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Abstract

With the use of convolutional neural networks, Single-Image Super-Resolution (SISR)
has advanced dramatically in recent years. However, we notice a phenomenon that
the structure of all these models must be consistent during training and testing. This
severely limits the flexibility of the model, making the same model difficult to be
deployed on different sizes of platforms (e.g., computers, smartphones, and embedded
devices). Therefore, it is crucial to develop a model that can adapt to different needs
without retraining. To achieve this, we propose a lightweight Adjustable Super-
Resolution Network (ASRN). Specifically, ASRN consists of a series of Multi-scale
Aggregation Blocks (MABs), which is a lightweight and efficient module specially
designed for feature extraction. Meanwhile, the Deep Supervised Learning (DSL)
strategy is introduced into the model to guarantee the performance of each sub-
network and a novel Progressive Self-Distillation (PSD) strategy is proposed to further
improve the intermediate results of the model. With the help of DSL and PSD
strategies, ASRN can achieve elastic image reconstruction. Meanwhile, ASRN is the
first elastic SISR model, which shows good results after directly changing the model
size without retraining.

Keywords: Single-image super-resolution, SISR, elastic image reconstruction, deep
supervised learning, progressive self-distillation.

1. Introduction

Single-image super-resolution (SISR) has received increasing attention in recent
years, which aims to reconstruct a super-resolution (SR) image from its degraded low-
resolution (LR) one. Despite its widespread application in various tasks, such as, video
enhancement [1, 2], medical image reconstruction [3, 4], and image segmentation [5, 6],
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Fig. 1: An example of the modular network. This type of model can freely disassemble feature
extraction blocks in the network.

it still is a challenging task since the mapping between LR and high-resolution (HR)
images has multiple solutions.

To solve this problem, many methods have been proposed. Among them, Convo-
lutional Neural Networks (CNNs) based methods [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
show great potential. The majority of them is to design a specially neural network
to learn the mapping between LR and HR images adaptively. For example, Dong
et al. proposed the first CNN-based SISR model in 2014, named SRCNN [7]. Since
then, CNN-based SR methods have been blooming and constantly refreshing the best
result. In 2017, Ledig et al. proposed the SRResNet [17] by using a series of residual
blocks [18], which launched the trend of network modularity. Although these models
perform well, their application scenarios are limited due to numerous parameters. To
address this problem, many lightweight SISR models [19, 20, 21] have been proposed
in recent years, which greatly alleviates the problem of model size being too large.

The models mentioned above depict two main branches of the SISR field, each
reflecting the different demands of the market. One pursues model performance but
ignores the model size, while the other is dedicated to reducing model size but also
leads to model performance degradation. In different application scenarios, we have
different requirements for the size and performance of the model. However, there is
no model that can dynamically adjust its size to adapt to different sizes of platforms
and maintain excellent performance.

As shown in Fig. 1 (A), existing mainstream SISR models can be simplified to this
modular structure, which includes head, body, and tail parts. Among them, the body
part often consists of a series of feature extraction blocks. The biggest advantage of
this type of model is that the depth of the network can be easily changed by adjusting
the number of feature extraction blocks. However, this type of model still requires
its structure to be completely consistent during training and testing. For example, if
we remove some feature extraction blocks (B, C) in model A so that it can run on
a small size platform, the model performance will be extremely degraded. This will
greatly limit the flexibility and application scenarios of the model.

Recently, diverse smart devices are getting popular, such as laptops, tablets, mo-
bile phones, and terminal devices. These devices have different storage space, memory,
and computing power. This means that the size of the model that can be run on these
platforms is limited. However, designing and training specialized models for different



sizes of platforms requires a lot of manpower and material resources, including design
costs, training costs, storage costs, and time costs. As a result, it is crucial to develop
a method that can adjust the model size without retraining. To achieve this, we pro-
pose a lightweight Adjustable Super-Resolution Network (ASRN) for SISR. ASRN
consists of a set of Multi-scale Aggregation Blocks (MABs), which are lightweight
and efficient feature extraction modules. Meanwhile, to build an adjustable model,
we introduced the Deep Supervised Learning (DSL) strategy to guarantee that the
intermediate outputs of the network are still acceptable. Meanwhile, a novel Pro-
gressive Self-Distillation (PSD) strategy is also offered to improve the intermediate
outcomes even further. In summary, our ASRN can achieve elastic image reconstruc-
tion with the help of DSL and PSD strategies. In other words, the model size of
ASRN can be easily changed during testing to meet different requirements without
redesigning and retraining. The main contributions of this paper are as follow:

(i) We propose a lightweight and efficient Multi-scale Aggregation Block for feature
extraction, which is the most important module for model building.

(ii) We propose a powerful Elastic Reconstruction Technology (ERT). To achieve
this, the Deep Supervised Learning (DSL) mechanism is introduced for multi-task
learning and the weight sharing strategy is used in the upsampling module. Therefore,
the model can achieve elastic image reconstruction.

(iii) We propose a novel Progressive Self-Distillation (PSD) Strategy to further
improve the intermediate results of the model to reduce the negative impact of multi-
task learning. Therefore, the model can make full use of the neighboring deep features
and achieve self-distillation elegantly.

(iv) We propose a lightweight and Adjustable Super-Resolution Network (ASRN),
which can flexibly adjust the size and complexity of the model without retraining.

The rest of this paper is organized as follows. Related works are reviewed in Sec. 2.
A detailed introduction of the proposed method is presented in Sec. 3. Furthermore,
we give a series of experiments, ablation analyses, and discussions in Sec 4, 5, and 6,
respectively. Finally, we draw a conclusion in Sec. 7.

2. Related Works
2.1. Single-Image Super-Resolution (SISR)

Image super-resolution, especially single-image super-resolution has been greatly
developed in the past few decades. Recently, CNN-based SISR methods can be
roughly divided into two categories. One is dedicated to the pursuit of high per-
formance, and the other is dedicated to exploring lightweight networks. For example,
Ledig et al. proposed a SRResNet [17] by using a series of residual blocks [18]. Lim
et al. proposed an Enhanced Deep Residual Network (EDSR [22]) based on SR-
ResNet. Both SRResNet and EDSR are modular networks consisting of a series of
residual blocks. Modular structure design can improve model performance, simplify
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Fig. 2: As the model depth/size changes, the performance of EDSR [22] and RCAN [23] will be
severely degraded, even worse than SRCNN [7].

the design process, and increase network scalability, which greatly accelerates the de-
velopment of the entire field. After that, building SISR models by proposing efficient
feature extraction blocks becomes mainstream, such as RDN [24], MSRN [25], and
SAN [10]. Although these models achieve superior performance, they are often ac-
companied by a large number of parameters. To address this issue, many lightweight
models [26, 27, 28, 29] have been proposed. For instance, Ahn et al. proposed a
lightweight Cascaded Residual Network (CARN [19]) by using the cascade mecha-
nism. Hui et al. proposed an Information Distillation Network (IDN [20]) and an
Information Multi-Distillation Network (IMDN [21]) by using distillation and selec-
tive fusion strategies, respectively. All these models pay more attention to designing
efficient feature extraction modules and learning strategies. More SISR modes can
be found in [30] and [31].

