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Abstract. Fast and accurate MRI reconstruction is a key concern in modern clinical
practice. Recently, numerous Deep-Learning methods have been proposed for MRI
reconstruction, however, they usually fail to reconstruct sharp details from the sub-
sampled k-space data. To solve this problem, we propose a lightweight and accu-
rate Edge Attention MRI Reconstruction Network (EAMRI) to reconstruct images with
edge guidance. Specifically, we design an efficient Edge Prediction Network to directly
predict accurate edges from the blurred image. Meanwhile, we propose a novel Edge
Attention Module (EAM) to guide the image reconstruction utilizing the extracted
edge priors, as inspired by the popular self-attention mechanism. EAM first projects
the input image and edges into Qimage, Kedge, and Vimage, respectively. Then EAM
pairs the Qimage with Kedge along the channel dimension, such that 1) it can search
globally for the high-frequency image features that are activated by the edge priors;
2) the overall computation burdens are largely reduced compared with the traditional
spatial-wise attention. With the help of EAM, the predicted edge priors can effectively
guide the model to reconstruct high-quality MR images with accurate edges. Extensive
experiments show that our proposed EAMRI outperforms other methods with fewer
parameters and can recover more accurate edges.

AMS subject classifications: 54H30, 68U03, 68U10, 68T07
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1 Introduction

Magnetic Resonance Imaging (MRI) is one of the most important tools in image-guided
adaptive radiotherapy, which helps doctors locate pathological regions without harmful
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radiation exposure. However, due to Nyquist sampling requirement [31], the imaging
time is frustratingly long to get high-quality images from fully-sampled k-space data.
Nowadays, Parallel Imaging (PI) has become a standard strategy used by most clinical
MRI scanners to accelerate the imaging process. PI places multiple receiver coils around
the subject, each of which subsamples k-space data from different views. Therefore, the
overall imaging time can theoretically be reduced by a factor of the coil number.

During the past decades, numerous reconstruction methods have been designed for
parallel MR Imaging. Among them, Compressed Sensing (CS) based methods are a broad
class of mature and effective methods that are theoretically supported by [5]. CS-based
methods exploit the inherent sparsity of MR data in some properly transformed domains
and can recover clear images from sub-sampled k-space via iteratively solving a con-
strained optimization problem [17, 28]. Recently, with its great success in various image
processing tasks (e.g., image classification [16,41] and image restoration [9,45,51]), Deep
learning (DL) has also greatly promoted the development of parallel MR imaging. For
example, Chen et al. [7] proposed a PC-RNN model with three convolutional RNN (Con-
vRNN) modules to iteratively learn the features in multiple scales. Aggarwal et al. [1]
proposed a general model-based image reconstruction framework with a convolution
neural network (CNN) based regularization prior. However, existing methods ignore
the necessity of edge reconstruction, resulting in a lack of accurate and clear edges in
reconstructed MR images.

Edge preserving has always been a crucial concern in the design of reconstruction
models. To improve the quality of reconstructed images and preserve image edges, some
works suggested introducing edge priors in the original restoration problem to preserve
image edges [4, 34]. However, they will suffer from complicated algorithm design and
time-consuming training processes. Recently, some more efficient methods have been
proposed to use edge maps as external guidance for image restoration. For example,
Yang et al. [48] used off-the-shelf edge detectors to extract image edges from the degraded
images. Fang et al. [12] predicted image edges by constructing an edge reconstruction
network. Huang et al. [18] designed a novel dual discriminator GAN framework for
solving fast multi-channel MRI, in which one GAN network is built for edge information
enhancement. Inspired by these methods, we also consider introducing image edge prior
as external guidance to MRI reconstruction since 1) image edges are prominent and dis-
tinguishable features in MRI (see Fig. 1), which can serve as a good guide to the model
to recover high-frequency details; 2) the ground truth edges can be easily fetched via or-
dinary edge extraction operators, like Canny, Sobel, and Prewitt, which means that the
edge maps can be learned in a data-driven manner. However, how to effectively utilize
image edge priors to guide image reconstruction still remains a challenge. In some meth-
ods, edge information was simply concatenated with the input image and passed to the
next stages. Though this is a simple way to utilize the edge priors, it may not give full
play to the guiding role of the edge priors. Therefore, in this work, we want to explore a
more efficient and effective mechanism to fully take advantage of image edge priors.

To address the aforementioned issues, in this work, we propose a lightweight and ac-
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(a) (b) (c)

Figure 1: Examples of different MR modalities with their edges. (a), (b) and (c) correspond to T1-weighted,
PD, and PDFS images, respectively. The upper row are the original images and the second row are the extracted
edges with Sobel operator.

curate Edge Attention MRI Reconstruction Network (EAMRI) that utilizes a novel edge
attention strategy to ensure the quality of the edges of the reconstructed MR images.
Specifically, we design an efficient Edge Prediction Network (EPN) to directly predict
accurate image edges from the under-sampled MR image. Meanwhile, we propose a
novel Edge Attention Module (EAM) to fully use edge priors to guide image recon-
struction. The proposal of EAM is inspired by Transformer, which suggested using
the self-attention mechanism to learn the global information in various image process-
ing tasks [10]. Different from existing Transformers, EAM aims to explore the relation-
ship between image and edge information. In particular, EAM pairs the image queries
with the edge keys along the channel dimension, which enables the model to find the
high-frequency features that best match edge features. In this way, the network can re-
store high-frequency MR images under the guidance of edge priors. It is worth noting
that different from the self-attention mechanism, whose computational complexity grows
quadratically with the spatial resolution, our EAM has linear computational complexity,
which is feasible for high-resolution images. In summary, the main contributions of this
work are as follows:

• An efficient Edge Prediction Network (EPN) is designed to directly predict accurate
image edges from the under-sampled MR image. This is the first edge prediction
CNN model in the field of MRI reconstruction.

