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Face restoration (FR) is a specialized field within image restoration that aims to recover low-quality (LQ)
face images into high-quality (HQ) face images. Recent advances in deep learning technology have led to
significant progress in FR methods. In this paper, we begin by examining the prevalent factors responsible for
real-world LQ images and introduce degradation techniques used to synthesize LQ images. We also discuss
notable benchmarks commonly utilized in the field. Next, we categorize FR methods based on different tasks
and explain their evolution. Furthermore, we explore the various facial priors commonly utilized in restoration
and discuss strategies to enhance their effectiveness. In the experimental section, we thoroughly evaluate
the performance of state-of-the-art FR methods across various tasks using a unified benchmark. We analyze
their performance from different perspectives. Finally, we discuss real-world applications and challenges
faced in the field of FR, propose potential directions for future advancements. The open-source repository
corresponding to this work can be found at https://github.com/24wenjie-li/Awesome-Face-Restoration.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies →
Reconstruction; Neural networks.

Additional Key Words and Phrases: Face restoration, Survey, Deep learning, Non-blind/Blind, Joint restoration.

1 INTRODUCTION
Face restoration (FR) aims to improve the quality of degraded face images and recover accurate
and high-quality (HQ) face images from low-quality (LQ) face images. This process is crucial
for various downstream tasks such as face detection [163], face recognition [63], and 3D face
reconstruction [195]. The concept of face restoration was first introduced by Baker et al. [4] in
2000. They developed a pioneering prediction model to enhance the resolution of low-resolution
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Fig. 1. Domain interpretation of differences be-
tween non-blind and blind method. If the degrada-
tion factors affecting the LQ face differ from those
assumed by the non-blind method, it can result
in a significant domain gap between the restored
face image and the ideal HQ face image.
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Fig. 2. Domain interpretation of differences be-
tween general and joint FR method. If a general
FR method is used to accomplish a joint FR task
(e.g., joint face completion), it can result in a signif-
icant domain gap between the restored face image
and the ideal HQ face image.

Table 1. A summary of other deep learning-based FR reviews.

Year Survey Title Venue
2018 Super-resolution for biometrics: A comprehensive survey [117] PR
2019 Survey on GAN-based face hallucination with its model development[104] IET
2021 Deep Learning-based Face Super-Resolution: A Survey[66] ACM CSUR
2023 A Survey of Deep Face Restoration: Denoise, Super-Resolution, Deblur, Artifact Removal[146] Arxiv

face images. Since then, numerous FR methods have been developed, gaining increasing attention
from researchers. Traditional FR methods [18, 39, 103, 120] primarily involve deep analysis of facial
priors and degradation approaches. However, these methods often struggle to meet engineering
requirements. With breakthroughs in deep learning technology, many deep learning-based methods
specifically designed for FR tasks have emerged. Deep learning networks, utilizing large-scale
datasets, can effectively capture diverse mapping relationships between degraded face images
and real face images. Consequently, deep learning-based FR methods [20, 93, 94, 147, 156] have
demonstrated significant advantages over traditional methods, offering more robust solutions.

Most deep learning-based face restoration methods are trained using a fully supervised approach,
where HQ face images are artificially degraded to synthesize paired LQ face images for training. In
earlier non-blind methods [20, 67, 171], HQ face images were degraded using fixed degradation
techniques, typically bicubic downsampling. However, as shown in Fig. 1, when the model is trained
on LQ facial images synthesized in this specific manner, there can be a notable domain gap between
the restored and ideal HQ facial images. To address this issue, blind methods [97, 147, 164] have
been developed. These methods simulate the realistic degradation process by incorporating an
array of unknown degradation factors such as blur, noise, low resolution, and lossy compression.
By considering more complex and diverse degradation scenarios and accounting for variations in
poses and expressions, blind restoration methods have proven to be more applicable to real-world
scenarios. Furthermore, as shown in Fig. 2, to address the challenges faced by general methods such
as blind/non-blind FR methods dealing with the joint FR tasks, a series of joint FR methods have
emerged to tackle specific challenges in face restoration [25, 172, 191, 199]. These joint FR tasks
include joint face alignment and restoration [172], joint face recognition and restoration [25], joint
illumination compensation and restoration [191], and joint 3D face reconstruction and restora-
tion [199]. Building upon these advancements, our paper aims to comprehensively survey deep
learning-based non-blind/blind face restoration methods and their joint tasks. By presenting this
overview, we aim to shed light on the current state of development in the field, the technical
approaches employed, the existing challenges, and potential directions.
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Fig. 3. Outline of our deep learning-based face restoration survey.

Despite the rapid growth in the field of FR, there is a relative scarcity of reviews specifically
focusing on deep learning-based FR methods. As depicted in TABLE 1, Liu et al. [104] provide a
review of face super-resolution methods based on generative adversarial networks, but it solely
focuses on a specific technique within FR. Kien et al. [117] summarize some deep learning-based
face super-resolution methods, but it is not comprehensive. Jiang et al. [66] present an overview
of deep learning-based face super-resolution, covering FR tasks beyond super-resolution, but the
emphasis remained on summarizing face super-resolution. Wang et al. [146] conduct a survey
on FR, however, it adopts a classification pattern of sub-tasks in the image restoration domain,
such as denoising, deblurring, super-resolution, and artifact removal. These patterns might not
effectively generalize to existing FR methods, which could result in the omission of FR-related
joint tasks. In contrast, our review comprehensively summarizes current FR methods from three
distinct classification perspectives: blind, non-blind, and joint restoration tasks. By considering
these perspectives, we not only encompass a broader range of methods related to FR but also clarify
the characteristics of methods under different tasks. In the experimental section, while Wang’s
work [146] primarily focuses on blind methods, we conduct a comprehensive analysis of both
blind and non-blind methods across various aspects. Furthermore, we provide a comparison of
the methods within the joint tasks in our Appendix. As a result, our work provides an accurate
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perspective on non-blind/blind tasks and joint tasks, aiming to inspire new research within the
community through insightful analysis.
The main contributions of our survey are as follows: (I) We compile the factors responsible