2.2. Elastic Image Reconstruction

In this paper, we aim to explore a new method that can use the adjusted new
model to directly reconstruct SR images without retraining. As discussed in Fig. 1,
the easiest way to change the model size is to adjust the number of feature extraction
blocks in the model. In Fig. 2, we provide the results of elastic image reconstruction
of some classical models like EDSR [22] and RCAN [23]. Both EDSR and RCAN
have a modular structure thus we can easily change the model size. According to
Fig. 2, we can clearly observe that as the number of feature extraction blocks/groups
decreases, the model performance is greatly reduced, even worse than SRCNN [7].
It is worth noting that the adjusted model still has more parameters than SRCNN,
but the performance is much lower than SRCNN. This is because the structure of
these models must be consistent during training and testing. In this paper, we aim
to explore an adjustable SISR model.
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Fig. 3: Schematic diagram of deep supervised mechanism and knowledge distillation strategy.

2.3. Deep Supervised Learning

The deep supervised mechanism was first proposed in the Deeply Supervised Net
(DSN [32]). As shown in Fig. 3 (A), the key idea of this mechanism is to add addi-
tional losses in the middle part of the model. Furthermore, all of these losses share
the same target and are optimized overall. Nowadays, the deep supervised mechanism
has been proved to be helpful with the directness and transparency of the hidden layer
learning process. Therefore, more and more research introduce it to improve model
performance. However, they are mostly restricted to image recognition, image detec-
tion, and image segmentation. In this paper, we try to introduce the deep supervised
mechanism into the SISR task to explore an elastic reconstruction technology.

2.4. Knowledge Distillation

Knowledge distillation (KD), also known as the teacher-student framework, was
first proposed by Hinton et al. [33]. The knowledge transfer from a complex model
(Teacher) to another lightweight model (Student) is called knowledge distillation,
which aims to solve the problem of model parameter redundancy. According to
the types of knowledge transfer, knowledge distillation can be roughly divided into
two categories: output transfer [33, 34] and feature transfer [35, 36]. Among them,
output transfer aims to pass the output of the large model as knowledge to the small
model. As shown in Fig. 3 (B), this strategy takes the output of the pre-trained
teacher network as the soft target and uses it as a part of the total loss to induce the
training of the student network. Feature transfer regards the output of the hidden
layer as the learning object and aims to make the feature maps of the student and
teacher networks as similar as possible. Recently, some research also introduced the
knowledge distillation strategy into image restoration tasks [37, 38]. For example,
Hong et al. [38] proposed a KD-based method for image dehazing. However, these
models rigidly introduce additional external models as the Teacher to guide the model
training, which will make the training process more complicated. In this paper, we
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Fig. 4: The complete architecture of ASRN. ASRN consists of three modules: head, body, and
upsample. The training process can be divided into three parts: routine reconstruction, deep super-
vision, and progressive self-distillation. Meanwhile, all upsample modules are weight sharing.

aim to explore a more elegant knowledge distillation strategy without introducing
additional models.

3. Adjustable Super-Resolution Network (ASRN)

In this paper, we propose a lightweight Adjustable Super-Resolution Network
(ASRN). As shown in Fig. 4, ASRN consists of three parts: head, body, and upsample
modules. The head module contains two convolutional layers, which are used to
transform the input image to the high dimension space. The body module consists of
a series of Multi-scale Aggregation Blocks (MAB), which are used to extract image
features for image reconstruction. The upsample module contains two convolutional
layers and one deconvolutional layer, which takes the extracted features for the final
SR image reconstruction. In addition, we propose a new training strategy for ASRN
thus it can realize elastic image reconstruction.

Define Iyr, Isgr, and Iyr as the input, output, and label of ASRN, respectively.
Iioy and Ip;g, denote the input and output of the body module. Following previous
works, we use the head module to progressive upgrade the input image to the high
dimension space

Ilow - Fhead(ILR)a (1)

where [}, is the extracted low-level image features and also severed as the input of
the body module for high-level feature extraction

]high = Fbody(Ilow)a (2)

where Fioqy(-) is an elastic architecture that contains N MABs. It is worth noting
that the number (N) of MABs can be easily changed during training and testing



according to actual needs. After that, all extracted image features are sent to the
upsample module for SR images reconstruction

[SR = Fupsample([high)u (3)

where Fipsampie(+) represents the upsample module, which uses the deconvolutional
layer to upscale the feature maps I, into the final SR image.

Therefore, given a training dataset {I% ,, I} |, we aim to solve
| M
0 =argmin 37 ) L7 W ) (@)

where 6 denotes the parameter set of the proposed ASRN and £5%(-) is the specially
designed elastic loss function.

3.1. Training Strateqgy

In this paper, we aim to explore a model that can dynamically adjusts the size
and complexity of the model without retraining. In order to achieve this goal, the
depth/size of ASRN must be adjustable, and the adjusted model should maintain ex-
cellent performance. Therefore, we design a new training strategy for ASRN, which
makes ASRN become an elastic model and can be suitable for the proposed elastic re-
construction technology. As shown in Fig. 4, the training strategy can be divided into
three parts: routine reconstruction, deep supervision, and progressive self-distillation.

3.1.1. Routine Reconstruction

In this work, routine reconstruction is still the first and the most important step.
Like most existing SISR models, ASRN takes the LR image as input and the data
stream flows into the head, body, and upsample modules in sequence. Besides, the
MSE loss is applied to train the model in this step

LRoutine - HF<]LR) - ]HRHQ? (5)

where F(-) and F(Iyg) denote ASRN and reconstructed SR image, respectively.
Multi-scale Aggregation Block (MAB): Extracting useful image features is
crucial for SISR. In order to extract useful features, we propose a new module named
Multi-scale Aggregation Block (MAB). MAB is the basic component of ASRN, which
is inspired by MSRB [25], ShuffleNet [39], and Res2Net [40]. In 2018, Li et al. [25]
pointed out that multi-scale image features are beneficial for SISR and proposed a
multi-scale residual block (MSRB) for features extraction. However, MSRB contains
a lot of parameters, which is not conducive to building a lightweight model. Therefore,
we introduce the channel split, channel shuffle [39], and residual-like connection [40]
mechanisms into the module to make MAB can extract rich multi-scale features with
fewer parameters. As shown in Fig. 5, we first use a 1x1 convolutional layer to
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Fig. 5: The complete architecture of the proposed Multi-scale Aggregation Block (MAB).

fusion the input features. Then, we apply the channel split operation to divide the
features into 4 groups [z, e, T3, 24]. In each group, we use a 3x3 convolutional layer
to extract image features. Meanwhile, we add the extracted image features in the
current group to the next group to make these layers have different receptive fields
thus achieving multi-scale feature extraction

%_{Kmm+m4)1<i§4’ (6)

where z;, y;, and K;(-) represent the received features, output features, and convolu-
tional layer in the i-th group, respectively. After that, we contact all the extracted
features and apply the channel shuffle to overcome the side effects brought by the
channel split. Meanwhile, we introduce a fusion layer with 1x1 kernel at the tail of
the block to achieve features aggregation. Finally, we introduce local residual learn-
ing [18] into our MAB to further improve the information flow. At the same time,
the input and output channels of each MAB are set to 96.