• We propose a novel Edge Attention Module (EAM) to fully stimulate the role of
edge guidance. With the help of EAM, the predicted edges can effectively guide
the model to reconstruct high-quality MR images with sharp and accurate edges.

• We propose a lightweight and accurate Edge Attention MRI Reconstruction Net-
work (EAMRI). Extensive experiments show that EAMRI achieves better results
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than other SOAT methods with fewer parameters.

The rest of this paper is organized as follows. Related works are reviewed in Section 2.
A detailed explanation of the proposed EAMRI is given in Section 3. The experiment
details, results and ablation studies are presented in Section 4 - 6, respectively. Finally,
we draw a conclusion in Section 7.

2 Related Works

2.1 Deep Learning for Parallel MR Imaging

Parallel Imaging (PI) is one of the most effective techniques to speed up the MRI acqui-
sition process. According to [25], traditional PI reconstruction methods can be classified
into two types: SENSE-type [33] and GRAPPA-type [14] methods. SENSE-type methods
usually require the information of sensitivity encoding, and they can eliminate the arti-
facts in the image domain. Meanwhile, Compress Sensing (CS) theory is often utilized in
SENSE-type methods [2,22,24]. On the other hand, GRAPPA-type methods eliminate the
artifacts by interpolating the missing k-space data [21, 26]. In recent years, deep learning
(DL) has achieved great success in natural image processing, which has also contributed
to the development of PI. For example, Huang et al. [19] proposed the SDAUT for solving
fast MRI, which couples Shifted Windows Transformer with U-Net to reduce the net-
work complexity, and incorporates deformable attention to increase the explainability of
the reconstruction model. However, GAN-based models may suffer from noise and un-
stable training [52]. On the other hand, a thriving stream of research is derived from the
optimization scheme of CS theory applied to the classical SENSE-type methods. For ex-
ample, Aggarwal et al. [1] proposed an iterative image reconstruction algorithm with a
CNN-based regularization prior, which yields a deep network when unrolling. Duan et
al. [11] proposed a variable splitting optimization method for generalized parallel CS re-
construction and unrolled it into a trainable network. Interested readers may refer to [8]
for a comprehensive review. Some researchers are also interested in applying deep neural
networks to learn k-space interpolation in a data-driven manner. For instance, Akçakaya
et al. [3] proposed to train a 3-layer network on a small amount of scan-specific ACS data
and estimated the missing k-space data in a non-linear approach. However, these meth-
ods are still difficult to reconstruct texture details and edges, which limits their practical
application.

2.2 Edge-guided Image Restoration

In general, the image restoration (IR) problem can be formulated as an ill-posed inverse
problem, which requires regularization (priors) to refine the solution space. During the
past decades, researchers have devoted enormous efforts to designing edge-preserving
regularization to preserve the sharp edges [4, 32, 47]. Among all these methods, total
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variation (TV) regularization [6, 35] is one of the most well-known and effective edge-
preserving priors. However, these methods usually require hand-crafted designs of reg-
ulation terms and may suffer from complex algorithm design. Recently, DL techniques
have made great success in various IR tasks, and some works consider using explicit
edge priors to guide the reconstruction process. For example, Huang et al. [18] proposed
the PIDD-GAN with dual GAN discriminator for fast MRI, one for holistic image recon-
struction, and the other one for enhancing edge information using the edge information
extracted by Sobel operator. Yang et al. [48] proposed a recurrent residual network (DE-
GREE) that utilized the LR image with its corresponding edge maps to infer the sharp
details in the HR image. However, DEGREE suffers from 1) it extracts edge maps from
the learned image features using a simple convolutional operation, which may not be
accurate due to the existence of image noises; 2) it produced the final HR outputs by di-
rectly adding the predicted edge maps into the LR image, which may not be an efficient
way to take full advantage of the edge priors. Considering the above drawbacks, Fang
et al. [12] introduced an improved edge-guided network (SeaNet), which designed an
efficient edge net to predict edge maps and proposed an effective fusion mechanism to
combine the edge priors with the learned image features. However, SeaNet still can not
give full play to the edge guidance since the edge maps are simply concatenated with
the image features. Therefore, we aim to explore an efficient mechanism to fully take
advantage of edge guidance.