for the degradation of real-world images and explain the degradation models used to synthesize
diverse LQ face images. (II)We classify the field of FR based on blind, non-blind tasks, and joint
task criteria, providing a comprehensive overview of technological advancements within these
domains. (III) Addressing the uncertainties stemming from the absence of consistent benchmarks
in the field, we conduct a fair comparison of popular FR methods using standardized benchmarks.
Additionally, we discuss the challenges and opportunities based on the experimental results.

Fig. 3 provides an overview of the structure of this survey. In Section 2, we summarize the real-
world factors contributing to the appearance of LQ face images and present corresponding artificial
synthesis methods. We also discuss notable benchmarks used in the field. Section 3 introduces
existing methods for different subtasks within FR. Section 4 covers various popular priors and
methods for enhancing prior validity in the restoration process. In Section 5, we conduct extensive
experiments to compare state-of-the-art FR methods. Section 6 discusses the FR techniques used
in real-world applications. Section 7 addresses the challenges faced in FR and presents potential
future directions. Finally, we conclude this survey in Section 8.

2 PROBLEM DEFINITIONS
In this section, we will discuss the presence of degradation factors in real-world scenarios, followed
by an introduction to artificial degradation models. Additionally, we will cover commonly used
loss functions, evaluation metrics, and frequently employed datasets in this field.

Camera shake
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Relative motion

Camera distortion

Camera noise......

Image Transfer

......

(c) Compression during

transmission


Surveillance 

imaging


(b) Camera shooting

process


(a) Environment
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Fig. 4. Several mainstream factors affect the quality of face images. (a) Environment influences, including
rain, snow, haze, and low light; (b) Interference in the camera imaging process; (c) Image compression during
information transmission.

2.1 Real Degradation Factors
In real-world scenarios, face images are susceptible to degradation during imaging and transmission
due to the complex environment. The limitations of the physical imaging equipment and external
imaging conditions primarily cause the degradation of facial images. As shown in Fig. 4, we can
summarize the main factors contributing to image degradation as follows: (1) Environmental
influence, Particularly the low or high light conditions; (2) Camera shooting process: Internal
factors related to the camera itself, such as optical imaging conditions, noise, and lens distortion,
as well as external factors like relative displacement between the subject and the camera, such as
camera shake or capturing moving face; (3) Compression during transmission: Lossy compression
during image transmission and surveillance storage. To replicate realistic degradation, researchers
have made various attempts. Initially, they utilized fixed blur kernels, such as Gaussian blur or
downsampling, to simulate realistic blurring or low resolution. Later, randomized blur kernels
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Fig. 5. Methods for generating various types of degraded facial
images.

Table 2. Summary of key metrics.

Metrics Highlight

PSNR [54] Full reference, pixel-by-pixel comparison
of the differences between both.

SSIM [152] Full reference, focus on differences in
brightness, contrast, structure, etc.

MS-SSIM [153] Full reference, average SSIM for windows.

LPIPS [186] Full reference, focus on the visual
perceptual similarity between both.

IDD [154] Full reference, assess identity consistency.

FID [53] Semi-reference, measure the difference
in distribution between both.

NIQE [116] No reference, evaluate image naturalness.
MOS [55] Subjective scoring by groups.

were experimented with to improve robustness by introducing a more comprehensive range of
degradation patterns. Additionally, considering the diversity of face-related tasks, extensive research
has been conducted on joint FR tasks to recover LQ faces in specific scenes.

2.2 Degradation Models
Due to the challenge of acquiring real HQ and LQ face image pairs, researchers often resort to
using degradation models to generate synthetic LQ images 𝐼𝑙𝑞 from HQ images 𝐼ℎ𝑞 . Generally, the
𝐼𝑙𝑞 is the output of the 𝐼ℎ𝑞 after degradation:

𝐼𝑙𝑞 = 𝐷 (𝐼ℎ𝑞 ;𝛿), (1)

where 𝐷 represents the degradation function and 𝛿 represents the parameter involved in the
degradation process (e.g., the downsampling or noise or blur kernel). As shown in Fig. 5, different 𝛿
can result in various types of degradation. Existing FR tasks can be categorized into four subtasks
based on the type of degradation: face denoising, face deblurring, face super-resolution, and blind
face restoration. The distinction between non-blind and blind lies in whether the degradation factors
are known. The FR subtask in face restoration is considered non-blind when the degradation factors
are known and can be explicitly modeled. Conversely, if the degradation factors are unknown and
cannot be precisely modeled, the FR subtask is classified as blind.
• Non-blind Degradation Models. (I) The non-blind task primarily focuses on face super-
resolution (FSR) [112], also known as face hallucination [48]. As shown in Fig. 5 (a), its degradation
model involves degrading a high-resolution (HR) face image into a low-resolution (LR) face image.
FSR can be categorized as a non-blind task when the blur kernel is pre-determined and remains
constant, such as a Gaussian blur kernel or any other well-defined blur kernel. The degradation
model can be described as follows:

𝐼𝑙𝑟 = (𝐼ℎ𝑞 ⊗ 𝑘𝑓 )↓𝑠 + 𝑛𝛿 , (2)

where 𝐼𝑙𝑟 represents LR face image, 𝐼ℎ𝑞 represents HR face image, ⊗ represents convolutional
operation, 𝑘𝑓 represents fixed blur kernel, ↓𝑠 denotes downsampling operation with scale factor
𝑠 , typically set to 4, 8, 16 and 32, and 𝑛𝛿 represents additive Gaussian noise. Additionally, most
researchers directly employ this degradation model to simplify the FSR’s degradation process:

𝐼𝑙𝑟 = (𝐼ℎ𝑞)↓𝑠 . (3)

(II) Face denoising [24] and face deblurring [128] primarily focus on removing additive noise
from face images or simulating the removal of motion blur in a realistic face captured by a camera.
Similarly, as shown in Fig. 5 (b) and (c), when the blur kernel remains constant, they can be classified
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Fig. 6. Demonstration of LQ and HQ face images for joint face restoration tasks.

as non-blind tasks. Their degradation model can be described separately as:
𝐼𝑛 = 𝐼ℎ𝑞 + 𝑛𝛿 , (4)

𝐼𝑏 = 𝐼ℎ𝑞 ⊗ 𝑘𝑓 + 𝑛𝛿 , (5)
where 𝐼𝑛 represents the noisy face image, 𝐼𝑏 represents the blurred image, 𝐼ℎ𝑞 represents the clean
HQ face image, 𝑘𝑓 represents the fixed blur kernel and 𝑛𝛿 represents the additive Gaussian noise.
• Blind Degradation Models. (I) When the blur kernel in degradation models is randomly
generated or composed of multiple unknown blur kernels, the nature of the blur kernel becomes
essentially unknown. In such cases, both face super-resolution [9] and face deblurring [80] can be
classified as blind tasks. As shown in Fig. 5 (a) and (c), their degradation processes can be described
separately as follows:

𝐼𝑙𝑟 = (𝐼ℎ𝑞 ⊗ 𝑘𝑢)↓𝑠 + 𝑛𝛿 , (6)
𝐼𝑏 = 𝐼ℎ𝑞 ⊗ 𝑘𝑢 + 𝑛𝛿 , (7)

where 𝑘𝑢 is a parameters unknown blur kernel, the remaining variables have the same meanings as
described above for non-blind face super-resolution and deblurring.

(II) Since the above tasks focus on a single type of degradation, they face challenges in handling
severely degraded face images encountered in real-world scenarios. Blind face restoration [17, 52,
154] aims to address this limitation by considering more complex degradations, making it the most
prominent task in the field currently. GFRNet [97] is a pioneering work in blind face restoration
by introducing a more intricate degradation model aimed at simulating realistic deterioration for
the first time. As shown in Fig. 5 (d), the degradation model in blind face restoration encompasses
randomnoise, unknown blur, arbitrary scale downsampling, and random JPEG compression artifacts.
This degradation process can be formulated as follows:

𝐼𝑙𝑞 = {𝐽𝑃𝐸𝐺𝑞 ((𝐼ℎ𝑞 ⊗ 𝑘𝑢)↓𝑠 + 𝑛𝛿 )}↑𝑠 , (8)
where 𝐼𝑙𝑞 and 𝐼ℎ𝑞 represent the low-quality and high-quality face images, respectively. 𝐽𝑃𝐸𝐺𝑞

represents JPEG compression operation with arbitrary quality factor, 𝑘𝑢 represents an unknown
blur kernel. ↓𝑠 and ↑𝑠 represent down-sampling and up-sampling operations with arbitrary scale
factors 𝑠 , respectively. 𝑛𝛿 represents random noise.
• Joint Tasks. Due to the multitude of joint tasks, we do not introduce the degradation models for
each of them individually. Fig. 6 showcases several examples of joint tasks, depicted from left to
right: (a) Joint face alignment and restoration [172]: This task addresses the challenge of misaligned
faces by aligning and restoring them. (b) Joint face completion and restoration [11]: The objective is
to handle face occlusions and restore the facial image’s missing regions. (c) Joint face frontalization
and restoration [175]: This task focuses on recovering frontal faces from side faces, enhancing their
appearance and quality. (d) Joint face illumination compensation and restoration [191]: This task
aims to restore faces captured in low-light conditions, compensating for the lack of illumination. (e)
Joint 3D face reconstruction [195]: This task aims to improve the accuracy of 3D reconstruction of
low-quality faces. In each case, the HQ face images are represented on the right, while the degraded
LQ face images corresponding to each specific task are shown on the left. These joint tasks are
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Table 3. Summary of benchmark datasets used in existing face restoration methods.