Upsample Module: As shown in Fig. 6, upsampling module often contains some
convolutional layers, shuffle operation (also named sub-pixel convolutional layer), or
deconvolutional layers. Due to the efficiency and no additional parameters will be
introduced, the sub-pixel convolutional layer has becomes the most widely used up-
sample method. Correspondingly, Fig. 6 (A) becomes the most widely used upsample
module in recent works. However, it is worth noting that due to the characteristics
of shuffle operation, the output channel of its previous convolutional layer must be
S? (S is the upsample factor) times of the input channel in order to keep the input
and output dimensions consistent. This means that module A will still accompanied
by a large number of parameters. Taking S = 2 as an example, module A has 334K
parameters, which even exceeds the sum of our ASRN parameters (227K). Therefore,
directly using module A in a lightweight model will cause the upsample module occu-
pying with a larger parameter proportion in the entire network. However, we found
that if the parameters of the feature extraction module are fewer than the upsample
module, it is not conducive to fully extracting image features. Consequently, the
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Fig. 6: Architecture comparison between regular upsample module and our used upsample module.

model performance is limited. Therefore, we redesign the parameter ratio of each
module and propose module B. As shown in the figure, module B uses the deconvolu-
tional layer instead of the shuffle operation. Taking S = 2 as an example, module B
only needs 24K parameters, which is 1/14 of module A. This allows ASRN to apply
more parameters for feature extraction and enables it to be a really lightweight model.

3.1.2. Deep Supervised Learning (DSL)

In order to build an adjustable model, we need to guarantee that the intermediate
results of the network are still acceptable. To achieve this, we introduce the Deep
Supervised Learning (DSL) mechanism in the second step. As shown in Fig. 4, we
add the upsampling module behind each MAB to reconstruct the intermediate SR
results. This means that each branch can constitute a new SR model, which can be
regarded as a simplified version of ASRN. Therefore, a total of N — 1 SR images
([, 2, ..., 155 "] will be reconstructed and all sub-model will be supervised by the
HR image. Therefore, the deep supervised loss can be defined as

N-1

Lost = 3 | Fsu(Ter) = Tunll, = ZHISR Lurl, (™

=1

where N represents the number of MAB, F? ,(-) is the operation of the i-th subnet,
and I%, denotes the output of the i-th subnet. With the help of DSL mechanism,
each subnet can work independently or operate as a sub-component of the larger
model. This allows each MAB to be fully trained and can improve the robustness
of the model. Meanwhile, this can maximize the performance of each subnet thus
directly applying the elastic reconstruction technology can still achieve good results.

It is worth noting that all upsample modules in ASRN are weight sharing. This is
because (1) module sharing makes ASRN will not bring additional parameters, which
is beneficial for lightweight model building; (2) module sharing makes ASRN no longer
simply aggregate multiple SR models together but achieve an adjustable structure;



(3) module sharing can fully exploit the performance of the upsample module and
increase the robustness of the model.

3.1.3. Progressive Self-Distillation (PSD)

In this third step, we aim to use the complex model (Teacher) to guide the
lightweight model (Student) for knowledge transfer. However, specifically designing
and training a suitable teacher model requires more computing resources. Rethinking
the characteristics of ASRN, we found that the model consists of multiple sub-models
and each one has different depths. Therefore, using the deeper sub-model in ASRN
to guide the shallow sub-model directly is a more efficient method. To achieve this,
we propose a self-distillation strategy, which is essentially a self-guidance process that
uses the deeper sub-models to guide the shallow sub-models in ASRN.

Different from most knowledge distillation methods [33, 41, 34] that use the output
as the transfer target, we choose to transfer the learned image features since there
is no soft target in the SISR task. As we mentioned in the relate works, knowledge
distillation can be roughly divided into two categories: output transfer and feature
transfer. In high-level tasks, most knowledge distillation-based methods can directly
use the output of the teacher model as the transfer target since the output provide
a soft label for the model. However, in low-level tasks like SISR, directly using
the output of the teacher model as the target of the shallow model will limit the
model performance. This is because in SISR, the output of the teacher model is a
deterministic reconstructed SR image, and the result is worse than ground-true (GT)
image. Therefore, using the output of the teacher model as the transfer target will
limit the performance of the student model. To address this issue, we choose to
transfer the learned image features rather than the final output. However, we also
noticed that the features produced by each MAB have too many channels, which will
cost a lot of computational resources to calculate the distillation loss. To solve the
first problem, we used the attention transfer [36] in this work. Attention transfer is
also a type of feature transfer, which tries to encode the most focused spatial regions
of the image features to determine its output decisions. In short, attention transfer
mechanism aims to find the most critical regions to implement the distillation loss,
thus reducing the computational overhead. As shown in Fig. 7, we consider the output
of MAB as the tensor A € RE**W which has C' channels with spatial dimension
H x W. Following [36], we apply an activation-based mapping function F to change
the tensor A to a spatial attention map

F - RCXHXW _>RH><W_ (8)

More specially, we calculate the sum of absolute values of each channel as the activation-
based spatial attention maps

c

=1

10
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Fig. 7: Schematic diagram of the proposed Progressive Self-Distillation (PSD) mechanism.

In addition, we find that the output attention map of each MAB is completely
different. This means that directly using the output of the last MAB to guide all
previous MABs is not the best method since large gaps will make these sub-models
difficult to work together and hard to converge. In other words, this is equal to letting
one teacher model guide multiple student models, it is difficult to ensure each student
model learns well. Inspired by the feedback mechanism, we transform this problem
into a multi-teacher and multi-student learning problem. Therefore, each student
model only needs to learn the most relevant knowledge from the next-level teacher
model, which will greatly reduce the difficulty of learning. To this end, we propose a
Progressive Self-Distillation (PSD) strategy, which uses the attention map produced
by the next MAB to guide the current MAB. The progressive self-distillation loss can
be defined as follows

N

Lpsp = Z

n=2

anl _ Qn
1@nally  [1@nll,

where Q,,_; = vec(F(A, 1)) and Q,, = vec(F(A,)) represent the n-th pair of student
and teacher attention maps, respectively. vec(-) is the vectorized operation.

Overall speaking, we propose an Adjustable Super-Resolution Network (ASRN).
Meanwhile, we design a special training strategy for ASRN, which contains three
steps: routine reconstruction, deep supervision, and progressive self-distillation. For
each step, we propose corresponding loss functions and all these losses make up the
final elastic loss function £5%(")

(10)

)
2

»CSR = 'CRoutine + ‘CDSL + >\£P5Da (11)

where )\ is a super-parameter used to control the proportion of Lpgp. During training,
these three steps are coordinated and performed in an end-to-end manner.