3 Methods

3.1 Problem Formulation

In general, the task of parallel MRI reconstruction can be mathematically formulated as:

yi =Aix+εi, for i=1,2,···nc (3.1)

where yi∈Cn represents the acquired sub-sampled k-space from the i-th coil and nc stands
for the total number of coils. x∈Cn is the clear MR image that we want to recover. Ai is a
forward operator with the form of M�F�Si, where M is a binary mask, F is the Fourier
transform operator, and Si is the coil sensitivity matrix that encodes the spatial sensitivity
for each coil. Usually they are normalized as:

nc

∑
i=1

S∗i Si =1. (3.2)

It is known that Eqn. 3.1 is an ill-posed inverse problem. Like most DL-based models for
MRI reconstruction [36,53], we force x to be well-approximated by our proposed network
and solve Eq. 3.1 in a supervised learning manner:

min
θ
L( fθ(x0|y),x), (3.3)
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Figure 2: An illustration of the proposed EAMRI framework, which consists of two branches: Image Reconstruc-
tion Branch (IRB) and Edge Prediction Branch (EPB). IRB utilizes multiple Recursive Dilated Convolutional
Network (RDCN) for image de-aliasing, while EPB utilizes one recursive component Edge Prediction Network
(EPN) to extract fine edges from the input image. The predicted edges can guide the network to restore more
accurate details with Edge Attention Module (EAM).

where y = {yi}nc
i=1 is the acquired measurements from all the coils, x0 is the zero-filled

image converted from y, and fθ(·) is the proposed EAMRI with learnable parameters θ.
More details of the loss function will be covered in Sec. 3.2.7.

3.2 Edge Attention MRI Reconstruction Network

In this work, we propose a lightweight and accurate Edge Attention MRI Reconstruc-
tion Network (EAMRI). The overall workflow is presented in Fig. 2. Given sub-sampled
multi-coil k-space data y, we first estimate the sensitivity map S using the Sensitivity
Map Estimation (SME) module. The sensitivity map together with the k-space data can
be used to generate the sensitivity-weighted zero-filled image x0 via the Reduce oper-
ation. Then, we pass x0 through an Image Head (the same architecture as RDCN, but
with fewer parameters), which provides a relatively good initialization for the follow-
ing part of the network. It is worth noting that the output of Image Head goes through
two parallel branches: the image reconstruction branch and the edge prediction branch.
The image reconstruction branch consists of multiple Recursive Dilated Convolutional
Networks (RDCNs), which are simple but effective image de-aliasing blocks to recover
low-frequency image features. On the other hand, the edge prediction branch consists
of a recursive Edge Prediction Network (EPN), which can predict accurate image edges
from the blurred image. Finally, the predicted edge priors are fed into the Edge Attention
Module (EAM), which is an effective attention module that can guide the image details
reconstruction with edge priors. More details will be covered in the following sections.

3.2.1 Sensitivity Map Estimation

Inspired by [38], we introduce the Sensitivity Map Estimation (SME) module to estimate
the sensitivity map. As shown in Fig. 3, SME takes the sub-sampled k-space data as input
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Figure 3: Workflow of the proposed Sensitivity Map Estimation.

and first filters out the Auto-Calibration Signal (ACS) region. Then, the inverse Fourier
transform (IFT) is applied on this region to get the blurred images. After that, these
images are passed to two parallel branches: 1) RSS, which calculates the root sum of
squares of the images; 2) CNN, where a simple CNN is utilized to refine the data. Finally,
the sensitivity maps can be estimated by dividing the outputs of these two branches. It
is worth noting that different from the widely used sensitivity map estimation method,
ESPIRit algorithm [42], in previous works [1,15], the proposed SME module is a learnable
module that can be jointly trained with the rest parts of the model. For simplicity, the
CNN in our SME is chosen to be the same architecture as the following Recursive Dilated
Convolutional Network (RDCN) but with fewer parameters.

3.2.2 Reduce and Expand

We define two operations in our work, Reduce (R) and Expand (E ). As can be seen from
Fig. 2, we utilize the Reduce operation at the beginning of the model to provide the initial
Zero-Filled image (SENSE reconstruction) for the rest part of the network. Specifically,
given sub-sampled k-space data y={yi}nc

i=1, we first apply the inverse Fourier transform
to get image data x̂={x̂i}nc

i=1, where each x̂i is the individual coil image for i-th coil. Then,
x0 can be computed as:

x0 =R(S,x̂)=
nc

∑
i=1

S∗i x̂i, (3.4)

where Si the sensitivity map of the i-th coil.
On the other hand, we employ the Expand operation in the later discussed Data Con-

sistency (DC) layer. Expand is the inversion the Reduce, which can convert the SENSE
reconstruction (for simplicity, we abuse the notation x0 here) back into individual coil
images:

E(x0)=(S1x0,S2x0,··· ,Snc x
0). (3.5)

3.2.3 Recursive Dilated Convolutional Network

Following [39], we propose a Recursive Dilated Convolutional Network (RDCN) as the
building block for image de-aliasing in the image reconstruction branch. RDCN adopts
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two design ideas: 1) Recursive learning. As shown in Fig. 4 (Upper), RDCN consists
of a repeating component Dilated Convolution Block (DCB) with sharing weights. This
is beneficial for the reuse of model parameters and lightweight model design. In the
meantime, skip connections are added between each recurrent so that features from the
shallow layers can be aggregated in the deeper layers; 2) Dilated convolution. Within
each DCB, there are multiple 3×3 convolutional kernels with different dilation rates,
which is beneficial for learning multi-scale features since dilation kernels can effectively
increase the receptive fields without bringing additional parameters. From this point
of view, RDCN is a lightweight and effective image de-aliasing block. Meanwhile, to
maintain data consistency, we also add a DC layer at the bottom of RDCN.

