consequently 1

16w× 1
16h×256, where w, h, c are image width, image height, image

channels in respective. That means if an input image is with 4K resolution level,
the resulted feature map is with 256 spatial resolution level after encoder module,
which benefits greatly the following processing stages for reducing memory usage.

The feature transformation module denoted as Ψ (∗) consists of residual based
subnetworks. As we know, the main benefit of a very deep network is that it
can represent very complex functions and also learn features at many different
levels of abstraction. However, traditional deep networks often suffer gradient
vanish or expansion disaster. The popular residual networks [17,18] explicitly
reformulated network layers as learning residual functions with reference to the
layer inputs, instead of learning unreferenced functions. It allows training much
deeper networks than were previously practically feasible. Therefore, to balance
between computation efficiency and GPU memory usage, in this module, we
empirically employed eighteen wide residual blocks for feature learning.

Let B (M) denotes the structure of a residual block, where M lists the kernel
sizes of the convolutional layers in a block. In this paper, we accept B (3, 3) as
the basic residual block, as shown in the left part of Fig. 2. The channels of
convolution layer are all 256, which are the same as the channels of the feature
map D4 from encoder module. The step size is constantly kept to be 1.

The decoder module consists of four deconvolution layers followed by a con-
volution layer. In opposite to encoder, the deconvolution layers of decoder are
sequentially to recover image structural details. Similarly, we denote the j-th
“relu+deconv” layer as DeConvj

dec, j = {4, 3, 2, 1}.

Fj−1 = DeConvj
dec (Uj) , j = {4, 3, 2, 1} (5)

where, Uj is an intermediate feature map.
Through deconvolution (a.k.a transposed) layer, the DeConvj

dec performs up-
sample operations to obtain intermediate feature mappings with double spatial
size and half channels than its previous counterpart. Concretely, the receptive
field size, step size and output channels are set kj = 3, sj = 2, cj−1 = 1

2cj , j =
{4, 3, 2, 1}. It is not difficult to find that, in our network setting, the output map
Fj from DeConvj

dec enjoys the same feature dimensions as corresponding input
Di of Convi

en has, when i = j ∈ {3, 2, 1, 0}.
In order to maximize information flow along multi-level layers and guaran-

tee better convergence, skip connections are employed between corresponding
layers of different level from encoder and decoder. A global shortcut connection
is applied between input and output of the feature transformation module, as
shown in Fig. 2.

Ui = Di ⊕ Fi, i = {3, 2, 1, 0}
U4 = D4 ⊕ Ψ (D4)

(6)

where ⊕ is an channel-wise addition operator.
The dimension of the transposed feature map U0 is therefore w × h × 16, as

the same as D0. A convolution operation is further applied on U0, and generates
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the final recovered clear image J . Herein, for this convolution layer, the kernel
size k is 3; the step size is 1; and the channels is the same as J .

The proposed image dehazing network progressively performs feature fusion
on spatial pyramid mappings between encoder and decoder, which enables max-
imally preserved structural details from inputs for deconvolution layers, and
further makes the dehazing network more input-adaptive.

4 Experiments

4.1 Dataset

We evaluate the effectiveness of our proposed method on two public dehazing
benchmarks. The source code is available on GitHub1.

NTIRE2018 Image Dehazing Dataset. The dataset was distributed by
NTIRE 2018 Challenge on image dehazing [19]. Two novel subsets (I-HAZE [20]
and O-HAZE [21]) with real haze and their ground-truth haze-free images were
included. Hazy images were both captured in presence of real haze generated
by professional haze machines. The I-HAZE dataset contains 35 scenes that
correspond to indoor domestic environments, with objects of different colors
and speculates. The O-HAZE contains 45 different outdoor scenes depicting
the same visual content recorded in haze-free and hazy conditions, under the
same illumination parameters. All images are ultra high definition images on 4K
resolution level.