3.2. Elastic Reconstruction Technology (ERT)

As we discussed in Sec. 2.2, the method of using the adjusted new model to directly
reconstruct the final image without retraining is called Elastic Image Reconstruction
(ERT). In this part, we introduce the proposed model with the powerful ERT in detail.

11
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Fig. 8: Schematic diagram of elastic image reconstruction. ASRN is an Adjustable model, which
can flexibly adjust its size according to the actual application platforms or requirements. As shown
in this structure, the gray modules represent the inactivated modules, which do not participate in
the final SR image reconstruction. The colored areas represent the final structure of the model and
the blue arrow denotes the reconstruction stream.

In Fig. 8, we show the complete process of elastic image reconstruction. As we can see,
the gray part represents the inactivated or removed modules, which means the module
will not participate in SR image reconstruction. The colored module and the blue
arrow denote the final architecture and the reconstruction stream. Specifically, if the
computing platform is large enough for the large size model, we can use the complete
ASRN for deployment and image reconstruction. However, if the model needs to be
deployed on a small platform (e.g., mobile), we can directly remove some MABs in
ASRN to build a shallow model to meet the requirements. It is worth noting that
with the help of the DSL and PSD strategies, the adjusted model can still reconstruct
high-quality SR images. In summary, the proposed ASRN is an adjustable model that
can dynamically adjust the model size to adapt to different needs.

4. Experiments

4.1. Datasets

DIV2K [42] is a high-quality image dataset, which is widely used in the SISR task.
Following previous works, we use DIV2K (1-800) as the training dataset. For testing,
we choose Set5 [43], Set14 [44], BSD100 [45], Urbanl00 [46], and Mangal09 [47].
These five datasets are the most widely used benchmark test datasets in the SISR
task, which contains 328 different images that can effectively verify the model effect.

4.2. Implementation Details

Model Setting: In this paper, we propose an adjustable model, named ASRN.
The core part of ASRN is the body module, which consists of N MABs. In the final
model, we set N = 5 and the input/output channels of each MAB are set to 96.
Meanwhile, the kernel size of all the convolutional layers is set as 3x3 except for the

12



Table 1: Quantitative comparisons on BI mode. The best and the second-best results are highlighted
with red and blue, respectively. Obviously, our ASRN (SS) and ASRN can achieve competitive

results with fewer parameters.

Model Scale | Param Seth Set14 B100 Urban100 Mangal09

" | PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
Bicubic x2 - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
FSRCNN %2 13K 37.00/0.9558  32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710
SCN %2 42K | 36.52/0.9530 32.42/0.9040 31.24/0.8840 29.50/0.8960 35.51/0.9670
SRCNN x2 57K | 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
ESPCN x2 57K 37.00/0.9559 32.75/0.9098 31.51/0.8939 29.87/0.9065 36.21/0.9694
CNF %2 337K | 37.66/0.9590 33.18/0.9136 31.91/0.8962 -/- -/-
DWSR x2 373K | 37.42/0.9568 -/- 31.85/0.8944 30.46/0.9162 37.27/0.9719
VDSR x2 665K | 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750
LapSRN x2 812K | 37.52/0.9591 33.08/0.9130 31.80/0.8950 30.41/0.9101 37.27/0.9740
WSDSR %2 - 37.16/0.9583 32.57/0.9108 31.49/0.8914 30.23/0.9066 -/-
DNCL %2 - 37.65/0.9599 33.18/0.9141 31.97/0.8971 30.89/0.9158 -/-
ASRN X2 227K | 37.67/0.9594 33.19/0.9144 31.95/0.8970 31.20/0.9186 37.79/0.9753
ASRN (SS) | x2 227K | 37.69/0.9595 33.26/0.9149 31.98/0.8974 31.30/0.9199 37.84/0.9754
Bicubic %3 - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
FSRCNN x3 13K 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
SCN x3 42K 32.62/0.9080 29.16/0.8180 28.33/0.7830 26.21/0.8010 30.22/0.9140
SRCNN %3 57K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
ESPCN x3 57K | 33.02/0.9135 29.49/0.8271 28.50/0.7937 26.41/0.8161 30.79/0.9181
CNF %3 337K | 33.74/0.9221 29.90/0.8322 28.82/0.7980 -/- -/-
DWSR x3 373K | 33.75/0.9209 -/- 28.80/0.7972 27.22/0.8293 32.14/0.9323
VDSR x3 665K | 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340
WSDSR x3 - 33.45/0.9196 29.39/0.8302 28.59/0.7934 26.91/0.8204 -/-
DNCL %3 - 33.95/0.9232  29.93/0.8340 28.91/0.7995 27.27/0.8326 -/-
ASRN x3 248K | 33.84/0.9223 29.97/0.8348 28.86/0.7990 27.41/0.8342 32.63/0.9364
ASRN (SS) x3 248K | 33.95/0.9238 30.01/0.8359 28.89/0.8000 27.45/0.8366 32.70/0.9383
Bicubic x4 - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
FSRCNN x4 13K 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
SCN x4 42K 30.39/0.8620 27.48/0.7510 26.87/0.7100 24.52/0.7250 27.39/0.8570
SRCNN x4 57K | 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
ESPCN x4 57K 30.66/0.8646 27.71/0.7562 26.98/0.7124 24.60/0.7360 27.70/0.8560
CNF x4 337K | 31.55/0.8856 28.15/0.7680 27.32/0.7253 -/- -/-
DWSR x4 373K | 31.39/0.8829 -/- 27.27/0.7246  25.27/0.7552  29.01/0.8855
VDSR x4 665K | 31.35/0.8830 28.02/0.7680 27.29/0.7267 25.18/0.7540 28.83/0.8870
LapSRN x4 812K | 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09,/0.8900
WSDSR x4 - 31.29/0.8821 27.59/0.7659 27.12/0.7215 25.11/0.7492 -/-
DNCL x4 - 31.66/0.8871 28.23/0.7717 27.39/0.7282  25.36/0.7600 -/-
ASRN x4 244K | 31.65/0.8867 28.28/0.7733 27.34/0.7279 25.42/0.7616 29.59/0.8935
ASRN (SS) | x4 244K | 31.73/0.8888 28.32/0.7748 27.38/0.7293 25.48/0.7648 29.60/0.8962

fusion layer and bottleneck layer, whose kernel size is 1x1.

In the experiment and

analysis parts, in order to verify the effectiveness of the introduced deep supervised
learning (DSL) mechanism and progressive self-distillation (PSD) strategy, we trained
two different versions of ASRN: ASRN (SS) and ASRN (DSL). Among them,
ASRN (SS) denotes the specifically trained model without DSL and PSD, ASRN
(DSL) represents a model trained using only the DSL mechanism. Moreover, in order
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Table 2: Quantitative comparisons on BD and DN modes. The best and the second-best results
are highlighted with red and blue, respectively.