Year Dataset Size Attributes Landmarks Parsing maps Identity HQ-LQ Methods

2008 LFW [63] 13K 73 % % " HQ C-SRIP [48], LRFR [79], DPDFN [68], etc.
2010 Multi-PIE [49] 755.4K % % % " HQ FSGN [130], CPGAN [192], MDCN [129], etc.
2011 AFLW [77] 26K % 21 % % HQ FAN [74], JASRNet [168], etc.
2011 SCFace [47] 4.2K % 4 % % HQ MNCE [67], SISN [110], CTCNet [44], etc.
2012 Helen [81] 2.3K % 194 " % HQ DIC [112], SAAN [196], SCTANet [6], etc.
2013 300W [125] 3.8K % 68 % % HQ JASRNet [168], etc.
2014 CASIA-WebFace [167] 494.4K % 2 % " HQ MDFR [135], C-SRIP [48], GFRNet [97], etc.
2015 CelebA [106] 202.6K 40 5 % " HQ FSRNet [20], SPARNet [16], SFMNet [141], etc.
2016 Widerface [163] 32.2K % % % % HQ Se-RNet [176], SCGAN [56], etc.
2017 LS3D-W [8] 230K % 68 % % HQ Super-FAN [9], SCGAN [56], etc.
2017 Menpo [180] 9K % 68/39 % % HQ SAM3D [60, 61], etc.
2018 VGGFace2 [13] 3310K % % % " HQ GFRNet [97], ASFFNet [96], GWAInet [32], etc.
2019 FFHQ [72] 70K % 68 % % HQ mGANprior [50], GFPGAN [147], VQFR [51], etc.
2020 CelebAMask-HQ [82] 30K % % " % HQ MSGGAN [71], GPEN [164], Pro-UIGAN [193], etc.
2022 EDFace-Celeb-1M [182] 1700K % % % % HQ-LQ STUNet [185], etc.
2022 CelebRef-HQ [98] 10.6K % % % " HQ DMDNet [98], etc.

designed to address face restoration challenges in specific scenarios and hold practical significance
in their respective domains.

2.3 Evaluation Metrics And Datasets
We compile a selection of the most widely used evaluation metrics in the field of FR, as presented
in TABLE 2. We classify these metrics into three groups: full-reference metrics, which necessitate
paired HQ face images; semi-reference metrics, which only require unpaired HQ face images;
and no-reference metrics, which don’t involve any face images for measurement. Additionally,
more metrics can be found at https://github.com/chaofengc/Awesome-Image-Quality-Assessment.
Furthermore, we summarize commonly used benchmark datasets for FR in TABLE 3, including
the number of face images, facial features included, the availability of HQ-LQ pairs, and previous
methods that utilize these datasets. We need to synthesize corresponding LQ face images for
datasets that only provide HQ face images using degradation models introduced in Sections 2.2.

2.4 Loss Function
The researchers aim to estimate the approximation of the HQ face image 𝐼ℎ𝑞 , denoted as 𝐼ℎ𝑞 , from
the LQ face image 𝐼𝑙𝑞 , following:

𝐼ℎ𝑞 = 𝐷−1 (𝐼𝑙𝑞, 𝛿) = 𝐹 (𝐼𝑙𝑞, 𝜃 ), (9)

where 𝐹 represents the face restoration method and 𝜃 represents the parameters of the method.
During the training, the optimization process can be formulated as follows:

𝜃 = argmin𝐿(𝐼ℎ𝑞, 𝐼ℎ𝑞), (10)

where 𝜃 represents the optimization parameter in the training process, 𝐿 represents the loss between
𝐼ℎ𝑞 and 𝐼ℎ𝑞 . Different loss functions can yield varying results in face restoration. Initially, researchers
commonly used structural losses; however, these losses have limitations, such as over-smoothing
the output images. To overcome these limitations, perceptual losses and adversarial losses were
developed. Furthermore, because of the structured nature of faces, a large number of face-specific
losses have also been proposed.
• Structural loss. Structural losses are employed to minimize the structural differences between
two face images. The most commonly used structural losses are pixel-wise losses, which include 𝐿1
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loss [93, 112, 154] and the 𝐿2 loss [17, 20, 96]. They can be formulated as

𝐿1 =


𝐼ℎ𝑞 (ℎ,𝑤, 𝑐) − 𝐼ℎ𝑞 (ℎ,𝑤, 𝑐)




1, 𝐿2 =



𝐼ℎ𝑞 (ℎ,𝑤, 𝑐) − 𝐼ℎ𝑞 (ℎ,𝑤, 𝑐)



2, (11)

where ℎ,𝑤 , and 𝑐 represent the height, width, and number of channels, respectively. The pixel-level
loss also encompasses the Huber loss [70] and the Carbonnier penalty function. Furthermore,
textural losses have been developed in addition to the pixel-level losses. These include the SSIM
loss [48], which promotes image textural similarity, and the cyclic consistency loss [56], which
facilitates cooperation between recovery and degradation processes. While structural loss preserves
the overall facial details and structure, ensuring a close match to the ground truth and improving
PSNR, this can result in a face that appears overly smooth, lacking fine details, and less natural in
terms of texture and lighting, often leading to a perceptually stiff reconstruction that may not align
with human aesthetic expectations.
• Perceptual loss. The perceptual loss is intended to enhance the visual quality of recovered images
by comparing them to ground truth images in the perceptual domain using a pre-trained network,
such as VGG, Inception etc.. The prevalent approach is to calculate the loss based on features
extracted from specific intermediate or higher layers of pre-trained networks, as these features
represent high-level semantic information. Denoting the 𝑙-th layer involved in the computation of
pre-trained networks as 𝜑𝑙 , its perceptual loss 𝐿𝑙𝑝𝑒𝑟 can be expressed as follows:

𝐿𝑙𝑝𝑒𝑟 =


𝜑𝑙 (𝐼ℎ𝑞 (ℎ,𝑤, 𝑐)) − 𝜑𝑙 (𝐼ℎ𝑞 (ℎ,𝑤, 𝑐))




2. (12)

This loss enhances the perceptual quality, making restored details (e.g., expression, eye shape, skin
texture) appear more realistic to human vision. However, it might prioritize global visual appeal
over local accuracy, which can lead to a subtle loss of sharpness or precision in certain areas.
• Adversarial loss. The adversarial loss is a common type of loss used in GAN-based face restora-
tion methods [17, 52, 154]. In this setup, the generator 𝐺 aims to generate an HQ face image
to deceive the discriminator 𝐷 . In contrast, the discriminator 𝐷 strives to distinguish between
the generated image and the ground-truth image. The generator and discriminator are trained
alternately to generate visually more realistic images. The loss can be expressed as follows:

𝐿𝑎𝑑𝑣,𝐷 = 𝐸𝐼ℎ𝑞 [log(1 − 𝐷 (𝐺 (𝐼ℎ𝑞))) + log(𝐷 (𝐼ℎ𝑞))], (13)

𝐿𝑎𝑑𝑣,𝐺 = 𝐸𝐼ℎ𝑞 [log(1 − 𝐷 (𝐺 (𝐼ℎ𝑞)))], (14)
where 𝐿𝑎𝑑𝑣,𝐺 and 𝐿𝑎𝑑𝑣,𝐷 are the adversarial losses of the generator and discriminator, respectively.
The use of adversarial loss improves the visual realism of facial texture and natural appearance.
However, it may introduce training instabilities and artifacts, requiring careful parameter tuning.
While it generates appealing results, it may also lead to a loss of detail in less prominent areas and
cause over-optimization of specific features, resulting in inconsistencies with surrounding regions.
• Feature match loss. The structured nature of the human face allows for the integration of
specific structural features into the supervised process, leading to improved accuracy in restoration.
These features include face landmarks [20], face heatmaps [9], 3D face shape [60], semantic-aware
style [14], face parsing [17], facial attention [74], face identity [48], and facial components [147].
Among these, the face landmarks loss is widely utilized and can be described as

𝐿𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 =
1
𝑁

𝑁∑︁
𝑛=1




𝑙𝑛𝑥,𝑦 − 𝑙𝑛𝑥,𝑦





2
, (15)

where 𝑁 is the number of facial landmarks, and 𝑙𝑛𝑥,𝑦 and 𝑙𝑛𝑥,𝑦 represent the coordinates of the
𝑛-th landmark point in the HQ face and the recovered face, respectively. Feature matching loss
focuses on preserving facial attributes by aligning key facial components (e.g., eyes, nose) with their
counterparts in the target image, improving both facial details and overall visual quality. However,
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Fig. 7. Milestones of deep learning-based non-blind/blind task methods, including their names and venues.

excessive emphasis on these components may result in a loss of detail in other regions, leading to
inconsistencies between local facial features and the overall facial structure.
• Discuss. Early methods [20, 112] primarily relied on structural loss, which preserved facial
details but resulted in overly smooth images, lacking fine texture. To address this, feature matching
loss is introduced [9, 60] to improve the alignment of facial components, enhancing attribute
preservation. However, it still causes inconsistencies across different regions. The addition of
perceptual loss [16, 44] improves visual quality by aligning high-level features, enhancing realism,
but still leaving some lacking fine details. Influenced by the generative task, adversarial loss is
introduced in GAN-based methods [147, 201] to improve visual realism. While it enhances the
natural appearance, it also causes artifacts and over-optimization in specific regions. By combining
these loss functions, modern methods aim to balance fine details and perceptual quality.

3 TASK-ORIENTATION METHODS
In this section, we will summarize and discuss the methodology for each of the three types of face
restoration tasks: non-blind tasks, blind tasks, and joint restoration tasks. Fig. 7 illustrates several
notable methods in recent years that focus on non-blind and blind tasks. Fig. 8 showcases several
landmark methods in recent years that specialize in joint face restoration tasks.

3.1 Non-blind Tasks
The initial attempts in the field of FR primarily focused on non-blind methods. Earlier non-blind
methods did not consider facial priors and directly mapped LQ images to HQ images, as depicted in
Fig. 9 (a). One pioneering work is the bi-channel convolutional neural network (BCCNN) proposed
by Zhou et al. [200], which significantly surpasses previous conventional approaches. This network
combines the extracted face features with the input face features and utilizes a decoder to reconstruct
HQ face images, leveraging its strong fitting capability. Similarly, other methods [21, 41, 108] also
adopt direct LQ to HQ mapping networks. Subsequently, non-blind methods incorporated novel
techniques, such as learning strategies and prior constraints, into the mapping network to achieve
more robust and accurate face restoration. Specifically, as shown in Fig. 9 (b), one class of methods
adopts a two-stage approach for face restoration, consisting of roughing and refining stages. For
example, CBN [204] employs a cascaded framework to address the performance limitations observed
in previous methods when dealing with misaligned facial images. LCGE [131], MNCE [67], and
FSGN [130] generate facial components that approximate real landmarks and enhance them by
recovering details. FSRNet [20] obtains a rough face image through a network and then refines it
using a heatmap and a resolving map of facial landmarks. DIDnet [23] and ATSENet [91] utilize
facial identity or attributes to enhance the features extracted by the initial network and recover
face images with higher confidence. JASRNet [168] achieves high-quality restoration in parallel
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Fig. 8. Milestones of the Joint Face Restoration methods, including their names and venues. Over time, joint
tasks have transitioned from early tasks like joint alignment, detection, and frontalization to joint 3D face
reconstruction, completion, and illumination compensation.

by supervising facial landmarks and HQ face images. FAN [74] employs a facial attention prior
loss function to constrain each incremental stage and gradually increase the resolution. Another
class of methods adopts a multi-branch structure for facial restoration, as depicted in Fig. 9 (c).
For example, KPEFH [88] utilizes multiple branches in the network to predict key components of
the face separately. FSRGFCH [169] enhances the quality of facial details by predicting the face
component heatmap with an additional branching in the network. HCRF [107] utilizes random
forests to recover different regions of the face semantics predicted by the network separately.

