
Feedback Network for Mutually Boosted Stereo Image
Super-Resolution and Disparity Estimation
Qinyan Dai, Juncheng Li, Qiaosi Yi, Faming Fang∗, Guixu Zhang

School of Computer Science and Technology,and Key Laboratory of Advanced Theory and Application in Statistics and
Data Science - MOE, East China Normal University, Shanghai, China

649310204@qq.com,(cvjunchengli,qiaosiyijoyies)@gmail.com,(fmfang,gxzhang)@cs.ecnu.edu.cn

ABSTRACT
Under stereo settings, the problem of image super-resolution (SR)
and disparity estimation are interrelated that the result of each prob-
lem could help to solve the other. The effective exploitation of corre-
spondence between different views facilitates the SR performance,
while the high-resolution (HR) features with richer details bene-
fit the correspondence estimation. According to this motivation,
we propose a Stereo Super-Resolution and Disparity Estimation
Feedback Network (SSRDE-FNet), which simultaneously handles
the stereo image super-resolution and disparity estimation in a
unified framework and interact them with each other to further im-
prove their performance. Specifically, the SSRDE-FNet is composed
of two dual recursive sub-networks for left and right views. Be-
sides the cross-view information exploitation in the low-resolution
(LR) space, HR representations produced by the SR process are
utilized to perform HR disparity estimation with higher accuracy,
through which the HR features can be aggregated to generate a
finer SR result. Afterward, the proposed HR Disparity Information
Feedback (HRDIF) mechanism delivers information carried by HR
disparity back to previous layers to further refine the SR image re-
construction. Extensive experiments demonstrate the effectiveness
and advancement of SSRDE-FNet.
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1 INTRODUCTION
With the development of dual cameras, stereo images have shown
greater impact in many applications, such as smartphones, drones,
and autonomous vehicles. However, the stereo images often suffer
from resolution degradation in practice. Therefore, a technology
that can restore the high-resolution (HR) left and right views in a 3D
scene is essential. In the binocular system, parallax effects between
the low resolution (LR) images cause a sub-pixel shift between
them. Therefore, making full use of cross-view information can
help reconstruct high-quality SR images since one view may have
additional information relative to the other.

Recently, several deep learning based methods have been pro-
posed to capture cross-view information by modeling the disparity.
E.g., [27, 29, 30, 32, 34, 37] leverage the parallax attention module
(PAM) proposed by Wang et al. [29, 30] to search for correspon-
dences along the horizontal epipolar line without parallax limit;
In [35], a pre-trained disparity network [9] was used to deploy the
disparity prior into image reconstruction. Although continuous im-
provements have been achieved in stereo image SR, the utilization
of cross-view information is still insufficient and less effective.

In fact, under stereo settings, disparity estimation and image
SR are interrelated that the result of each problem could help to
solve the other one, and each task benefits from the gradual im-
provement over the other task. However, previous methods have
not explored this mutually boosted property. Moreover, all these
methods exploit correspondent information only in the LR space,
which usually does not provide enough accuracy in high-frequency
regions due to the loss of fine-grained details in LR features. Thus,
the positive additional information brought by these correspon-
dences is still limited, hindering sufficient feature aggregation and
further SR performance improvements. Thus, it is highly desirable
to model disparity in a more powerful way and have a guidance
mechanism that can fully interact between super-resolution and
disparity estimation.

To address the aforementioned problem, we propose a novel
method that can handle stereo image super-resolution and HR dis-
parity estimation in an end-to-end framework (Figure 1), interacting
in a mutually boosted manner. We perform disparity estimation in
the HR space to overcome the accuracy limitation of LR correspon-
dence and better guide the stereo SR. To achieve this efficiently, we
leverage the features from LR space and the reconstructed HR space
to estimate disparity in a coarse-to-fine manner. In the framework,
the interaction of super-resolution and disparity estimation are
three-folds: (i). the coarse correspondence estimation in LR space
benefits the cross-view information exploration for SR, initial SR
results and HR features for both views are produced; (ii). the HR
representations from (i) with richer details serve as finer features
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Figure 1: The architecture of SSRDE-FNet, which introduces the HR disparity information feedback mechanism.

for HR disparity estimation, which reduces the search range of HR
disparity for better accuracy and efficiency; (iii). The HR disparity
can further benefit SR reconstruction. Specifically, we align the HR
features of the two views using HR disparity maps and perform
attention-driven feature aggregation to produce the enhanced HR
features, upon which a finer SR result is generated. To achieve a
more essential facilitation of HR disparity to stereo SR, we propose
the HR Disparity Information Feedback (HRDIF) mechanism that
feeds the enhanced HR features and the HR disparity back to previ-
ous layers for the refinement of low-level features in the SR process.
In summary, the main contributions of this paper are as follows:

• We propose a Stereo Super-Resolution and Disparity Estima-
tion Feedback Network (SSRDE-FNet) that can simultane-
ously solve the stereo image super-resolution and disparity
estimation in a unified framework. To the best of our knowl-
edge, this is the first end-to-end network that can achieve
the mutual boost of these two tasks.

• We propose a novel HR Disparity Information Feedback
(HRDIF) mechanism for HR disparity and promote the qual-
ity of the SR image in an iterative manner.

• Extensive experiments illustrate that the proposed model
restores high-quality SR images and achieves state-of-the-art
results in the field of stereo image super-resolution.