Mode Methods Setb Set14 BSD100 Urban100 Mangal09
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
Bicubic 28.78/0.8308 26.38/0.7271 26.33/0.6918 23.52/0.6862 25.46/0.8149
SRCNN [7] 32.05/0.8944 28.80/0.8074 28.13/0.7736 25.70/0.7770 29.47/0.8924
BD VDSR [§] 33.25/0.9150 29.46/0.8244 28.57/0.7893 26.61/0.8136 31.06/0.9234
IRCNN_C [48] | 33.17/0.9157 29.55/0.8271 28.49/0.7886 26.47/0.8081 31.13/0.9236
IRCNN_G [48] | 33.38/0.9182 29.63/0.8281 28.65/0.7922 26.77/0.8154 31.15/0.9245
ASRN (Ours) | 33.92/0.9229 30.04/0.8353 28.92/0.7997 27.40/0.8338 32.84/0.9379
Bicubic 24.01/0.5369 22.87/0.4724 22.92/0.4449 21.63/0.4687 23.01/0.5381
SRCNN [7] 25.01/0.6950 23.78.0.5898  23.76/0.5538 21.90/0.5737 23.75/0.7148

VDSR [§] 25.20/0.7183  24.00/0.6112 24.00/0.5749 22.22/0.6096 24.20/0.7525

DN | IRCNN_G [48] | 25.70/0.7379 24.45/0.6305 24.28/0.5900 22.90/0.6429 24.88/0.7765
IRCNN_C [48] | 27.48/0.7925 25.92/0.6932 25.55/0.6481 23.93/0.6950 26.07/0.8253
SRMDNF [49] | 27.74/0.8026 26.13/0.6974 25.64/0.6495 24.28/0.7092 26.72/0.8424
ASRN (Ours) | 28.16/0.8073 26.32/0.7006 25.78/0.6523 24.32/0.7098 27.32/0.8424

to compare with large SISR models, we trained some larger versions, which contain
15, 25, 35, and 45 MABs respectively.

Training Setting: Following previous works [22, 25, 23|, we use RGB image as
input and augment the image by flipping horizontally and vertically during training.
The learning rate is initialized as 10~* and the batch size is set to 16. In addition,
1,000 iterations of back-propagation constitute an epoch and the learning rate halved
every 200 epochs. Meanwhile, we set A = 0.1 to balance the proportion of Lpsp and
the model is updated with the Adam optimizer. ASRN is implemented by Pytorch of
0.4.0, Python of 3.6, and Ubuntu of 16.04. All codes run on a server with a CPU of
Intel i7- 17-5930K, two RAMs of 16G, and two GPUs of Nvidia Titan Xp. The four
GPUs can be accelerated by Nvidia CUDA of 9.0 and CuDNN of 7.5.

Degradation Modes: Different degradation modes will produce different LR
images, which is a great challenge for SR models. In order to demonstrate the effec-
tiveness of ASRN, we use three different degradation modes (BI, BD, and DN) to
simulate LR images. BI is the most widely used degradation mode for LR images
generation. It is essentially a bicubic downsampling operation that adopts the Mat-
lab function imresize with the option of Bicubic. BD mode first uses a Gaussian
kernel of size 7x7 with a standard deviation of 1.6 to blur the HR image and then
downsamples the blurred image with scaling factor x3. DN first downsamples the
HR image with scaling factor x3 and then applies Gaussian noise with level = 30. In
order to fully verify the effectiveness of LegoNet, we evaluate our ASRN on all these
three modes although most of the previous works were only tested on the BI mode.

4.3. Comparison with Lightweight SISR Models

Although plenty of SISR models have been proposed recently, we only focus on
the lightweight models in this part since the proposed ASRN is a lightweight model.
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To verify the effectiveness of ASRN, we compare it with more than 9 SISR meth-
ods, including Bicubic, SRCNN [7], SCN [50], FSRCNN [51], ESPCN [52], CNF [53],
VDSR [8], DWSR [54], LapSRN [55], WSDSR [56], and DNCL [57]. All these mod-
els are classic lightweight models in the SISR field. Besides, all the SR results are
evaluated with PSNR and SSIM on the Y channel of the transformed YCbCr space.

Results of BI Degradation Mode: Bl mode is the most widely used degrada-
tion mode. In Table 1, we show the performance and parameters comparison between
ASRN and other SISR models. According to the table, we can observe that: (i).
Compared with tiny SR models (e.g., SRCNN, SCN, FSRCNN, and ESPCN), the
performance of ASRN has been significantly improved; (ii). Compared with other
lightweight SISR models (e.g., VDSR, DWSR, and LapSRN), ASRN can achieve
better performance with fewer parameters. All these results fully demonstrate that
ASRN is an efficient and lightweight SISR model, which achieves a better balance be-
tween model size and performance. It is worth noting that the performance of ASRN
is slightly worse than ASRN (SS). This is because the introduced DSL strategy makes
ASRN become a multi-task learning model, so it needs to share some resources for the
intermediate results learning. Fortunately, this performance degradation is negligible.
More analysis will be provided in Sec. 5.2.

In Fig. 9, we show the visual comparison on x2, x3, and x4, respectively. Ob-
viously, compared with other methods, our ASRN and ASRN (SS) can reconstruct
more accurate SR images. This is because the proposed multi-scale aggregation block
can extract rich multi-scale features, which is beneficial for SR image reconstruction.

Results of BD and DN Degradation Modes: In Table 2, we show the SR
results on the BD and DIN degradation modes. According to the table, we can clearly
observe that: (i). Compared with other SISR models, the performance of ASRN has
been significantly improved; (ii). Compared with these methods, the performance
improvement of ASRN on BD/DN is significantly higher than that on BI mode.
This is because BD and DN degradation modes are more complex than BI, so more
effective models are needed. Fortunately, with the help of the proposed MAB, ASRN
can extract rich features for high-quality image reconstruction even the LR images
are seriously degraded. This further validates the effectiveness of ASRN.

4.4. Elastic Image Reconstruction

The main contribution of this paper is the proposed adjustable network, which
can achieve elastic image reconstruction with the help of DSL and PSD strategies. In
this part, we exhibit the elastic image reconstruction results for different version of
ASRN. In Fig. 10, we provide the trend graph of the performance changes of ASRN
and ASRN (SS) as the number of MAB decreases. Specifically, we gradually remove
MAB in the pre-trained models and then use the adjusted model to reconstruct
SR images without retraining. According to the figure, we can clearly observe that
when the number of MAB is gradually decreased, the performance of ASRN (SS)
experiences a cliff-like decline, even worse than Bicubic. This severely limits the
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Fig. 9: Visual comparisons with other lightweight SISR models. Obviously, our ASRN and ASRN-SS
achieve excellent reconstruction results.
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Fig. 10: Elastic image reconstruction results for different version of ASRN. Obviously, when the
number of MAB is gradually decreased, the performance of ASRN (SS) experiences a cliff-like
decline while the performance of ASRN is still stable.
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Fig. 11: Visual comparisons between ASRN (SS) and ASRN under different numbers of MAB.