Attention mechanisms have demonstrated their effectiveness in image restoration methods [100,
187]. Subsequently, there has been a significant focus on integrating attention mechanisms [12]
to enhance the handling of important facial regions. Various networks based on attention mech-
anisms have been developed, as illustrated in Fig. 10. Attention can be categorized into four
types: channel attention, spatial attention, self-attention, and hybrid attention. Channel attention-
based approaches [27, 69, 158, 196] emphasize the relative weights between different feature
channels in the model, enabling selective emphasis on important channels. Spatial attention-
based approaches [16, 61, 109] focus on capturing spatial contextual information about features,
enabling the model to prioritize features relevant to key face structures. Self-attention-based ap-
proaches [84, 121, 150] mainly capture global facial information, yielding excellent performance.
Some approaches [16, 74] also enhance individual attention mechanisms to suit the specific re-
quirements of FR tasks better. Hybrid attention-based approaches [5, 6, 44, 93? ] combine the
aforementioned three main types of attention, aiming to leverage the advantages of different atten-
tion types to improve the overall performance of restoration models. Furthermore, some approaches
leverage specific types of prior to guiding the network. For instance, SAAN [196] incorporates the
face parsing map, FAN [74] incorporates the face landmark, SAM3D [60, 61] incorporates the 3D
face information, HaPSR [139] incorporates the face heatmap, and CHNet [109] incorporates the
face components. To direct attention more precisely, some methods have started to delineate and
recover different regions of the face image artificially. WaSRNet [64] employs the wavelet transform
to convert various regions of the image into coefficients and then performs restoration processing
at different levels in the wavelet coefficient domain. SRDSI [59] uses PCA to decompose faces
into low-frequency and high-frequency components and then employs deep and sparse networks
to recover these two parts, respectively. SFMNet [141] integrates information extracted from its
spatial and frequency branches, enhancing the texture of the contour. WFEN [93] leverages the
wavelet transform to minimize the loss of facial features during downsampling.

The Generative Adversarial Network (GAN) has gained significant popularity due to its ability to
generate visually appealing images. It consists of a generator and a discriminator. The generator’s
role is to produce realistic samples to deceive the discriminator, while the discriminator’s task is to
distinguish between the generator’s output and real data. GAN architectures used in FR can be
classified into three types: general GAN, pre-trained embedded GAN, and cyclic GAN. Non-blind
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Fig. 11. The diffusion denoising principle involves
two main processes: forward diffusion process 𝑞 and
reverse inference process 𝑝 . In the 𝑞, Gaussian noise
is gradually added to the target image from left to
right. In contrast, 𝑝 iteratively denoises the target
image, proceeding from right to left.

methods primarily employ the general GAN structure depicted in Fig. 12 (a). In 2016, Yu et al. [171]
introduced the first GAN-based face super-resolution network (URDGN). This network utilizes a
discriminative network to learn fundamental facial features, and a generative network leverages
adversarial learning to combine these features with the input face. Since then, many different
GAN-based face restoration methods have been extended to the non-blind task, showing promising
recovery results. Some methods focus on designing progressive GANs, including two- or multi-
stage approaches [33, 71, 101]. Others concentrate on embedding face-specific prior information,
such as facial geometry [176], facial attributes [111], or identity information [184] into the GAN
framework. It is worth noting that, given the excellent performance of GAN, many non-GAN-based
methods [5, 6, 16, 20, 44, 112] also provide a GAN version of their approach for reference.

However, GAN-driven methods often suffer from pattern collapse, resulting in a lack of diversity
in the generated images. The denoising diffusion probabilistic model (DDPM) has been proposed as
an alternative approach. As shown in Fig. 11, given samples drawn from an unknown conditional
distribution 𝑝 (𝑦 |𝑥), the input-output image pair is denoted as 𝐷 = {𝑥𝑖 , 𝑦𝑖 }. DDPM learns the
parameter approximations of 𝑝 (𝑦 |𝑥) through a stochastic iterative refinement process that maps
the source image 𝑥 to the target image 𝑦. Specifically, DDPM starts with a purely noisy image
𝑦𝑇 ∼ N(0, 𝐼 ), and the model refines the image through successive iterations (𝑦𝑇−1, 𝑦𝑇−2, ..., 𝑦0)
based on the learned conditional transformation distribution 𝑝𝜃 (𝑦𝑡−1 |𝑦𝑡 , 𝑥), refining the image until
𝑦0 ∼ 𝑝 (𝑦 |𝑥). In 2022, SRDiff [86] introduced a diffusion-based model for face super-resolution.
It incorporated residual prediction throughout the framework to accelerate convergence. Then,
SR3 [126] achieves super-resolution by iteratively denoising the conditional images generated by the
denoising diffusion probabilistic model, resulting in more realistic outputs at various magnification
factors. IDM [45] combines an implicit neural representation with a denoising diffusion model.
This allows the model to meet continuous-resolution requirements and provide HQ face restoration
with improved scalability across different scales. ResDiff [127] utilizes a CNN to recover the low-
frequency portion of LQ face images and diffusion models to focus on recovering the high-frequency
portion of LQ face images. UCDIR [189] uses a lightweight UNet for initial guidance and spatially
adaptive conditioning to improve perceptual quality in diffusion models. DTWSR [34] enhances the
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detail of the reconstruction by improving the correlation of multi-scale frequency-domain features
in diffusion models through the discrete wavelet transform.
• Discuss. Non-blind tasks primarily rely on simple downsampling models, such as bicubic interpo-
lation. Current approaches heavily depend on structural loss and feature matching loss to improve
overall facial consistency and component alignment. When combined with specific architectural
designs—such as multi-branch architectures and various attention mechanisms—these methods
prioritize processing critical facial regions to achieve more natural results. Despite these advance-
ments, non-blind methods are still constrained by limitations in efficient architecture innovations.
In practical applications, they also remain hindered by domain gaps and often produce visible
artifacts when the locations of damage are unknown.