2 RELATEDWORKS
2.1 Image Super-Resolution
Image Super-Resolution aims to reconstruct a super-resolved image
from its degraded low-resolution (LR) one. Since the pioneer work
of SRCNN [4], learning-basedmethods have dominated the research
of single image super-resolution (SISR). Methods like VDSR [10],
SRDenseNet [28], EDSR [18], MSRN [15], and RDN [39] achieved ex-
cellent performance and greatly promoted the development of SISR.
However, due to the lack of reference features, the performance of
SISR has encountered a bottleneck. Therefore, stereo image SR has
received great attention in recent years since it has the available left

and right view information. The critical challenge for enhancing
spatial resolution from stereo images is registering corresponding
pixels with sub-pixel accuracy. Bhavsar et al. [1] argued that the
problems of image SR and HR disparity estimation are intertwined
under stereo settings. They formulate the two problems into one
energy function and minimize it by iteratively updating the HR
image and disparity map. [12, 23] also follow this pipeline, how-
ever, these methods usually take a large amount of computation
time. Recently, several deep learning-based stereo SR methods have
emerged by using the parallax. E.g., StereoSR [7] stacks stereo im-
ages with horizontal shift intervals to feed into the network to learn
stereo correspondences. However, the maximum parallax that can
be processed is fixed as 64. To explore correspondences without
disparity limit, Wang et al. [29, 30] proposed PASSRnet, with a
parallax-attention module (PAM) that has a global receptive field
along the epipolar line for global correspondence capturing. Ying et
al. [37] and Song et al. [27] also utilize PAM, while [37] incorporated
several PAMs to different stages of the pre-trained SISR networks
to enhance the cross-view interaction. In iPASSR [32], a symmet-
ric bi-directional PAM (biPAM) and an inline occlusion handling
scheme were proposed to further improve SR performance. Besides
the PAM based methods, Yan et al. [35] used a pre-trained disparity
flow network to predict disparity based on the input stereo pair, and
incorporates the disparity prior to better utilize the cross-view na-
ture. Lei et al. [13] builds up an interaction module-based stereo SR
network (IMSSRnet), in which the interaction module is composed
of a series of interaction units with a residual structure.

Above methods all explore the correspondence information only
in LR space, limit the positive effects provided by cross-view. Our
work hunts for the mutual contributions between stereo image SR
and HR disparity, leads to higher image quality and more accurate
disparity, which is new in literature w.r.t learning-based method.

2.2 Disparity Estimation
Disparity estimation has been investigated to obtain correspon-
dence between a stereo image pair [19, 25], which can be utilized to



capture long-range dependency for stereo SR. Existing end-to-end
disparity estimation networks usually include cost volume compu-
tation, cost aggregation, and disparity prediction. 2D CNN based
methods [17, 20, 33] generally adopt a correlation layer for 3D cost
volume construction, while 3D CNN based methods [2, 3, 8, 22, 38]
mostly use direct feature concatenation to construct 4D cost volume
and use 3D convolution for cost aggregation. Apart from supervised
methods, several unsupervised learning methods [14, 24, 29, 36, 40]
have been developed to avoid the use of costly ground truth depth
annotations. Most relevantly, Wang et al. [29] uses cascaded PAM
to regress matching costs in a coarse-to-fine manner, getting rid
of the limitation of fixed maximum disparity in cost volume tech-
niques. However, as Gu at al. [6] pointed out, due to computational
limitation, methods usually calculate matching cost at a lower reso-
lution by the downsampled feature maps and rely on interpolation
operations to generate HR disparity. Differently, they decompose
the single cost volume into a cascade formulation of multiple stages
for efficient HR stereo matching. Inspired by this, we achieve the
HR disparity estimation in a coarse-to-fine manner.

3 METHOD
As shown in Figure 1, we develop a Stereo Super-Resolution and
Disparity Estimation Feedback Network (SSRDE-FNet). Our goal
is to obtain SR images 𝑆𝑅𝑙 , 𝑆𝑅𝑟 of both views and relevant HR
disparity maps 𝐷𝐻𝑅

𝑙
, 𝐷𝐻𝑅𝑟 , from LR stereo images input 𝐿𝑅𝑙 , 𝐿𝑅𝑟 ,

and interact the two tasks in a mutually boosted way. In this section,
we first introduce the overall insights and network architecture in
Sec. 3.1. Then, we detail the proposed HR Disparity Information
Feedback (HRDIF) mechanism in Sec. 3.2. Finally, the loss functions
are presented in Sec. 6.

3.1 SSRDE-FNet
A key to improve stereo SR is utilizing disparity for sub-pixel infor-
mation registration, and a key to disparity estimation accuracy is
the resolution of input features. To let these two tasks make effec-
tive contribution to each other, the modeling power of both tasks
are important. Thus we propose SSRDE-FNet, which is essentially
a recurrent network with the proposed HR Disparity Information
Feedback (HRDIF) mechanism. Each iteration involves two SR re-
construction steps. The HR disparity is achieved in a coarse-to-fine
way, the coarse disparity is first estimated from LR features and
the finer one is estimated from the reconstructed HR features. The
advantages of this method are: (1) Stereo image SR can utilize
cross-view information in multi-scales since both LR and HR cor-
respondences can be obtained, leading to more sufficient feature
aggregation; (2) The coarse-to-fine manner leads to a more compact
and efficient network.

Stereo Image SR Backbone We develop a lightweight stereo
SR network as shown in Figure 2(a), which leverages both intra-
view and cross-view LR information for image reconstruction. Since
hierarchical features have been demonstrated to be effective in both
SISR [15, 39] and disparity estimation [3, 8], we are also committed
to maximizing the use of hierarchical features in the model. Specif-
ically, after a convolution layer that extracts shallow features, four
RDBs [39] are stacked to extract hierarchical features. We make full
use of the features from all the RDBs by concatenating them and

Figure 2: The architecture of the proposed SR backbone.

fusing them with a 1 × 1 convolution, producing LR feature maps
L𝑙 and L𝑟 . Meanwhile, in order to alleviate the training conflict that
may suffered by directly sharing features across different tasks [26]
and explore more adaptive features for LR disparity estimation, a
transition block is performed on L𝑙 and L𝑟 , expressed as:

L∗
𝑙
= 𝑓𝑇𝐵 (L𝑙 ), L∗𝑟 = 𝑓𝑇𝐵 (L𝑟 ), (1)

where L∗
𝑙
and L∗𝑟 denote the transformed features, 𝑓𝑇𝐵 denotes the

transition block (TB) as shown in Figure 2(b)).
Under LR space, we explore cross-view information by sam-

pling disparity across the entire horizontal-range of a scene. To
achieve this, bi-directional parallax attention module (biPAM [32])
is adopted. In this work, it serves as both self-attention LR feature
registration and coarse disparity estimation for HR disparity initial-
ization, thus its reliability is important. However, even with deep
features, matching from unaries is far from reliable. To this end,
we cascade 𝑁 biPAMs for matching cost aggregation. We initialize
the matching costs C0

𝑙→𝑟
and C0

𝑟→𝑙
as zero tensor. The operation

of the 𝑖𝑡ℎ biPAM can be defined as:
L
′
𝑙
=𝑓𝐶𝑂𝑁𝑉 (L∗,𝑖−1

𝑙
), L′𝑟 = 𝑓𝐶𝑂𝑁𝑉 (L∗,𝑖−1𝑟 ),

C𝑖
𝑙→𝑟 = C𝑖−1

𝑙→𝑟 + 𝑓𝑄 (𝐿′
𝑙
) ⊗ 𝑓𝐾 (L′𝑟 )𝑇 ,

C𝑖
𝑟→𝑙 = C𝑖−1

𝑟→𝑙 + 𝑓𝑄 (L′𝑟 ) ⊗ 𝑓𝐾 (L′
𝑙
)𝑇 ,

L∗,𝑖
𝑙

= L∗,𝑖−1
𝑙

+ L
′
𝑙
, L∗,𝑖𝑟 = L∗,𝑖−1𝑟 + L

′
𝑟 ,

(2)

where 𝑓𝐶𝑂𝑁𝑉 denotes two 3 × 3 convolutions. 𝑓𝑄 and 𝑓𝐾 are both
1 × 1 convolution. ⊗ is geometry-aware matrix multiplication, T
is transposition operation that exchanges the last two dimensions
of a matrix. Finally, the softmax is applied on C𝑁

𝑙→𝑟
and C𝑁

𝑟→𝑙
to generate parallax attention map M𝑙→𝑟 and M𝑟→𝑙 . Therefore,
the warped feature maps L𝑟→𝑙 , L𝑙→𝑟 for sub-pixel registration are
generated by the corresponding parallax attention map and inline
occlusion inline occlusion handling [32]:

L𝑙→𝑟 = V𝑙 ⊙ M𝑙→𝑟 ⊗ L𝑙 + (1 − V𝑙 ) ⊙ 𝐿𝑙 ,
L𝑟→𝑙 = V𝑟 ⊙ M𝑟→𝑙 ⊗ L𝑟 + (1 − V𝑟 ) ⊙ 𝐿𝑟 ,

(3)

where V𝑙 and V𝑟 are valid masks, ⊙ is element-wise multiplica-
tion. For each view, its own feature and the warped feature from
the other view are then sent to the feature fusion block (FFB) for
cross-view information aggregation (Figure 2(c)). Instead of directly
concatenate the two features, a residual based aggregation module
is built. We first compute the residual between the two features, and
then apply a RDB [39] on the residual features, the output features



Figure 3: Illustration of HR disparity estimation module.

are then added back to the view’s own feature. Take the left view
as example, the operation can be defined as:

Res𝑙 = L𝑟→𝑙 − L𝑙 ,

L𝑓
𝑙
= 𝑓𝐶𝐴𝐿𝑎𝑦𝑒𝑟 (𝑓𝑅𝐷𝐵 (Res𝑙 ) + L𝑙 ),

(4)

where L𝑓
𝑙
denotes the fused features for left view and 𝑓𝐶𝐴𝐿𝑎𝑦𝑒𝑟

denotes the channel attention layer. Such inter-residual projection
allows the network to focus only on the distinct information be-
tween feature sources while bypassing the common knowledge,
enabling a more discriminative feature aggregation compared with
trivial adding or concatenating. Finally, the fused features L𝑓

𝑙
, L𝑓𝑟 go

through the reconstruction module that has the same architecture
with the feature extraction module, and a sub-pixel convolutional
layer is applied to produce the HR features H𝑙 ,H𝑟 . Meanwhile, the
SR images SR0

𝑙
, SR0𝑟 are reconstructed at this step by adding the

corresponding bicubic upsampled LR images:

SR0
𝑙
= 𝑓𝑈𝑃 (LR𝑙 ) + 𝑓𝑅𝐸𝐶 (H𝑙 ), SR0

𝑟 = 𝑓𝑈𝑃 (LR𝑟 ) + 𝑓𝑅𝐸𝐶 (H𝑟 ) . (5)

The main role of the two super-resolved images is to guarantee
the effectiveness of the HR features H𝑙 ,H𝑟 , which serve as impor-
tant inputs to the subsequent HR disparity estimation module.

HR Disparity Estimation Module The downside to rely only
on coarse matching is that the resulting correspondences lack fine
details. Although LR correspondences have been demonstrated to
benefit the stereo SR [27, 30], the low-level LR features limit the
accuracy in correspondence matching, especially in high-frequency
regions like object boundaries, which are the most important re-
construction goal of SR. Thus, we suggest to also estimate the HR
disparity map for more fine-gained correspondence information.
To ensure the effectiveness of high-level HR features H𝑙 ,H𝑟 , we
connect the image reconstruction loss on the first step SR results
SR0
𝑙
, SR0𝑟 , thus the HR features H𝑙 ,H𝑟 can be seen as containing the

information of HR images, and serve as reliable representations
for HR disparity estimation. However, directly estimating from
scratch costs massive computation cost, a more efficient strategy
should be adopted. We found that the disparity maps Disp𝐿

𝑙
and

Disp𝐿𝑟 regressed from the parallax attention mapsM𝑙→𝑟 andM𝑟→𝑙

have relative high accuracy in most regions (see the 1𝑠𝑡 column of
Table 4), which can be obtained as:

Disp𝐿
𝑙
=

𝑊 −1∑
𝑘=0

𝑘 ×M𝑟→𝑙 (:, :, 𝑘),Disp𝐿𝑟 =

𝑊 −1∑
𝑘=0

𝑘 ×M𝑙→𝑟 (:, :, 𝑘), (6)

where𝑊 is the width of the input LR image. Thus, we only con-
struct partial cost volumes C𝑙 ,C𝑟 based on coarse estimation and
disparity residual hypotheses to achieve disparity maps with higher

resolution and accuracy. As shown in Figure 3, the upsampled dis-
parity maps (𝑢𝑝 (Disp𝐿

𝑙
), 𝑢𝑝 (Disp𝐿𝑟 )) are used as initialization of

the HR disparity estimation for the left and right view, respectively.
The disparity searching range can then be narrowed, we task the
network of only finding a residual to add or subtract from the coarse
prediction, blending in high-frequency details.

Specially, we denote the disparity searching residual for each
pixel in high resolution as Δ𝐷 . Take the left view as an example,
when performing ×𝑠 SR, for the𝑚𝑡ℎ pixel in HR space, the disparity
range for building the left cost volume is [𝑚𝑎𝑥 (𝑢𝑝 (Disp𝐿

𝑙
) (𝑚) −

Δ𝐷/2, 0),𝑚𝑖𝑛(𝑢𝑝 (Disp𝐿
𝑙
) (𝑚)+Δ𝐷/2, 𝑠𝑊 )]. By uniformly sampling

Δ𝐷 disparity hypotheses in this range (in this work, Δ𝐷 = 24), 3D
cost volumewith size 𝑠𝐻×𝑠𝑊 ×Δ𝐷 can be obtained through feature
correlation operation [20]. To learn more context information, we
aggregate the cost volume using hourglass architecture. Then we
can regress the HR disparity Disp𝐻

𝑙
,Disp𝐻𝑟 for both view through

soft-argmax operation. For occlusion handling, we use the estimated
disparity maps to check the geometric consistency and estimate
the valid masks to be used in the loss functions:

V𝑙 = 1 − 𝑡𝑎𝑛ℎ (0.2
��Disp𝐻

𝑙
−𝑊𝑎𝑟𝑝 (Disp𝐻𝑟 ,Disp𝐻𝑙 )

��),
V𝑟 = 1 − 𝑡𝑎𝑛ℎ (0.2

��Disp𝐻𝑟 −𝑊𝑎𝑟𝑝 (Disp𝐻
𝑙
,Disp𝐻𝑟 )

��), (7)

where𝑊𝑎𝑟𝑝 (𝑎, 𝑏) represents using 𝑏 to warp 𝑎.
The HR disparity is in turn used to explore additional informa-

tion from different views in the HR space, thus the registered HR
features can be obtained by: H𝑟→𝑙 = 𝑊𝑎𝑟𝑝 (H𝑟 ,Disp𝐻𝑙 ), H𝑙→𝑟 =

𝑊𝑎𝑟𝑝 (H𝑙 ,Disp𝐻𝑟 ). For HR cross-view information aggregation, the
residual-based module is adopted (similar to FFB), the only differ-
ence is that an additional attention map for each view is introduced
to improve the aggregation reliability. Take the left view as ex-
ample, the attention map measure the similarity of H𝑙 and H𝑟→𝑙 :
Att𝑙 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (5𝑓𝐶𝑜𝑛𝑣1 (H𝑙 ) ⊙ 𝑓𝐶𝑜𝑛𝑣2 (H𝑟→𝑙 )), where 𝑓𝐶𝑜𝑛𝑣1 and
𝑓𝐶𝑜𝑛𝑣2 are both 3×3 convolutional layers. Therefore, the aggregated
HR left features Ĥ𝑙 are:

Res𝑙 = (H𝑟→𝑙 − H𝑙 ) ⊙ Att𝑙 ,

Ĥ𝑙 = 𝑓𝐶𝐴𝐿𝑎𝑦𝑒𝑟 (𝑓𝑅𝐷𝐵 (Res𝑙 ) + H𝑙 ) .
(8)

where Att𝑙 adaptively weights down the regions with too large
difference with the original view and emphasis the regions that are
favorable for providing complementary information. Similarly, we
can get the aggregated right HR feature Ĥ𝑟 . Afterwards, better SR
images can be reconstructed through Ĥ𝑙 , Ĥ𝑟 :

SR1
𝑙
= 𝑓𝑈𝑃 (LR𝑙 ) + 𝑓𝑅𝐸𝐶 (Ĥ𝑙 ), SR1

𝑟 = 𝑓𝑈𝑃 (LR𝑟 ) + 𝑓𝑅𝐸𝐶 (Ĥ𝑟 ) . (9)

This section introduces a whole feed-forward pipeline for per-
forming the two tasks. Three stages of task interactions have been
shown: Firstly, LR disparity (correspondence) promotes image SR
by adding extra details. Secondly, image SR promotes HR disparity
estimation accuracy by providing fine-gained HR representations.
Thirdly, the more accurate disparity promotes the quality of the SR
images by aggregating features in the HR space. The interactions
mentioned above all act in a straightforward way, however, we
intend to further explore a more essential and intrinsic connection
of the two tasks.



Figure 4: Illustration of our HR disparity information feedback (HRDIF) mechanism. (Please zoom in for details)

3.2 HRDIF Mechanism
The flow of information from the LR image to the final SR im-
age is purely feed-forward in all previous stereo SR network ar-
chitectures [27, 29, 30, 37], which cannot fully exploit effective
high-resolution features in representing the LR to HR relation. The
purely feed-forward network also makes it impossible for the HR
disparity map to send useful information to the preceding low-level
features, thus cannot refine these features in the SR process. To
this end, we intend to project the useful information carried by the
HR disparity back to preceding layers. Since the essential influence
of the disparity to SR task is acting on the feature level, i.e., by
registering the sub-pixel feature of two views and aggregating to
obtain the enriched representations, we propose two strategies to
feedback the HR disparity and act upon the feature space (Figure4,
this illustration is based on the left view, the similar operation can
be done on the right branch).