RESIDE [22]. The REISDE is a large scale synthetic hazy image dataset. The
training set contains 13990 synthetic hazy images generated by using images
from existing indoor depth datasets such as NYU2 [23] and Middlebury [24].
Specifically, given a clear image J , random atmospheric lights A ∈ [0.7, 1.0]
for each channel, and the corresponding ground-truth depth map d, function
t (x) = e−β·d(x) is applied to synthesize transmission map first, then a hazy
image is generated by using the physical model in Eq. (1) with randomly selected
scattering coefficient β ∈ [0.6, 1.8]. In RESIDE dataset, images are on 620 × 460
resolution level.

The Synthetic Objective Testing Set (SOTS) of RESIDE is used as our test
dataset. The SOTS contains 500 indoor images from NYU2 [23] (non-overlapping
with training images), and follows the same process as training data to synthesize
hazy images.

4.2 Comparisons and Analysis

Several representative state-of-the-art methods are compared in our experiment:
Dark-Channel Prior (DCP) [2], Color Attenuation Prior (CAP) [3], Non-Local
Dehazing (NLD) [6], DehazeNet [7], Multi-scale CNN (MSCNN) [8], AOD-Net
[11], and Gated Fusion Network (GFN) [16]. The popular full-reference PSNR
and SSIM metrics are accepted to evaluate the dehazing performance.
1 source code: https://github.com/MKFMIKU/PFFNet.

https://github.com/MKFMIKU/PFFNet
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Training Details. As our PFF-Net was initially proposed to take part in the
NTIRE2018 challenge on image dehazing, the GPU memory usage of our network
is efficient so that we can directly recover an ultra high definition realistic hazy
image on 4K resolution level on a single TITAN X GPU.

In this paper, we train our network both on I-HAZE and O-HAZE training
images, which has 80 scenes in all. Based on these scenes, we further perform
data augmentation for training. We first use sliding window to extract image
crops of 520 × 520 size from the realistic hazy images. The stride is 260 pixels.
For each image crop, we obtain its 12 variants at four angles

{
0, π

2 , π, 3
2π

}
and

three mirror flip cases {NoFlip,HorizontalF lip, V erticalF lip}. In consequence,
about 190K patches are augmented as the training dataset.

The ADAM [25] is used as the optimizer. The initial learning rate we set is
η = 0.0001, and kept a constant during training. Mean Square Errors (MSE)
between recovered clear image and haze-free ground-truth is taken as our objec-
tive loss. The batch-size is 32. During training, we recorded every 2000 iterations
as an epoch and the total num of training epoches is empirically 72 in practice.
The testing curve on PSNR performance is shown in Fig. 3. We found that the
network started to converge at the last 10 epoches.

EDISER8102ERITN

Fig. 3. The testing curves of our proposed PFF-Net on NTIRE2018 (Left) and RESIDE
(Right). In both sub-figures, the horizontal axis shows training epoches. The vertical
axis shows PSNR performance tested on training model at corresponding epoch.

Ablation Parameter Comparisons on Networks Settings. Before fixing
the architecture of our PFFNet in this paper, we have done several ablation
experiments on parematers setting. We have experimented four different blocks
sizes in feature transformation module: {6, 12, 18, 24}. The testing performances
are shown in following Fig. 4-Left. Increasing the size of residual blocks would
improve the testing performance. By considering the balance between the per-
formance and the available computing resources, we finally adopted the feature
transformation module with 18 residual blocks in this paper.

We have also compared the performance of networks with/without skip con-
nections between encoder module and encoder module. The comparisons was
experimented through training our network with 12 residual blocks in feature
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transformation module. In terms of the speed of convergence and the perfor-
mance, network without skip connections is much worse than network with skip
connections, as shown in Fig. 4-Right. The conclusion is consistent with observa-
tions in many residual based learning models and also validates the necessaries
of progressive feature fusion between encoder and decoder stages.

Fig. 4. Left: The testing performance comparisons on NTIRE2018 outdoor scenes
in different block size cases. Right: The testing performance comparisons of
network with/without skip connection between encoder and decoder module on
NTIRE2018 outdoor scenes. The “12 resblock” represents network with skip connec-
tions; “nsc resblock” represents network without skip connections. The network is
trained about 40 epoches.