3.2 Blind Tasks
In practical applications, researchers have observed that methods originally designed for non-blind
tasks often struggle to handle real-world LQ face images effectively. Consequently, the focus of
face restoration is gradually shifting towards blind tasks to address a broader range of application
scenarios and challenges associated with LQ images. One of the earliest blind methods is DFD [26],
introduced by G. Chrysos et al., which employs a modified ResNet architecture for blind face
deblurring. Then, MCGAN [160] leverages GAN techniques to significantly improve the model’s
robustness in tackling blind deblurring tasks. However, this approach exhibits limited efficacy when
encountering more complex forms of degradation. As a result, subsequent endeavors in the realm
of blind tasks have predominantly employed GAN-driven methodologies. Some methods adopt the
general GAN structure depicted in Fig. 12 (a). For example, DeblurGAN-v2 [78], HiFaceGAN [161],
STUNet [185], and GCFSR [52] all design novel and intricate network architectures for blind face
restoration. Additionally, many methods use more complex GAN networks with prior information.
GFRNet [97], ASFFNet [96], and DMDNet [98] utilize a bootstrap network with reference to
prior to guiding the recovery network, employing a two-stage strategy for better face restoration.
MDCN [129] and PFSRGAN [17] employ a two-stage network consisting of a face semantic label
prediction network and a recovery parsing network for reconstruction. Furthermore, Super-FAN [9],
DFDNet [95], and RestoreFormer [154] integrate face structure information or face component
dictionary into GAN-based algorithms to enhance the quality of blind LQ facial images.
Pre-trained GAN-based models have gradually developed in the field of blind face restoration

since generative models [72, 73] can produce realistic and HQ face images. As shown in Fig. 12 (b),
the pre-trained GAN embedding architecture involves adding an additional pre-trained generative
GAN [36, 72] into the generator network. For example, GPEN [164] incorporates a pre-trained
StyleGAN as a decoder within a U-network. It utilizes features extracted from the input by the
decoder to refine the decoder’s output, significantly improving restoration results compared to the
general GAN structure. GFPGAN [147] goes a step further by integrating features from various
scales within the encoder through spatial transformations into a pre-trained GAN employed as a
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decoder. Other networks, such as GLEAN [14], Panini-Net [149], SGPN [202], DEAR-GAN [62],
DebiasSR [99], PDN [148], and others, also embrace this architecture. They incorporate a pre-trained
StyleGAN or its variations into a GAN generator, complementing it with their individually crafted
network architectures to cater to their specific application requirements. To further enhance the
fidelity of the generated images, methods like VQFR [51], CodeFormer [201], and others employ
pre-trained VQGAN to enhance facial details. They achieve this by employing discrete feature
codesets extracted from HQ face images as prior. The discrete prior, acquired within a smaller agent
space, significantly reduces uncertainty and ambiguity compared to the continuous StyleGAN prior.
Another category of blind methods focuses on addressing the challenge of obtaining paired

LQ and HQ images in real-world scenarios. Inspired by CycleGAN [203], as shown in Fig. 12 (c),
LRGAN [10] employs a cyclic GAN architecture consisting of two GAN networks. The initial high-
to-low GAN generates LQs that mimic real-world conditions and pairs them with corresponding
HQs. Subsequently, the second low-to-high GAN network is used to restore and enhance the
quality of generated LQ face images for restoration purposes. SCGAN [56] takes a step further
by guiding the generation of paired LQs through the creation of degenerate branches from HQs.
This approach further reduces the domain gap between generated and authentic LQs. Additionally,
diffusion-denoising techniques for blind tasks aim to improve robustness in severely degraded
scenarios compared to non-blind tasks. DR2 [156] employs this technique to enhance the robustness
of blind restoration and reduce artifacts often observed in results. DDPM [151] refines the spatial
content during backpropagation to improve the robustness and realism of the restoration in
challenging scenarios. DiffBFR [122] takes a different approach by initially restoring LQ images
and employing an LQ-independent unconditional diffusion to refine textures rather than directly
restoring HQ images from noisy inputs. PGDiff [162] introduces partial bootstrapping to make
the utilization of pre-trained diffusion modeling methods more adaptable to real degradations.
WaveFace [115] uses a wavelet transform to decompose face images into low and high-frequency
components, with a diffusion model recovering the low-frequency part and a unified network
restoring high-frequency details to preserve identity and enhance efficiency. PLTrans [157] learns
a degradation-unaware representation using latent diffusion-based regularization and refines
features with a latent dictionary of high-quality face priors. DifFace [178] gradually transfers LQ
from intermediate states to HQ by recursively applying a pre-trained diffusion model. ResShift [179]
reduces sampling steps by using a Markov chain for faster transitions to improve efficiency in
diffusion. Gen2res [31] improve the fidelity of existing diffusion-based methods by constraining the
generation space. PFStorer [137] presents a personalized face restoration using diffusion models,
fine-tuning with a few identity images to preserve identity and details without requiring alignment.
T2I [42] utilizes texts to guide the denoising to improve the consistency of results with inputs. Suin et
al. [132] use a conditional diffusion framework with an identity-preserving conditioner to improve
perceptual quality. SSDiff [94] employs pseudo-label construction and staged guidance to leverage
diffusion priors for old photo face restoration. BFRffusion [19], DiffBIR [102], StableSR [144], and
InterLCM [92] further improve the fidelity and quality of restoration by fine-tuning priors in
pre-trained text-to-image diffusion models (e.g., Stable diffusion [124]). OSDFace [143] performs
single-step inference by generating prompts through enhanced understanding of facial features.
PMRF [118] further enhances face restoration through the concept of flow matching.
• Discuss. Blind face restoration addresses real-world degradation with unknown factors. Early
methods simulate a variety of degradation patterns, but they are computationally expensive. Pre-
trained GAN and diffusion priors have improved realism, but challenges such as the introduction
of artifacts and a trade-off between fidelity and over-optimization. Blind methods benefit from
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incorporating various face priors, while they use flexible prior embedding architectures to han-
dle complex distortions. Future improvements in blind restoration will depend on better priors
embedded in excellent network architecture to balance fidelity and restoration quality.