AggregatedHR Feature Feedback (AHFF) Firstly, the HR dis-
parity information is embedded in the aggregated HR features
Ĥ𝑙 , Ĥ𝑟 , thus we recommend to feed them back to refine the low-
level features. Different from original feedback operation in [16]
that simply send the high-level features of the view back to low-
level layer, our feedback HR features contain information from both
intra-view and cross-view. To handle the spatial resolution gap, we
back-project the HR features to LR space, and leverage a simple
attention strategy to highlight the high-frequency regions in the
downsampled features to compensate for the resolution loss. As
shown in the downside branch of Figure 4, for the 𝑡𝑡ℎ iteration, we
first apply strided convolution to Ĥ𝑡−1

𝑙
,

LB𝑡
𝑙
= 𝑓𝐷𝑂𝑊𝑁 (Ĥ𝑡−1

𝑙
) . (10)

Secondly, in order to get the high-frequency regions, we apply
average pooling to LB𝑡

𝑙
, then a deconvolution layer is applied to

project the feature back to original resolution, obtaining L̃B𝑡
𝑙
. In

addition, the attention map W𝑡
𝑙
is calculated by computing the

residual between LB𝑡
𝑙
and L̃B𝑡

𝑙
.

L̃B𝑡
𝑙
= 𝑓𝐷𝑒𝐶𝑜𝑛𝑣 (𝐴𝑣𝑔𝑝𝑜𝑜𝑙 (LB𝑡𝑙 )),

W𝑡
𝑙
= 𝑃𝑅𝑒𝐿𝑈 (L̃B𝑡

𝑙
− LB𝑡

𝑙
) .

(11)

Then, the highlighted regions activated byW𝑡
𝑙
is added to LB𝑡

𝑙
:

L̂B
𝑡

𝑙 = LB𝑡
𝑙
+ 𝜆 (LB𝑡

𝑙
⊙ W𝑡

𝑙
), (12)

where 𝜆 is a hyper-parameter used to control the importance of the
attention weights, L̂B𝑡𝑙 denotes the back-projected feature.

Low-level Representations Enrichment (LRE) It is worth
noting that one of the requirements that contains in a feedback
system is providing an LR input at each iteration, i.e., to ensure
the availability of low-level information which is needed to be
refined. Thus, for the 𝑡𝑡ℎ iteration, the LR feature L𝑡−1

𝑙
from the

(𝑡 − 1)𝑡ℎ iteration is meant to be refined by L̂B
𝑡

𝑙 . Instead of directly
leveraging the coarse original feature L𝑡−1

𝑙
, we propose the second

HR disparity information feedback strategy to enrich the low-level
representations. As shown in the upside of Figure.4, we first apply
spatial-to-depth operation upon the HR disparity map Disp𝐻,𝑡−1

𝑙
∈

R𝑠𝐻×𝑠𝑊 from the (𝑡 − 1)𝑡ℎ iteration, obtaining LR disparity cube
of size R𝐻×𝑊 ×𝑠2 . We use each disparity slice in the cube to warp
L𝑡−1𝑟 , obtaining 𝑠2 warped feature maps of the right view, L𝑡−1,𝑖

𝑟→𝑙
, 𝑖 =

1, ..., 𝑠2. Each warped feature map is concatenated with the same left
feature L𝑡−1

𝑙
, and each concatenated feature map is going through

a residual block and a 1 × 1 convolution for fusion. Finally, we sum
up the 𝑠2 fused LR feature maps to get L̂𝑡−1

𝑙
:

L̂𝑡−1
𝑙

=

𝑠2∑
𝑖=0

𝑓𝑓 𝑢𝑠𝑖𝑜𝑛 (𝑓𝑅𝑒𝑠𝐵 (𝐶𝑜𝑛𝑐𝑎𝑡 (L𝑡−1𝑙
, L𝑡−1,𝑖
𝑟→𝑙 ))) . (13)

Finally, L̂𝑡−1
𝑙

and L̂B
𝑡

𝑙 are concatenated and fused to reduce the
channel back to the same with L𝑡−1

𝑙
, and the new LR feature L𝑡

𝑙
for

the 𝑡𝑡ℎ iteration is generated according to:

L𝑡
𝑙
= 𝑓𝑓 𝑢𝑠𝑒 (𝐶𝑜𝑛𝑐𝑎𝑡 (L̂𝑡−1𝑙

, L̂B
𝑡

𝑙 )) . (14)

In this way, the low-level features L𝑡
𝑙
carry information from

the HR disparity, and this feature enhancement dose favor to the
whole pipeline right from the beginning. Finally, we adopt the last
SR output as the final result.

3.3 Loss Functions
Since our work aims to achieve stereo SR and disparity estimation
simultaneously, we set loss constraints for both tasks. Note that



we learn the disparity in an unsupersived manner and do not use
groundtruth (GT) disparities during the training phase. We intro-
duce SR loss L𝑆𝑅 , biPAM loss L𝐵𝑖𝑃𝐴𝑀 , and disparity loss L𝐷𝑖𝑠𝑝
to train our network. The overall loss function of our network is
defined as:

L = L𝑆𝑅 + 𝜆1L𝐵𝑖𝑃𝐴𝑀 + 𝜆2L𝐷𝑖𝑠𝑝 , (15)

where both 𝜆1 and 𝜆2 are set to 0.1 in this work.
SR Loss. The SR loss is essentially an 𝐿1 loss function that is

used to measure the difference between the SR images and GT
images, i.e., for T iterations,

L𝑆𝑅 =

𝑇∑
𝑡=0

∥ SR𝑡,0
𝑙

− HR𝑙 ∥1 + ∥ SR𝑡,0𝑟 − HR𝑟 ∥1

+ ∥ SR𝑡,1
𝑙

− HR𝑙 ∥1 + ∥ SR𝑡,1𝑟 − HR𝑟 ∥1,
(16)

where SR𝑙 and SR𝑟 represent the restored left and right images, and
HR𝑙 and HR𝑟 represent their corresponding HR images.