Figure 4: Upper: the proposed Recursive Dilated Convolutional Network (RDCN). The RDCN consists of
multiple Dilated Convolution Blocks (DCB), which are weight sharing; Lower: the proposed edge Prediction
Network (EPN). In EPN, we utilize dilated convolution to increase the receptive fields.

3.2.4 Edge Prediction Network

To obtain accurate edge priors, we propose an efficient Edge Prediction Network (EPN)
to directly predict image edges from the input image. It is worth noting that we proposed
a similar edge net with [12], which was used to extract image edges from natural images.
In contrast, the EPN in our work is applied to the reconstructed sensitivity-weighted im-
ages. As shown in Fig. 4 (Lower), we first use a 3×3 convolutional layer to increase the
feature channels. Then, a cascaded of Multi-scale Residual Blocks (MSRB) is utilized to
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extract image features at different scales, which is beneficial to capture high-frequency
features in the image. Specifically, each MSRB consists of two convolution branches to
operate features with different receptive fields. Different from [27], we replace the origi-
nal 5×5 convolutional layers with the 3×3 convolutional layers with dilation rate 2. This
change will make the module to has the same receptive field but with fewer parame-
ters. Finally, the outputs of all MSRBs are concatenated and fused by 1×1 convolutional
layer, and a 3×3 convolutional layer is used to decrease the feature channels to obtain
the predict edge maps.

3.2.5 Edge Attention Module

Figure 5: The proposed Edge Attention Module (EAM) to fuse the information of Einput and Iinput. Here R
stands for the reshape operation, and S stands for the Softmax operation.

The core idea of this paper is to use edge priors to guide the model to reconstruct
accurate MR images with clean and accurate edges. Most of the existing methods use the
concatenation operation to directly combine image features and edge features directly.
However, those methods usually fail to fully exploit the role of edge guidance and thus
cannot fully utilize edge priors. To solve this issue, we propose a novel Edge Attention
Module (EAM), which is an efficient attention module that can utilize the predicted image
edges to guide the model to reconstruct high-quality images with more accurate details.
It is worth mentioning that, as far as we know, this is the first attempt to utilize edge
attention in the field of accelerated MRI reconstruction. As shown in Fig. 3, EAM takes
the output (Iinput) of RDCN and the output (Einput) of EPN as inputs. For the image input
Iinput, we generate the corresponding image queries (QI) and image values (VI) by first
applying 1×1 convolutions to aggregate the channel information plus 3×3 depth-wise
convolutions to encode the channel-wise spatial context. Similarly, we generate the edge
keys (KE) by applying 3×3 convolutions to project the edges into the same dimension
space as the queries. Therefore, QI, KE, and VI have the same shape as H×W×C. Then,
we reshape QI and KE to C×HW, such that their dot-product interaction generates the
Image Edge Attention (IEA) of size C×C. It is worth noting that each element in IEA
represents the channel-wise attention weight between QI and KE. This novel design
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distinguishes us from the self-attention module in that we pair QI and KE channel-wisely
(C×C) instead of spatial-wisely (HW×HW). In other words, EAM can search for the best
match between the image queries and the edge keys along the channel dimension. In this
way, we not only can attend to the high-frequency features in a global context manner,
but we also save from cumbersome computation of regular attention map. To maintain
data consistency, we also add a DC layer at the end. Overall, the EAM process can be
defined as:

Ires=VI ·Softmax(KE ·QI)/α,
Iout=DC(Proj(Ires)+Iinput),

(3.6)

where Proj(·) denotes the 1×1 convolutional layer and α is a learnable parameter.

3.2.6 Data Consistency

Maintaining data consistency (DC) is an important step in MRI reconstruction, which
prevents the network from modifying the observed k-space data. Following [11], we also
include the DC operation in RDCN and EAM, which is an analytical solution naturally
applicable to multi-coil data. Specifically, DC layer takes in four inputs: the input SENSE
reconstruction xin, sub-sampled k-space data y, the sub-sampling mask M and the esti-
mated sensitivity maps S={Si}nc

i=1. The overall DC process can be described as:

xDC =R(S,F ∗((1−M)�F (E(xin))+M�y)). (3.7)

It is worth noting that both Reduce and Expand operation are used in our DC opera-
tion, where the Expand operation expands the SENSE reconstruction into nc coil images
and the Reduce operation combines the coil images back into the SENSE reconstruction
for the rest of the network.

3.2.7 Loss Function

In this work, we propose an edge-guided model that can be trained in an end-to-end
manner. To ensure the accuracy and quality of the predicted edges, we apply supervised
learning to the outputs of the EPN. Specifically, we design an edge-aware loss in this
work, which is composed of two parts: image loss and edge loss. Image loss is computed
over the difference between the Root Sum of Squares (RSS) of the final reconstructed MR
image xpred and the corresponding ground truth x:

Limage= ||xpred−x||1. (3.8)

On the other hand, to compute the edge loss, we first extract the ground truth edges
using the Sobel operator. Then, we compute the difference between predicted edges
epred ={et

pred}N
t=1 and the the corresponding ground truth edges e:

Ledge=
N

∑
t=1
||et

pred−e||1, (3.9)
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where N denotes the number of cascaded blocks as shown in Fig. 2. For both losses, we
adopt L1 norm due to its simplicity and effectiveness in producing sharp edges, which
is also a common choice in other MRI reconstruction works like [13, 44]. Therefore, the
total loss can be defined as:

Ltotal=Limage+βLedge . (3.10)

For simplicity, we set β=1 in this work.