Obviously, as the model depth/size changes, the quality of SR images reconstructed by ASRN (SS)
will be severely compromised, while ASRN can still reconstruct high-quality SR images.

application scenarios of the model. On the contrary, the performance of ASRN is
stable and the degradation is acceptable. This means that the proposed model can
easily adjust the model size according to actual requirements. Meanwhile, we also
provide the SR images reconstructed by ASRN (SS) and ASRN with different numbers
of MABs in Fig. 11. Obviously, as the model depth/size changes, the quality of SR
images reconstructed by ASRN (SS) severely compromised. However, the SR images
reconstructed by ASRN still show excellent visual effects. This further verifies the
feasibility of elastic image reconstruction with the help of DSL and PSD strategies.

5. Investigations

5.1. Effectiveness of Multi-scale Aggregation Block (MAB)

Multi-scale Aggregation Block (MAB) is the basic component of ASRN, which is
the key to building a modular model. In this section, we provide a series of experi-
ments to illustrate the effectiveness of MAB.
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Table 3: Ablation study of the importance of each component in MAB.

| Case Index | 1 [ 2 | 3 | 4] 5 [ 6 | 7 |
Fusion Lay X V vV V vV V vV
MAB Residual-like connection vV X Vv V Vv vV N4
Channel Shuffle vV vV X v vV vV v
Residual learning v/ V v X Vv V v/
MAB Number 5 5 5 5 5 5 10
Channel Number 64 64 64 64 64 96 96

y PSNR (Urban100, x3) | 26.85 [ 27.08 | 27.13 | 26.33 | 27.19 | 27.45 | 27.92 |

Compare with other feature extraction blocks, DIV2K (895-900, Urabn100, x3)
32.50

32.25
32.00

31.75

PSNR (dB

31.50

31.256

—— ShuffleNet

31.00 —— Res2Net
f —— MAB (Ours)

30.75
0 25 50 75 100 125 150 175 200
Epoch

Fig. 12: Compare with the core block in ShuffleNet and Res2Net.

(1) MAB is essentially a multi-scale feature extraction block, which integrates the
feature fusion, channel split, residual-like connection, channel shuffle, and residual
learning mechanisms. Among them, channel split is the prerequisite for all opera-
tions and acts as the key operation for constructing a lightweight model. For other
mechanisms, we provide a series of ablation studies in Table 3 to investigate their
effectiveness. According to the table, we can clearly observe that (a). When the
residual learning is removed, the performance of the model will be greatly reduced
(case 4). This is because residual learning can accelerate model convergence and facil-
itate the information flow thus improving the model performance; (b). Removing any
mechanism, the model performance will be degraded (cases 1,2,3); (c¢). Increasing the
number of channels or MABs can effectively improve the model performance (cases
6,7). All these experiments prove the effectiveness and necessity of the introduced
mechanisms, which together constitute the efficient MAB.

(2) MAB can be considered as an improved version of ResBlock [18], which is in-
spired by ShuffleNet [39] and Res2Net [40]. To further demonstrate the effectiveness
of MAB, we compare MAB with the core feature extraction block in ShuffleNet and
Res2Net. For a fair comparison, we use the same backbone as the infrastructure of
these models, and all these blocks have a similar number of parameters. In Fig. 12,

18



Table 4: Study of the deep supervised learning mechanism. Best results are highlighted with red.

Scale | Blocks | Parameters Method Setb Set14 B100 Urban100 Mangal09
PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM
5B 248K (100%) ASRN (SS) | 33.95/0.9238 | 30.01/0.8359 | 28.89/0.8000 | 27.45/0.8366 | 32.70/0.9383
ASRN (DSL) | 33.81/0.9221 | 29.92/0.8346 | 28.81/0.7985 | 27.34/0.8331 | 32.55/0.9361
B 200K (84%) ASRN (SS) | 30.84/0.8942 28.00/0.7929 27.46/0.7555 24.84/0.7582 | 27.67/ 0.8789
3 ASRN (DSL) | 33.71/0.9211 | 29.86/0.8834 | 28.79/0.7979 | 27.24/0.8306 | 32.42/0.9341
3B 170K (69%) ASRN (SS) 30.64/0.876$ 27.83/0.7852 27.35/0.7482 24.65/0.7472 | 27.31/0.8682
ASRN (DSL) | 33.65/0.9198 | 29.81/0.8319 | 28.74/0.7962 | 27.06/0.8258 | 32.19/0.9312
9B 131K (53%) ASRN (SS) | 30.50/0.8726 27.72/0.7807 27.27/0.7437 2455/0.7415 27.13/0.8631
ASRN (DSL) | 33.40/0.9175 | 29.71/0.8301 | 28.66/0.7943 | 26.81/0.8189 | 31.81/0.9274
B 92k (37%) ASRN (SS) | 30.28/0.8678 27.56/0.7749 27.17/0.7389 24.43/0.7354 | 26.82/0.8551
ASRN (DSL) | 33.04/0.9134 | 29.51/0.8265 | 28.50/0.7908 | 26.48/0.8099 | 31.12/0.9213
5B 244K (100%) ASRN (SS) | 31.73/0.8888 | 28.32/0.7748 | 27.38/0.7293 | 25.48/0.7648 | 29.59/0.8962
ASRN (DSL) | 31.55/0.8855 | 28.25/0.7725 | 27.32/0.7270 | 25.33/0.7580 | 29.47/0.8915
iB 205K (34%) ASRN (SS) | 29.04/0.8325 | 26.57/0.7259 | 26.28/0.6863 | 23.57/0.6854 | 25.70/0.8178
) ASRN (DSL) | 31.45/0.8831 | 28.21/0.7713 | 27.29/0.7260 | 25.27/0.7558 | 29.34/0.8888
3B 166K (68%) ASRN (SS) | 28.52/0.8170 | 26.19/0.7109 | 26.02/0.6730 | 23.23/0.6660 | 25.09/0.7969
ASRN (DSL) | 31.36/0.8819 | 28.13/0.7695 | 27.24/0.7246 | 25.16/0.7517 | 29.12/0.8849
9B 127K (52%) ASRN (SS) | 28.41/0.8131 | 26.11/0.7071 | 25.97/0.6697 | 23.15/0.6611 | 24.95/0.7916
ASRN (DSL) | 31.13/0.8771 | 27.99/0.7662 | 27.15/0.7221 | 24.95/0.7439 | 28.68/0.8771
B 88k (36%) ASRN (SS) | 28.22/0.8068 | 25.98/0.7014 | 25.88/0.6674 | 23.06/0.6553 | 24.78/0.7853
ASRN (DSL) | 30.76/0.8698 | 27.76/0.7606 | 27.00/0.7177 | 24.68/0.7329 | 28.11/0.8671

we show the performance of these feature extraction blocks during training. Obvi-
ously, our model is more stable and achieves the best results. The is because the
introduced residual-like connection can extract image features with different scales
and the channel shuffle can overcome the side effects brought by the channel split.
Therefore, MAB shows stronger feature extraction ability and stability.