BiPAM Loss. We formulate the BiPAM loss as a combination
of photometric, smoothness, cycle and consistency terms, connect-
ing to bi-directional parallax-attention maps M𝑡

𝑟→𝑙
, M𝑡

𝑙→𝑟
, t=1,...,T.

That is, L𝐵𝑖𝑃𝐴𝑀 = L𝑝ℎ𝑜𝑡𝑜 + L𝑐𝑦𝑐𝑙𝑒 + L𝑠𝑚𝑜𝑜𝑡ℎ + L𝑐𝑜𝑛𝑠 . The loss
is employed in a residual manner [32] to overcome illuminance
variation. Please refer to [32] for details.

Disparity Loss. Besides tying loss on the parallax-attention
maps, we also enforce direct constraints on all the estimated dispar-
ity maps, namely Disp𝐿,𝑡

𝑙
, Disp𝐿,𝑡𝑟 , Disp𝐻,𝑡

𝑙
, Disp𝐻,𝑡𝑟 for 𝑡 = 1, ...,𝑇 .

We first penalize the reconstruction loss on HR images using each
disparity map (LR disparity upsamples to the same size of HR im-
ages), for the left view,

L𝑙𝑟𝑐 =
1
𝑁

𝑡=𝑇∑
𝑝∈V𝑡

𝑙
,𝑡=1

𝛼
1 − S(HR𝑙 (𝑝),HR𝑡𝑟→𝑙 (𝑝))

2

+ (1 − 𝛼)
HR𝑙 (𝑝) − HR𝑡

𝑟→𝑙 (𝑝)

1 , 𝑡 = 1, ...,𝑇 ,

(17)

where HR𝑡
𝑟→𝑙

=𝑊𝑎𝑟𝑝 (HR𝑟 ,Disp𝐻,𝑡𝑙
). S is a structural similarity

index (SSIM) function, 𝑝 represents a valid pixel in the valid mask,
𝑁 is the number of valid pixels, and 𝛼 is empirically set to 0.85. The
loss for the right view is also calculated as the similar method.

Moreover, we constrain edge-aware smoothness loss on HR dis-
parity, which is defined as:

L𝑙𝑠 =
1
𝑁

∑
p∈V𝑙

▽𝑥Disp𝐻,𝑡𝑙
(p)


1
𝑒−∥▽𝑥HR𝑙 (p) ∥1

+
▽𝑦Disp𝐻,𝑡𝑙

(p)

1
𝑒−∥▽𝑦HR𝑙 (p) ∥1 , 𝑡 = 1, ...,𝑇 ,

(18)

where▽𝑥 and▽𝑦 are gradients in the 𝑥 and𝑦 directions respectively.
Finally, residual based cycle and consistency losses [32] are also

used to constrain HR disparity maps. The total disparity loss can
be written as: L𝐷𝑖𝑠𝑝 = L𝑟𝑐 + L𝐻𝑅

𝑐𝑦𝑐𝑙𝑒
+ L𝐻𝑅𝑐𝑜𝑛𝑠 + 0.1 ∗ L𝑠 .

4 EXPERIMENTS
4.1 Experimental Settings
Following iPASSR[32], we adopt 60 Middlebury images and 800
images from Flickr1024 [31] as the training dataset. For images from
the Middlebury dataset, we followed [7, 29, 30, 32, 37] to perform
bicubic downsampling by a factor of 2 to generate HR ground truth
images to match the spatial resolution of Flickr1024 dataset. To

produce LR images, we downscale the HR images on particular
scaling factors by using the bicubic operation and then cropped
30 × 90 patches with a stride of 20 as input samples. Our network
was implemented using PyTorch and trained on NVIDIA V100 GPU.
All models were optimized by the Adam [11] with 𝛽1 = 0.9 and
𝛽2 = 0.999. The batch size is set to 16, the initial learning rate is set
to 2 × 10−4 and reduced to half after every 30 epochs.

To evaluate SR results, we follow iPASSR[32] to use 20 images
from KITTI 2012[5], 20 images from KITTI 2015[21], 5 images from
Middlebury, and 112 images from Flickr1024 as the test dataset. For
fair comparison with [7, 30, 32, 37], we followed these methods to
calculate peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) scores on the left views with their left boundaries (64 pixels)
being cropped, and these metrics were calculated on RGB color
space. Moreover, to comprehensively evaluate the quality of the
reconstructed stereo SR image, we also report the average PSNR and
SSIM scores on stereo image pairs (i.e., (Left + Right) /2) without
any boundary cropping. Meanwhile, in order to evaluate disparity
estimation accuracy, we apply the end-point-error (EPE) in both
non-occluded region (NOC) and all (ALL) pixels.

4.2 Comparison to state-of-the-arts
We compare SSRDE-FNet with several state-of-the-art methods,
including four SISR methods(VDSR, EDSR, RDN, and RCAN) and
four stereo image SR methods (i.e., StereoSR, PASSRnet, SRRes-
Net+SAM, and iPASSR). Moreover, to achieve fair comparison with
SISR methods, we retrained these methods on the same training
datasets as our method.

Quantitative Evaluations: In Table 1, we show the quantita-
tive comparisons with these SR methods, our SSRDE-FNet achieves
the best results on all datasets and upsampling factors (×2, ×4). We
outperform state-of-the-art SISR methods with much less parame-
ters. Moreover, the PSNR on the Middlebury dataset achieved by
our network is higher than that of iPASSR by 0.61 dB and 0.22 dB
for ×2 and ×4 SR, respectively.