4 Experiments Details

4.1 Datasets

4.1.1 Calgary-Campinas [37]

Calgary-Campinas is a large-scale MR brain dataset jointly established by the Vascular
Imaging Lab, University of Calgary and the Medical Image Computing Lab, University
of Campinas. It provides both single- and multi-coil raw k-space data for evaluation.
In this work, we first use the single-coil data to validate our model, which has been
split into training (4,250 slices) and validation (1,700 slices) (testing data is not provided).
The dataset is centrally cropped to 256×256. For multi-coil data, we use the provided
T1-weighted, gradient-recalled echo, 1 mm isotropic sagittal dataset collected on a clin-
ical MR scanner using a 12-coil array. The multi-coil dataset has been split into train-
ing (12,032 slices), validation (5,120 slices) and, testing (12,800 slices). Since there is no
ground truth data for the testing data, we only use the training and validation data for
evaluation. The dataset is centrally cropped to 218×170.

4.1.2 fastMRI [50]

fastMRI is a large-scale MR dataset jointly established by Facebook AI Research and NYU
Langone Health. It provides both knee and brain datasets for evaluation. In our work,
we use the multi-coil knee dataset, which was acquired on three clinical 3T systems or
one clinical 1.5T system using a 15-channel knee coil array. The dataset includes data
from two pulse sequences, yielding coronal proton-density weighting with (PDFS) and
without (PD) fat suppression. As is shown in Fig. 1, PD images usually contain more
structural and prominent edge features than PDFS images, which suggests that it is more
challenging to use edge guidance on PDFS datasets. Therefore, we explore the effective-
ness of EAMRI on these two modalities. Following [13], for both PD and PDFS knee
datasets, we separately filter out 227 volumes (8332 slices) for training and 24 volumes
(1665 slices) for testing. The dataset is centrally cropped to 320×320.

4.2 Implementation Details

Our model is implemented using PyTorch on an NVIDIA RTX A6000 GPU with 48GB
of memory. We use Adam optimizer [23] with a learning rate of 5∗10−4, the weight
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decay parameter was set as 10−7. For the single-coil task, we set mini-batch as 16, while
for the multi-coil task, we set mini-batch as 8 for the Calgary dataset [37], and 4 for the
fastMRI dataset [50]. All models were trained for 80 epochs in total. As for our network
configuration, we use 4 RDCN for image de-aliasing (N = 4) and each RDCN contained 3
recursive DCB (M = 3). For the edge prediction network EPN, we use 3 cascaded MSRBs
to extract multi-scale features. For EAM, we set the number of the edge attention heads
as 4, and the number of the channels after the initial convolutions as 32.

For Calgary and fastMRI datasets, we use the sampling function provided by fastMRI†

to generate Cartesian sampling mask with Acceleration Factor (AF) 4 and 6, respectively,
which means that only 25% and 16.7% portion of the k-space data is used in the recon-
struction process. For quantitative study, we use three evaluation metrics: peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM), and normalized mean square
error (NMSE).

4.3 Baselines Models

4.3.1 Single-coil MRI Reconstruction

Even though EAMRI is originally designed for multi-coil MRI reconstruction, it can be
easily adapted to the single-coil MR datasets by removing the SME module and the Re-
duce operation at the beginning of the network. Therefore, we first evaluate it on the
Calgary single-coil brain dataset. We compare our model with several lightweight and
effective models for single-coil MRI reconstruction, including U-Net [20], DCCNN [36],
RDN [40]. Since there is no need to use the sensitivity map in the single-coil task, we
simply delete the SME and Reduce operation in our model. For a fair comparison, we
adjust the model size for all these models so that U-Net is 157K, DCCNN is 144K, RDN
is 144K, MDR is 291K, and our EAMRI is 123K.

4.3.2 Multi-coil MRI Reconstruction

For the multi-coil task, we compare our model with U-Net [20], DCCNN [36], E2EVarNet [38],
VS-Net [11] and RecurrentVarNet [49]. Among them, both U-Net and DCCNN are not
originally proposed for multi-coil MRI reconstruction. Therefore we add the same SME
module to their original architecture and feed them with the SENSE reconstruction. On
the other hand, E2EVarnet, VS-Net, and RecurVarnet are SOTA deep unrolling methods
that are derived from the optimization algorithms for the CS-based MRI reconstruction
problem. All models except VS-Net were trained jointly with the same Sensitivity Map
Estimation (SME) as our model. For VS-Net, we pre-compute the sensitivity map using
BART [43] with parameters ”bart ecalib -m1 -r26”. For a fair comparison, we adjust the
parameters for all these models to have comparable model sizes. After the adjustment,
the number of parameters (in millions) for U-Net is 1.5M, DCCNN is 1.1M, E2EVarNet is
2.4M, RecurrentVarNet is 1.5M, VS-Net is 1.5M, and our EAMRI is 1.1M.

†https://github.com/facebookresearch/fastMRI/
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5 Results

5.1 Results on Single-Coil MRI Reconstruction

In Table 1, we show the quantitative results for all model reconstructions on the Calgary
single-coil brain dataset. According to the table, we can observe that EAMRI achieves the
best results for the quantification metrics under acceleration factor 4 and requires fewer
model parameters (123K). It is worth noting that even compared to the second best model
DCCNN [36], PSNR is improved by 0.41dB. This effectively illustrates the excellence of
EAMRI.