5.2. Effectiveness of Deep Supervised Learning (DSL)

As mentioned in Section 4.2, ASRN (SS) denotes the specifically trained model
without DSL and PSD mechanisms, and ASRN (DSL) is the improved version of
ASRN (SS) with DSL. In Table 4, we provide the elastic image reconstruction results
of the model on the adjusted versions. Among them, the results of '5B” and '1B-4B’
represent the performance of the complete model and the adjusted version, respec-
tively. In other words, '1B-4B’ indicates the number of MABs remaining after some
MABES in the pre-trained model are removed. According to the table, we can clearly
observe that the performance of ASRN (SS) is severely degraded when the number of
MABSs changed. Contrastly, with the help of the DSL mechanism, the performance
of ASRN (DSL) still achieves good results. Specifically, when the number of MABs
reduced from 5 to 1, the performance degradation of ASRN (DSL) is slight and ac-
ceptable (less 1.4dB) while the performance degradation of ASRN (SS) is significant
(4.8dB-7dB). This fully demonstrates that the introduced DSL mechanism is reason-
able and effective, which makes elastic image reconstruction feasible. However, it is
worth noting that the performance of the complete model (5B) of ASRN (DSL) is
slightly worse (0.12dB-0.21dB) than ASRN (SS). This is because the introduced DSL

strategy makes ASRN became a multi-task learning model. Since multi-task learning
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Table 5: Study of the progressive self-distillation mechanism. Best results are highlighted with red.

Seale | Blocks | Parameters Method Setb Set14 B100 Urban100 Mangal09
PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM
55 | 218K (100%) | ASRN (DSL) [ 33.81/0.9221 [ 20.92/0.8846 | 28.81/0.7985 | 27.34/0.8831 | 32.55/0.9361
ASRN 33.84/0.9223 | 29.97/0.8348 | 28.86/0.7990 | 27.41/0.8342 | 32.63/0.9364
4B 209K (34%) ASRN (DSL) | 33.71/0.9211 | 29.86/0.8834 | 28.79/0.7979 | 27.24/0.8306 | 32.42/0.9341
<3 ASRN 33.75/0.9213 | 29.91/0.8337 | 28.82/0.7983 | 27.29/0.8317 | 32.47/0.9346
3B 170K (69%) ASRN (DSL) | 33.65/0.9198 | 29.81/0.8319 | 28.74/0.7962 | 27.06/0.8258 | 32.19/0.9312
ASRN 33.67/0.9205 | 29.86/0.8328 | 28.78/0.7973 | 27.17/0.8285 | 32.33/0.9329
9B 131K (53%) ASRN (DSL) | 33.40/0.9175 | 29.71/0.8301 | 28.66/0.7943 | 26.81/0.8189 | 31.81/0.9274
ASRN 33.43/0.9179 | 29.74/0.8306 | 28.69/0.7949 | £26.90/0.8216 | 31.92/0.9286
B 92k (37%) ASRN (DSL) | 33.04/0.9134 | 29.51/0.8265 | 28.50/0.7908 | 26.48/0.8099 | 31.12/0.9208
ASRN 33.06/0.9136 | 29.53/0.8267 | 28.53/0.7910 | 26.50/0.8107 | 31.21/0.9213
5B | 244K (100%) ASRN (DSL) | 31.55/0.8855 | 28.25/0.7725 | 27.32/0.7270 | 25.33/0.7580 | 29.47/0.8915
ASRN 31.65/0.8867 | 28.28/0.7733 | 27.34/0.7279 | 25.42/0.7616 | 29.60/0.8935
1B 205K (34%) ASRN (DSL) | 31.45/0.8831 | 28.21/0.7713 | 27.29/0.7260 | 25.27/0.7558 | 29.34/0.8888
« ASRN 31.57/0.8855 | 28.23/0.7724 | 27.31/0.7270 | 25.36/0.7593 | 29.48/0.8912
3B 166K (65%) ASRN (DSL) | 31.36/0.8819 | 28.13/0.7695 | 27.24/0.7246 | 25.16/0.7517 | 29.12/0.8849
ASRN 31.41/0.8824 | 28.15/0.7701 | 27.26/0.7253 | 25.22/0.7540 | 29.21/0.8858
OB 127K (52%) ASRN (DSL) | 31.13/0.8771 27.99/0.7(?62 27.15/0.7221 | 24.95/0.7439 | 28.68/0.8771
ASRN 31.21/0.8782 | 28.02/0.7669 | 27.17/0.7228 | 25.02/0.7465 | 28.81/0.8787
B 88k (36%) ASRN (DSL) 30.76/0.$698 27.76/0.7606 | 27.00/0.7177 | 24.68/0.7329 28.11/0.$671
ASRN 30.79/0.8701 | 27.77/0.7611 | 27.03/0.7180 | 24.73/0.7356 | 28.12/0.8674

needs to coordinate the training of multiple subnets at the same time, which makes
its performance is slightly lower than that of the single-task model. Fortunately, the
gap is small and acceptable. Meanwhile, we introduce the PSD strategy to improve
the performance of elastic reconstructed results thus further reducing this gap.

5.3. Effectiveness of Progressive Self-Distillation (PSD)

In order to further improve the model performance and reduce the negative
impact of multi-task learning gaps, we propos the PSD strategy. This strategy aims
to use the deep sub-models in ASRN to guide the shallow sub-model in ASRN, which
is essentially a learning task with multiple teachers and studies. In this part, we
provide more experiments and ablation studies to prove its effectiveness.

As defined in Sec. 5.2, ASRN (DSL) is the model with DSL but not PSD while
ASRN is the final model with DSL and PSD. In Table 5, we provide the performance
comparison between ASRN (DSL) and ASRN. According to the table, we can clearly
observe that with the help of PSD, the model performance can be further improved
whether the complete model (5B) or the adjusted models (1-4B). This means that
the performance gap between ASRN and the model specially trained for different
numbers of MABs will be further reduced. This also proves the effectiveness of the
PSD strategy, which can further improve the results of elastic image reconstruction.

5.4. Comparison with Large SISR Models

Increasing the depth of the model is the easiest way to improve model perfor-

mance. Therefore, various large-size models have been proposed in recent years,
e.g., MADNet [58], DRCN [59], SRMDNF [49], CARN [19], DCAE [60], MSRN [25],
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Table 6: Quantitative comparisons between our ASRN and other SISR models.

Model Seale | Param SetH Set14 B100 Urban100 Mangal09

"| PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
DRCN x3 1.8M 33.85/0.9215 29.89/0.8317 28.81/0.7954 27.16/0.8311 32.31/0.9328
MADNet x3 0.9M 34.16/0.9215 30.21/0.8398 28.98/0.8023 27.77/0.8439 -/-
SRMDNF x3 1.5M 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403
CARN x3 1.6M 34.29/0.9255 30.29/0.8407 29.06,/0.8034 28.06,/0.8493 33.50/0.9440
EDSR-base x3 1.6M 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439
DCAE x3 3.0M 34.12/0.9251 30.02/0.8353 28.98/0.8016 27.59/0.8386 -/-
MSRN x3 6.3M 34.48/0.9276 30.40/0.8436 29.13/0.8061 28.31/0.8560 33.56/0.9451
SeaNet x3 7.5M 34.55/0.9282 30.42/0.8444 29.17/0.8071 28.50/0.8594 33.73/0.9463
CRN x3 9.5M 34.60/0.9286 30.48/0.8455 29.20/0.8081 28.62/0.8620 -/-
CFSRCNN x4 1.2M 34.24/0.8256 30.27/0.8410 29.03/0.8035 28.04/0.8496 -/-
ACNet x4 1.3M 34.14/0.9247 30.19/0.8398 28.98/0.8023 27.97,/0.8482 -/-