Qualitative Comparison: In Figures 5 and 6, we show the qual-
itative comparisons on ×2 and ×4, respectively. According to the fig-
ure, we can clearly observe that most compared SR methods cannot
recover clear and correct image edges. In contrast, our SSRDE-FNet
can reconstruct high-quality SR images with rich details and clear
edges. This further validates the effectiveness of our method.

4.3 Ablation Study
In order to verify the effectiveness of the proposed mutually boost
strategies, we designed a series of ablation experiments. In addition,
all ablation studies are conducted on the ×4 stereo image SR task.

Effectiveness of HR disparity estimation boosts SR
1)Effectiveness of the HR disparity estimationmethod: In

order to verify that the feature aggregation by the HR disparity
in HR space benefits the SR performance, we designed three mod-
els, including "baseline", "baseline + Up disp", and "baseline + HR
disp". Among them, "baseline" is the model without the HR dis-
parity estimation module and the HRDIF mechanism compared
to SSRDE-FNet. This means the baseline has only one step of SR
reconstruction, as shown in Figure 2. "baseline+ Up disp" means
that the high-resolution disparity directly achieved by the bilinear



Table 1: Quantitative results of different methods on KITTI 2012, KITTI 2015, Middlebury, and Flickr1024 datasets. #𝑃 repre-
sents the number of parameters of the networks. PSNR/SSIM values achieved on both the left images (i.e., Left) and a pair of
stereo images (i.e., (Left + Right) /2) are reported. The best results are in bold faces and the second best results are underlined.

Method Scale #𝑃 Left (Left + Right) /2
KITTI 2012 KITTI 2015 Middlebury KITTI 2012 KITTI 2015 Middlebury Flickr1024

VDSR ×2 0.66M 30.17/0.9062 28.99/0.9038 32.66/0.9101 30.30/0.9089 29.78/0.9150 32.77/0.9102 25.60/0.8534
EDSR ×2 38.6M 30.83/0.9199 29.94/0.9231 34.84/0.9489 30.96/0.9228 30.73/0.9335 34.95/0.9492 28.66/0.9087
RDN ×2 22.0M 30.81/0.9197 29.91/0.9224 34.85/0.9488 30.94/0.9227 30.70/0.9330 34.94/0.9491 28.64/0.9084
RCAN ×2 15.3M 30.88/0.9202 29.97/0.9231 34.80/0.9482 31.02/0.9232 30.77/0.9336 34.90/0.9486 28.63/0.9082
StereoSR ×2 1.08M 29.42/0.9040 28.53/0.9038 33.15/0.9343 29.51/0.9073 29.33/0.9168 33.23/0.9348 25.96/0.8599
PASSRnet ×2 1.37M 30.68/0.9159 29.81/0.9191 34.13/0.9421 30.81/0.9190 30.60/0.9300 34.23/0.9422 28.38/0.9038
iPASSR ×2 1.37M 30.97/0.9210 30.01/0.9234 34.41/0.9454 31.11/0.9240 30.81/0.9340 34.51/0.9454 28.60/0.9097
SSRDE-FNet (ours) ×2 2.10M 31.08/0.9224 30.10/0.9245 35.02/0.9508 31.23/0.9254 30.90/0.9352 35.09/0.9511 28.85/0.9132
VDSR ×4 0.66M 25.54/0.7662 24.68/0.7456 27.60/0.7933 25.60/0.7722 25.32/0.7703 27.69/0.7941 22.46/0.6718
EDSR ×4 38.9M 26.26/0.7954 25.38/0.7811 29.15/0.8383 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285
RDN ×4 22.0M 26.23/0.7952 25.37/0.7813 29.15/0.8387 26.32/0.8014 26.04/0.8043 29.27/0.8404 23.47/0.7295
RCAN ×4 15.4M 26.36/0.7968 25.53/0.7836 29.20/0.8381 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286
StereoSR ×4 1.42M 24.49/0.7502 23.67/0.7273 27.70/0.8036 24.53/0.7555 24.21/0.7511 27.64/0.8022 21.70/0.6460
PASSRnet ×4 1.42M 26.26/0.7919 25.41/0.7772 28.61/0.8232 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195
SRRes+SAM ×4 1.73M 26.35/0.7957 25.55/0.7825 28.76/0.8287 26.44/0.8018 26.22/0.8054 28.83/0.8290 23.27/0.7233
iPASSR ×4 1.42M 26.47/0.7993 25.61/0.7850 29.07/0.8363 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287
SSRDE-FNet (ours) ×4 2.24M 26.61/0.8028 25.74/0.7884 29.29/0.8407 26.70/0.8082 26.45/0.8118 29.38/0.8411 23.59/0.7352

EDSR RDN RCAN StereoSR PASSRnet iPASSR Ours
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Figure 5: Qualitative results (×2) on image “motorcycle” from Middlebury dataset.
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Figure 6: Qualitative results (×4) on image “testing 2” from Flickr1024 dataset.

interpolation from LR disparity, "baseline + HR disp" represents our
method without the HRDIF mechanism. Meanwhile, all of these
three models are in purely feed-forward manner. The PSNR and
SSIM results are presented in Table 2. According to these results, we
can draw the following conclusions: (1). High-resolution disparity
can effectively improve the quality of the reconstructed SR images;
(2). The upsampling operator cannot recover spatial dependency
reliably. The more precise disparity can bring higher performance
improvement; (3) The high-resolution disparity provided by our
method enables the model to achieve the best results.