Moreover, in Fig. 6, we provide a visual comparison of the reconstruction results of
these models. We can see that EAMRI has fewer bright spots in the heatmaps, which
means less error between the EAMRI reconstructed image and the ground truth image.
Meanwhile, according to the zoomed-in images of the selected areas, we can observe that
our EAMRI can reconstruct more clean and accurate edges. This further validates the
validity of EAMRI. Both the quantitative and the qualitative results for the single-coil
MRI reconstruction demonstrate the effectiveness of EAMRI.

Table 1: Quantitative results on Calgary [37] Single-Coil dataset. The best and the second-best results are
highlighted in red and blue color, respectively.

Method
AF = 4

PSNR (dB)↑ / SSIM↑ / NMSE↓
Zero-Filled (ZF) 27.36 / 0.8020 / 0.0517

U-Net 33.52 / 0.9188 / 0.0126
DCCNN 35.51 / 0.9409 / 0.0082

RDN 34.42 / 0.9309 / 0.0104
EAMRI (Ours) 35.92 / 0.9445 / 0.0075

5.2 Results on Multi-Coil MRI Reconstruction

In Table 2, we provide the quantitative results of all the models over three multi-coil
datasets: Calgary [37], fastMRI PD [50], and fastMRI PDFS [50]. According to the ta-
ble, we clearly observe that EAMRI achieves the best performance over all these datasets
under both AF 4 and AF 6. For the T1-weighted images (Calgary) and the PD images
(fastMRI PD), whose edge features are more prominent and structural (see Fig. 1), EAMRI
can achieve high-performance gain when compared with the second-best model. For ex-
ample, when the AF = 4, PSNR is boosted by 0.64 over Calgary, and 1.26 over fastMRI
PD. On the other hand, for the PDFS images under AF 4, PSNR is boosted by 0.22 when
comparing EAMRI with the second-best model. This is because PDFS images usually
contain more broken edges, which is more challenging to use the edge guidance mecha-
nism. Fortunately, our EAMRI can still achieve better results, thanks to its well-designed
network structure and edge priors.
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GT/Mask Zero-Filled U-Net [20] DCCNN [36] RDN [40] EAMRI (Ours)

Figure 6: Qualitative results on Calgary [37] Single-Coil dataset with AF = 4. The first three rows are the
reconstructed images, the heatmaps of the residual images and the zoomed-in images of the selected areas.

We also provide visual comparisons in Fig. 7- 9. According to these images, we can see
that EAMRI has fewer bright dots in the heatmaps and more clearer and accurate edges in
the zoomed-in areas. The above quantitative and qualitative analysis fully demonstrate
the effectiveness of the proposed EAMRI. Due to the page limit, more visual comparisons
can be found at https://github.com/MIVRC/EAMRI.

Table 2: PSNR/SSIM/NMSE comparisons with other lightweight MRI reconstruction models on Calgary [37]
and fastMRI [50] Multi-Coil dataset. The sampling rates for each dataset are 25% (AF = 4) and 16.7% (AF
= 6), respectively. The best and the second-best results are highlighted in red and blue color, respectively.

Method Data Params
AF = 4 AF = 6

PSNR (dB)↑ / SSIM↑ / NMSE↓ PSNR (dB)↑ / SSIM↑ / NMSE↓
Zero-Filled (ZF)

Calgary

- 29.43 / 0.8070 / 0.0705 28.05 / 0.7607 / 0.0998
U-Net 1.5M 34.18 / 0.9186 / 0.0242 32.17 / 0.8855 / 0.0395

E2EVarNet 2.4M 34.28 / 0.9239 / 0.0239 32.13 / 0.8899 / 0.0407
VS-Net 1.2M 35.62 / 0.9372 / 0.0178 33.17 / 0.9024 / 0.0318

RecurrentVarNet 1.5M 35.29 / 0.9351 / 0.0188 32.85 / 0.8990 / 0.0335
EAMRI (Ours) 1.1M 36.26 / 0.9445 / 0.0152 33.87 / 0.9111 / 0.0276

Zero-Filled (ZF)

fastMRI PD

- 31.60 / 0.8364 / 0.0219 29.17 / 0.7796 / 0.0382
U-Net 1.5M 38.40 / 0.9428 / 0.0046 35.57 / 0.9139 / 0.0089

E2EVarNet 2.4M 39.55 / 0.9451 / 0.0036 36.63 / 0.9161 / 0.0070
VS-Net 1.2M 39.55 / 0.9524 / 0.0037 36.22 / 0.9217 / 0.0080

RecurrentVarNet 1.5M 39.11 / 0.9494 / 0.0040 35.85 / 0.9176 / 0.0084
EAMRI (Ours) 1.1M 40.81 / 0.9591 / 0.0027 37.98 / 0.9374 / 0.0052

Zero-Filled (ZF)

fastMRI PDFS

- 31.74 / 0.8011 / 0.0313 30.21 / 0.7486 / 0.0445
U-Net 1.5M 36.74 / 0.8816 / 0.0098 35.19 / 0.8605 / 0.0140

E2EVarNet 2.4M 37.06 / 0.8961 / 0.0092 35.62 / 0.8727 / 0.0128
VS-Net 1.2M 37.31 / 0.8975 / 0.0086 35.59 / 0.8721 / 0.0128