Experiment Results. We have taken part in the NTIRE2018 challenge on
image dehazing based on the proposed network. In the final testing phase, our
network has achieved top 6 ranking out of 21 teams on I-HAZE track without
using any data from O-HAZE and won the NTIRE 2018 honorable mentioned
award. It should be noted that our network is very straight-forward and we
haven’t applied any specific training trick to further boost performance during
training period and we haven’t re-trained our model for O-HAZE track at that
submission time.

Compared with other top methods in NTIRE Dehazing Challenge, our pro-
posed network has several distinguished differences: (1) Most of other top meth-
ods use denseblock in their networks while we just use simple residual block then.
Empirically, denseblock has better learning power and will have much potentials
to boost output performance. (2) Multi-scale or multi-direction ensemble infer-
ences at testing stage are used in some top methods to achieve better perfor-
mance. In contrary, we haven’t applied this tricky strategy. We just use the single
output for testing. Using ensemble inference strategy empirically has great poten-
tials to achieve better performance. (3) The last is not the least. As the images
used in NTIRE Dehazing Challenge are very large with 4K high-resolution, all
these top methods use patch based training strategy without taking entire image
as input. Their network can not afford such large image. In contrary, our pro-
posed network can directly process the ultra high-definition realistic hazed image
up to 4K resolution with superior restoration performance at a reasonable speed
and memory usage.
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Several dehazed examples on realistic images from NTIRE2018 are shown in
Figs. 5 and 6. All these images are at 4K resolution level which most current
dehazed model cannot afford. Though challenging these examples are, our net-
work still can obtain relatively satisfactory dehazed results with natural color
saturation and acceptable perceptual quality.

With the aim to compare with state-of-the-art methods, we evaluate our
method on the commonly referred public benchmark. We first pre-train our net-
work on DIV2K [26], then fine-tune the pre-trained network on RESIDE train-
ing data without data augmentation. The training curve of fine-tuning process
on RESIDE is shown in Fig. 3. After about 8 epoches, the network begins to
converge.

Fig. 5. Several challenging realistic dehazed examples from I-HAZE by using PFF-Net

We evaluate the performance of our network on the SOTS. The comparison
results on SOTS are shown in Table 1. From the experimental comparisons, it has
been demonstrated that our proposed network outperforms the current state-of-
the-art methods, and achieves superior performance with great improvements.

Table 1. The dehazing performance evaluated on SOTS of RESIDE

DCP CAP NLD DehazeNet MSCNN AOD-Net GFN PFF-Net(ours)

PSNR 16.62 19.05 17.29 21.14 17.57 19.06 22.30 24.78

SSIM 0.8179 0.8364 0.7489 0.8472 0.8102 0.8504 0.88 0.8923
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Fig. 6. Several challenging realistic dehazed examples from O-HAZE by using PFF-Net

Hazy
Image

DCP CAP NLD DehazeNet MSCNN AOD-Net GFN PFF-Net

Fig. 7. Comparisons with state-of-the-art methods on some real-world hazy images.
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Some qualitative comparisons on real-world hazy image are further shown
in Fig. 7. These collected hazy images are at resolution around 500 × 600 pixels
and captured from natural environment, best viewed on high-resolution display.
As shown, the dehazed results from our method are clear and the details of the
scenes are enhanced moderately better with natural perceptual qualities.

5 Conclusion

In this paper, we have proposed an effective trainable U-Net like end-to-end
network for image dehazing. Progressive feature fusions are employed to learn
input adaptive restoration model. Owing to the proposed U-Net like encoder-
decoder architecture, our dehazing network has efficient memory usage and can
directly recover ultra high definition hazed image up to 4K resolution. We eval-
uate our proposed network on two public dehazing benchmarks. The experi-
mental results demonstrate that our network can achieve superior performance
with great improvements when compared with several popular state-of-the-art
methods.
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