2) Effectiveness of theHR disparity information feedback
mechanism (HRDIF): To verify that the HR disparity truly con-
tribute to stereo SR in the HRDIF mechanism, but not just the

original feedback operation that plays a major role, we compare
two models that both have the feedback operation. The variant
removes the HR disparity estimation model, directly uses the H𝑙
and H𝑟 as the high-level features to feedback. We name this vari-
ant as SSR-FNet (Stereo SR Feedback Network), which also means
adding HR Feature Feedback (HFF) to the baseline. The feedback
manner in this variant is just concatenating the down-projected HR
feature and the low-level features of the former iteration. Although
noticeable improvement can be observed, the PSNR drops 0.11 dB
as compared to our SSRDE-FNet. The experiment indicates that
our method does benefit from the HR disparity information feed-
back mechanism, instead of only rely on the power of the original
feedback structure. Moreover, to verify the effectiveness of strategy



Table 2: Ablation study on different settings of SSRDE-FNet
on Middlebury. The average PSNR and SSIM score of the SR
left and right images are shown.

Method Disparity method HRDIF HFF PSNR/SSIM
Up disp HR disp AHFF LRE

baseline 29.16/0.8361
baseline + Up disp ✓ 29.20/0.8370
baseline + HR disp ✓ 29.27/0.8383
SSR-FNet ✓ 29.27/0.8385
SSRDE-FNet w/o LRE ✓ ✓ 29.35/0.8407
SSRDE-FNet (Ours) ✓ ✓ ✓ 29.38/0.8411

Table 3: The PSNR change of intermediate SR outputs on
Middlebury.

Iteration 1 Iteration 2

Step 1 Step 2 Step 1 Step 2

Middlebury 29.16 29.25 29.32 29.38

Table 4: Average disparity EPE (lower is better) on KITTI
2012 and 2015 for 4× SR. Best results are shown in boldface.

Baseline
disparity

Estimated HR
disparity

PASSRnet
[30]

iPASSR
[32]

KITTI 2012 Noc 6.72 3.90 11.33 7.88
All 7.81 5.12 12.29 8.96

KITTI 2015 Noc 5.71 3.52 9.36 6.57
All 6.38 4.28 9.91 7.20

Figure 7: Visual result of the disparity map on KITTI 2015.

of the low-level representations enhancement (LRE) in HRDIF, we
remove this operation and directly concatenate L𝑡−1

𝑙
and L̂B

𝑡

𝑙 for
the 𝑡𝑡ℎ iteration, a slight PSNR drop can be observed.

3) SR performance improvements in a single inference:As
mentioned, each iteration of SSRDE-FNet contains two SR recon-
struction steps. In our experiments, we iterate the network twice
(T=2) to balance the efficiency and performance. We then compare
the PSNR values of all intermediate SR images. The results are
shown in Table 3. Each intermediate result outperforms the former
one, and the final result achieves a PSNR gain of 0.22dB over the
first result. This demonstrates that the HR disparity surely benefits
the information flow across time.

Effectiveness of SR boost disparity estimation
1) Comparison of disparity accuracy: We compare the esti-

mated HR disparity and upsampled disparity of the baseline to the
ground truth on the KITTI2012 and KITTI2015 datasets, shown in
Table 4. We also include the disparity regressed from two stereo
SR methods for comparison, including PASSRnet and iPASSR. The
disparity maps estimated from LR stereo images are upsampled
for fair evaluation. Even using our baseline, our disparity EPE is
obviously lower than that of other state-of-the-art stereo SR meth-
ods. By interacting stereo SR task and disparity estimation task in
our network, the final HR disparity become much more accurate as
compared to the feed-forward baseline, with about 2 ∼ 3 pixel EPE
drop. A visualization disparity result is shown in Figure 7.

Table 5: Disparity accuracy improvements during inference
on KITTI 2012 and 2015. Average disparity EPE are shown.

Iteration 1 Iteration 2

Step 1 Step 2 Step 1 Step 2

KITTI 2012 Noc 7.13 6.50 4.59 3.90
ALL 8.14 7.53 5.79 5.12

KITTI 2015 Noc 6.98 6.47 4.06 3.52
ALL 7.60 7.11 4.81 4.28

Table 6: Ablation study of different losses on KITTI 2012.
𝐿𝑆𝑅 𝐿𝐵𝑖𝑃𝐴𝑀 𝐿𝐷𝑖𝑠𝑝 PSNR EPE(NOC/ALL)

✓ × ✓ 26.65 4.82/6.03
✓ ✓ × 26.63 8.97/10.11
✓ ✓ ✓ 26.70 3.90/5.12

2) The disparity accuracy improvements within a single
inference of SSRDE-FNet: To show the changing process of the
disparity estimation accuracy, we calculate the EPE on each in-
termediate disparity estimation in a single inference process of
SSRDE-FNet. The mean EPE change in KITTI 2012 and KITTI 2015
are shown in Table 5. It can be observed that in each iteration,
the estimated HR disparity (step2) has 0.5 ∼ 0.6 pixel EPE drop
compared to the coarse estimation (step1). More obvious disparity
accuracy improvements can be achieved after the HRDIF, since the
low-level features are refined and lead to better disparity accuracy
right from the LR space. The results above demonstrate that both
stereo SR and disparity estimation are improved along time.

Ablation of losses: To explore the performance of our losses,
we train our model with different losses and show the image PSNR
and disparity EPE in Table 6. If BiPAM loss is removed, HR dispar-
ity estimation will not have good initialization, leads to disparity
accuracy drop and SR performance drop. Disparity loss mainly con-
strains the disparity in HR space, optimizing HR disparity module
without direct constrain leads to significant disparity accuracy de-
crease and disparity errors accumulation during feedback iterations,
thus harms the overall performance. Using all three losses presents
the well-reconstructed images and most accurate disparity.

5 CONCLUSION
In this work, we propose to explore the mutually boosted property
of stereo image super-resolution and high-resolution disparity es-
timation, and build a novel end-to-end deep learning framework,
namely SSRDE-FNet. Our model is essentially a feedback network
with a proposed HR Disparity Information Feedback (HRDIF) mech-
anism. By fully interacting the two tasks and making guidance to
each other, we achieve to improve both tasks during a single infer-
ence. Experiments have demonstrated our state-of-the-art stereo
SR performance and the disparity estimation improvements.
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