RecurrentVarNet 1.5M 37.55 / 0.9008 / 0.0081 35.75 / 0.8744 / 0.0123
EAMRI (Ours) 1.1M 37.77 / 0.8981 / 0.0077 36.29 / 0.8751 / 0.0109

https://github.com/MIVRC/EAMRI
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(a) (b) (c) (d) (e) (f) (g)

Figure 7: Qualitative results on Calgary [37] T1-weighted Multi-Coil dataset with AF = 4. From left to right:
(a) Ground Truth, (b) Zero-Filled, (c) U-Net [20], (d) E2EVarNet [38], (e) VS-Net [11], (f) RecurrentVar-
Net [49], and (g) EAMRI (Ours)

6 ANALYSIS AND DISCUSSION

6.1 Choices of Edge Detector

To ensure effective edge guidance and accurate edge prediction, we impose supervision
on the predicted edges. The ground truth edges can be extracted via multiple edge opera-
tors, like Sobel, Canny, and Prewitt. We select the two most representative edge detection
operators: Sobel and Canny. Among them, Sobel is a simple and efficient operator that
estimates the pixel-wise gradient magnitude by simply convolving the image with Sobel-
x and y filters. Canny is a more complex and time-consuming operator that can produce
smoother edges via non-maxima suppression and thresholding. We use these two oper-
ators to extract edge ground truth labels on clear MR images respectively and evaluate
their performance on Calgary [37] multi-coil dataset with AF=4. Quantitative results are
given in Table 3. According to the table, we can see that different edge detection opera-
tors will have an impact on the performance of the model. This reflects the validity and
importance of the accuracy of edge priors in MRI reconstruction. Compared with the
Canny operator, the use of the Sobel operator allows the model to achieve better results.
It is worth noting that we believe that there are better edge detection operators that can
extract better edge priors and further improve model performance. However, this is not
the core of this work. Instead, the core of this work is to propose the edge guidance
mechanism and verify the effectiveness of it. Therefore, in our model, we use the Sobel
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(a) (b) (c) (d) (e) (f) (g)

Figure 8: Qualitative results on fastMRI [50] PD Multi-Coil dataset with AF = 4. From left to right: (a)
Ground Truth, (b) Zero-Filled, (c) U-Net [20], (d) E2EVarNet [38], (e) VS-Net [11], (f) RecurrentVarNet [49],
and (g) EAMRI (Ours).

(a) (b) (c) (d) (e) (f) (g)

Figure 9: Qualitative results on fastMRI [50] PDFS Multi-Coil dataset with AF = 4. From left to right: (a)
Ground Truth, (b) Zero-Filled, (c) U-Net [20], (d) E2EVarNet [38], (e) VS-Net [11], (f) RecurrentVarNet [49],
and (g) EAMRI (Ours).
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operator to extract ground truth edges due to its simplicity and effectiveness.

Table 3: Ablation studies for different edge detectors on Calgary [37] Multi-Coil dataset with AF = 4.

Category Method
AF = 4

PSNR (dB)↑ / SSIM↑ / NMSE↓

Edge Detector
Canny 35.78 / 0.9360 / 0.0171
Sobel 36.26 / 0.9445 / 0.0152

6.2 Study on Edge Prediction Network

6.2.1 Number of MSRBs

As shown in Fig. 4, our proposed edge prediction network (EPN) utilizes multiple Multi-
scale Residual Blocks (MSRBs) to extract multi-scale edge features. Therefore it is a natu-
ral question whether the number of MSRBs determines the quality of the predicted edges.
To this end, we design three ablated models with different numbers of MSRBs. The quan-
titative results are given in Table 4. We can see that the performance of the model will
improve as the number of MSRBs increases and the best performance is given when the
number of MSRBs equal to 3. When the number of MSRBs increases to 5, the model per-
formance will decrease. This is because too many MSRBs can lead to a sudden increase
in the number of model parameters, which requires more training datas to fully train the
model. Therefore, we use 3 MSRBs to build EPN to achieve the best balance between
model size and performance.

Table 4: Ablation studies for different number of MSRB on Calgary [37] Multi-Coil dataset with AF = 4.

Block Params
AF = 4

PSNR (dB)↑ / SSIM↑ / NMSE↓
1 MSRB 1.106M 36.13 / 0.9416 / 0.0158
3 MSRBs 1.154M 36.26 / 0.9445 / 0.0152
5 MSRBs 1.201M 36.10 / 0.9408 / 0.0160

6.2.2 Quality of the Predicted Edges

EPN is utilized to provide edge priors for later reconstruction, so the quality of the pre-
dicted edges is very important. In Fig. 10, we provide some qualitative results of the
predicted edges of EPN on three multi-coil datasets. Among them, the GT edges are ex-
tracted using the Sobel operator. As can be seen from the images, our proposed EPN can
predict an approximate contour for the overall subject and can reconstruct accurate edges
close to the GT edges under two acceleration factors. This fully verifies the effectiveness
and excellence of the proposed EPN.
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(a) (b) (c) (d)

Figure 10: Qualitative results of the predicted edges on Calgary [37] (top), fastMRI PD [50] (middle),
and fastMRI PDFS [50] (bottom). From left to right: (a) GT, (b) GT edges extracted by Sobel, (c)
Predicted edges with AF = 4, (d) Predicted edges with AF = 6.