ASRN(25B) | x3 1.0M 34.34/0.9268 30.28/0.8418 29.07/0.8047 28.11/0.8515 33.41/0.9438
ASRN(45B) | x3 1.8M | 34.51/0.9280 30.40/0.8436 29.15/0.8068 28.44/0.8580 33.67/0.9458

DRCN x4 | L.8M | 31.56/0.8810  28.15/0.7627  27.24/0.7150  25.15/0.7530  28.98/0.8816
MADNet x4 IM | 31.95/0.8917  28.44/0.7780  27.47/0.7327  25.76/0.7746 -/-
SRMDNF x4 | 1.6M | 31.96/0.8925  28.35/0.7787  27.49/0.7337  25.68/0.7731  30.09/0.9024
CARN x4 | 1.6M | 32.13/0.8937  28.60/0.7806  27.58/0.7349  26.07/0.7837  30.47/0.9084
EDSR-base | x4 | 15M | 32.09/0.8938  28.58/0.7813  27.57/0.7357  26.04/0.7849  30.35/0.9067
DCAE x4 | 3.0M | 31.72/0.8884  28.27/0.7733  27.40/0.7288  25.55/0.7660 -/-
MSRN x4 | 6.3M | 32.25/0.8958  28.63/0.7833  27.61/0.7377  26.20/0.7905  30.57/0.9103
SeaNet x4 | 7AM | 32.33/0.8970  28.72/0.7855  27.65/0.7388  26.32/0.7942  30.74/0.9129
CRN x4 | 95M | 32.34/0.8971  28.74/0.7855  27.66/0.7395  26.44/0.7967 -/-
CFSRCNN | x4 | 1.2M | 32.06/0.8920  28.57/0.7800  27.53/0.7333  26.03/0.7824 -/-
ACNet x4 | 1.3M | 31.83/0.8903  28.46/0.7788  27.48/0.7326  25.93/0.7798 -/-

ASRN(25B) | x4 | 1.0M | 32.05/0.8931  28.54/0.7811  27.55/0.7353  25.99/0.7828  30.35/0.9066
ASRN(45B) | x4 | 1.8M | 32.30/0.8966 28.68/0.7843 27.62/0.7377 26.29/0.7938 30.61,/0.9111

RCAN [23], and EDSR [22], SeaNet [61], CRN [62], CFSRCNN [63], and ACNet [16].
Although these models achieve excellent performance, they are also accompanied by
a large number of parameters that are 60 times or even 100 times of our ASRN.
For a fair comparison, we trained some extended versions, including ASRN (25B)
and ASRN (45B). In Table 6, we show the performance comparison between ASRN
(25B), ASRN (45B), and other SISR models. According to the table, we can clearly
observe that ASRN can obtain competitive results with fewer parameters. Meanwhile,
ASRN (45B) can obtain very close or better results than MSRN, SeaNet, and CRN
with only 1/4 or 1/5 parameters. This fully proves the excellence of the proposed
ASRN. Moreover, we provide a more intuitive comparison in Fig. 13. In Fig. 13, we
show the parameters and performance of these models in the form of dot plots. Since
some models have a huge number of parameters, it is difficult to display them well
on one figure, so we display them on two figures according to the parameter level of
the model. In these two figures, red dots represent different versions of ASRN and
blue dots denote other SISR models. It is worth noting that, in these two figures, the
peripheral dots represent the model which achieves a better balance between model
size and performance. In other words, in the figure, the closer to the upper left corner,
the better the model. Obviously, even compared with very large SISR models (e.g.,
RCAN, RDN, and EDSR), our ASRN can still achieve competitive results. Therefore,
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Fig. 13: Study of model size and performance. Red dots denote our proposed ASRNs.

Table 7: Comparison of the number of model parameters, execution time, and FLOPs (1024 * 1024).

Method | VDSR CARN-M CFSRCNN LESRCNN RDN ASRN (Ours) ASRN (25B, Ours)
Params | 665K 412K 1200K 516K 22M 244K 1000K
Time (s) | 0.212 0.033 0.029 0.023 0.914 0.013 0.025
FLOPs | 10.9G 2.5G 11.08G 3.08G 130.8G 2.1G 8.3G

we can draw a conclusion that the proposed ASRN is a lightweight and efficient model
which achieved a good trade-off between the size and performance of the model.

5.5. Model Complexity Studies

To further verify the validity of the model, we provide the running time and FLOPs
comparison of several classic SISR models in Table 7. All these models execute on
the same device for fair comparison. From this table, we can clearly observe that our
ASRN has the shortest running time and lowest FLOPs. This is due to the fact that
ASRN has few parameters and does not introduce complex operations such as the
attention mechanism. This further verifies the effectiveness of ASRN.

6. Discussion

Contribution of the method: Different from blindly pursuing model perfor-
mance, we start from a new application perspective and propose an adjustable super-
resolution network. The main advantages of ASRN are as follow: (1) The proposed
model can achieve one model, one training, flexible deployment on different sizes of
platforms; This is a new technical attempt in the field of image restoration; (2) The
proposed method is a task-agnostic and model-agnostic method, which can suitable
for other image restoration tasks (e.g., mage denoising, image deblurring, and image
dehazing) and other deep modular networks; (3) The proposed PSD strategy is a new
attempt of the knowledge distillation strategy in the field of image restoration.

Limitations of the method: Although ASRN has achieved outstanding results,
as a new technical attempt, it still has some shortcomings: (1) In order to achieve
elastic image reconstruction, we introduce the DSLL mechanism during training. This
mechanism makes ASRN become a multi-task learning model, which limit the model
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performance. Although the introduced PSD strategy can alleviate this problem, the
model performance still cannot surpass the specially trained models. (2) The pro-
posed model can flexibly adjust the depth/size of the model to achieve elastic image
reconstruction. However, we should notice that this method can only adjust the large
model to a small one. Although this is a huge breakthrough, if a small model can
be expanded to a large one without training, it will have more application prospects.
These will be the focus of our future works.

7. Conclusion

In this paper, we proposed an Adjustable Super-Resolution Network (ASRN),
which can flexibly adjust the depth/size of the model to adapt to different needs
without retraining. In order to achieve elastic image reconstruction, a powerful Multi-
scale Aggregation Blocks (MAB) was proposed to build the modular network, and
the Deep Supervised Learning (DSL) mechanism was introduced during the training
process to maximize the performance of each sub-network in ASRN. Moreover, we
proposed a novel Progressive Self-Distillation (PSD) strategy to further improve the
intermediate results of the model to alleviate the negative effects of multi-task learn-
ing. It is worth noting that this method is a task-agnostic method, which is suitable
for other image restoration tasks, such as image denoising, image deblurring, and
image dehazing. In future work, we will further verify the effectiveness of the method
on other image restoration tasks.
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