6.3 Study on Edge Attention Module

In this work, we suggest using edge priors to guide MR image reconstruction. To this
end, we propose an efficient guidance module, Edge Attention Module (EAM), to take
full advantage of the predicted edge priors. To study the effectiveness of EAM, we design
three different ablated models: (a) M1: a plain cascaded CNN without edge guidance. This
model adopts RDCN as basic image de-aliasing blocks without using EPN and EAM;
(b) M2: an edge-guided CNN with the same architecture as our EAMRI, except that
its EAM module is replaced by a simple edge guidance, Concat + 1×1 Conv, to fuse the
features of edges and images; (c) M3: EAMRI with shared weights EAM. We compare these
three models with our original EAMRI, and all these models have the same configuration
regarding RDCN. The quantitative results are shown in Table 5.

When comparing M1 with the other models, we can see that the introduced edge
guidance mechanism can improve the model performance, which verifies the validity of
applying edge guidance in MRI reconstruction. Moreover, we can see that when compar-
ing our final EAMRI with M2, PSNR is boosted by 0.54, and SSIM is boosted by 0.0086,
with merely 0.4% increase in model size, demonstrating that our designed EAM is a
lightweight and effective module. On the other hand, when comparing M3 with our fi-
nal EAMRI, we find that even though EAM with shared weights can save a few model
weights, it will result in a performance downgrade. Therefore, we do not use the weight-
sharing strategy in this module. Overall, this series of experiments further validate the
importance of the edge guidance mechanism and also illustrates the feasibility and effec-
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tiveness of EAM.

Table 5: Ablation studies of different modules on Calgary [37] Multi-Coil dataset with AF = 4.

Model Params
AF = 4

PSNR (dB)↑ / SSIM↑ / NMSE↓
M1 1.077M 35.68 / 0.9343 / 0.0173
M2 1.149M 35.72 / 0.9359 / 0.0172
M3 1.150M 36.18 / 0.9419 / 0.0155

Final 1.154M 36.26 / 0.9445 / 0.0152

7 Conclusion

In this work, we proposed a lightweight and accurate Edge Attention MRI Reconstruc-
tion Network (EAMRI) for accelerated MRI reconstruction. Specifically, we proposed an
efficient Edge Prediction Network to directly predict image edges from the undersam-
pled image and use them as external guidance for later reconstruction. Meanwhile, to
fully take advantage of edge priors, we designed a novel Edge Attention Module, which
can search for the best match between the image queries and the edge keys along the
channel dimension. In this way image features can be globally activated by edge fea-
tures, producing satisfactory reconstruction quality. Extensive experiments showed that
our proposed EAMRI outperforms other methods with fewer parameters and can recover
high-quality MR images with more accurate edges. This work provides promising guide-
lines for further research into multimodal MR imaging with transformers. Although our
EAMRI provides excellent results on accelerated MR imaging, it still has some shortcom-
ings. Like most supervised models, EAMRI inevitably suffers from performance decrease
when it is tested on out-of-distribution medical data. As we know, current medical data
is usually acquired by different scanners and protocols and from different medical cen-
ters. Therefore, as [29, 30, 46] suggest, we will consider combining data harmonization
and transfer learning techniques with our current framework to enhance the model’s ro-
bustness and generalizability.
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[8] Y. CHEN, C.-B. SCHÖNLIEB, P. LIO, T. LEINER, P. L. DRAGOTTI, G. WANG, D. RUECKERT,
D. FIRMIN, AND G. YANG, Ai-based reconstruction for fast mriâ€”a systematic review and meta-
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AND M. LUSTIG, Espiritâ€”an eigenvalue approach to autocalibrating parallel mri: where sense
meets grappa, Magnetic resonance in medicine, 71 (2014), pp. 990–1001.

[43] M. UECKER, F. ONG, J. I. TAMIR, D. BAHRI, P. VIRTUE, J. Y. CHENG, T. ZHANG, AND
M. LUSTIG, Berkeley advanced reconstruction toolbox, in Proc. Intl. Soc. Mag. Reson. Med,
vol. 23, 2015.

[44] S. WANG, H. CHENG, L. YING, T. XIAO, Z. KE, H. ZHENG, AND D. LIANG, Deepcomplexmri:
Exploiting deep residual network for fast parallel mr imaging with complex convolution, Magnetic
Resonance Imaging, 68 (2020), pp. 136–147.

[45] H. L. T. WONG, HOK SHINGZHANG AND Y. FANG, Incorporating the maximum entropy on
the mean framework with kernel error for robust non-blind image deblurring, Communications in
Computational Physics, 31 (2022), pp. 893–912.

[46] G. YANG, Q. YE, AND J. XIA, Unbox the black-box for the medical explainable ai via multi-modal
and multi-centre data fusion: A mini-review, two showcases and beyond, Information Fusion, 77
(2022), pp. 29–52.

[47] J. YANG, W. YIN, Y. ZHANG, AND Y. WANG, A fast algorithm for edge-preserving variational
multichannel image restoration, SIAM Journal on Imaging Sciences, 2 (2009), pp. 569–592.

[48] W. YANG, J. FENG, J. YANG, F. ZHAO, J. LIU, Z. GUO, AND S. YAN, Deep edge guided re-
current residual learning for image super-resolution, IEEE Transactions on Image Processing, 26
(2017), pp. 5895–5907.
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