3.3 Joint Restoration Tasks
In this section, we will discuss beyond components of FR, which include joint face completion
and restoration, joint face frontalization, joint face alignment, joint face recognition, joint face
illumination compensation, and joint 3D face reconstruction.
• Joint Face Completion. It is an important branch of FR, as real-world captured face images
may suffer from both blurring and occlusion. One class of methods focuses on normal-resolution
complements. MLGN [105] and Swin-CasUNet [181] use general networks for completion, but their
fidelity is limited. Since accurately estimating occluded features is a key challenge, most methods
integrate facial priors to infer critical details. Examples include ID-GAN [46] (facial identity),
SwapInpaint [85] (reference face), PFTANet [194] (semantic labels), and FT-TDR [142] (landmarks).
Another class of methods focuses on low-resolution face completion. Early methods [11, 43] address
occlusion through patching first before performing restoration work, but this may lead to error
accumulation. In contrast, UR-GAN [193] uses landmarks to progressively restore occluded faces.
Pang et al. [119] enhance inversion with progressive sampling for better restoration. CCPI [188]
employs cross-perception collaboration schemes to enhance completion. The challenge is recovering
features closely related to unobscured areas, requiring generation strategies to solve this problem
when occlusion is high.
• Joint Face Frontalization. Existing FR methods are primarily designed for frontal faces, and
when applied to non-frontal faces, artifacts in the reconstructed results become evident. The first
attempt to address this issue was made by TANN [175]. It utilizes a discriminative network to
enforce the side-face generated face image to be close to the front-face image, aligning the faces in
the same plane. Subsequently, VividGAN [190] employs a fractalization network combined with a
fine feature network to optimize the face details under fractalization further. MDFR [135] introduces
a 3D pose-based module to estimate the degree of face fractalization. It proposed a training strategy
that integrates the recovery network with face fractalization end-to-end. Furthermore, inspired by
the aforementioned methods, some approaches [35, 89] also combine the tasks of face completion
and frontalization to address them jointly. With the widespread use of generative priors, it may be
possible to estimate more realistic frontal faces by taking advantage of the technique.
• Joint Face Alignment. Most FR methods require the use of aligned face training samples
for optimal performance. Therefore, researchers have developed various methods for joint face
alignment. Yu et al. are among the first to attempt embedding a spatial transformation layer as a
generator and utilizing a discriminator to improve the alignment and upsampling. They develop
TDN [172] and MDTN [174] using this approach. To handle possible noise in unaligned faces, they
also develop a method [173] that incorporates downsampling and upsampling within the TDN
framework to minimize the noise’s impact. Another approach [1] utilizes a face 3D dictionary
alignment scheme to accomplish alignment. The latest methods [141] tend to use well-aligned face
datasets for training and achieve better performance compared to the above methods.
• Joint Face Recognition. Somemethods [50, 114] may result in recovered face images that diverge
from their original identities, making them unsuitable for downstream face recognition tasks. This
task aims to solve the identity consistency problem of recovered faces. Since face recognition
heavily relies on local features such as the eyes, many priors struggle to emphasize these specific
areas accurately. One swift solution involves applying a pre-trained face recognition model after
restoration. This helps determine whether restored face images align with the ground truth in terms
of identity, enhancing restoration accuracy by incorporating identity-related prior knowledge.
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Some examples of these methods include SICNN [183], LRFR [79], and others [75, 113]. C-SRIP [48]
improves upon this approach by recoveringmultiple scales of face images through different branches
and supervising the recovered face images at different scales using a pre-trained face recognition
network. Furthermore, some methods, including SiGAN [58], FH-GAN [7], WaSRGAN [65], and
others, further enhance performance by incorporating discriminators into restoration.
• Joint Face Illumination Compensation. This joint task aims to recover faces degraded by both
low light and low quality. CPGAN [192] uses internal and external networks for detail restoration
and background relighting. Zhang et al.[191] improve CPGAN with landmark constraints and
recursive strategies. Ding et al.[30] use face landmarks to enhance contour restoration. Low-
FaceNet [37] enhances the brightness of real-world face images through unsupervised contrastive
learning. IC-FSRDENet [138] integrates mutual learning and diffusion models to iteratively improve
restoration under low-light conditions.
• Joint 3D Face Reconstruction.With the advancement in 3D technology, there has been a grow-
ing interest in achieving 3D face reconstruction from LQ face images or recovering reconstructed
LR 3D faces. R3DPFH [199] focuses on predicting corresponding HQ 3D face meshes from LR faces
containing noise. Utilizing the Lucas-Kanade algorithm, Qu et al. [123] aim to improve the accuracy
of 3D model fitting. Furthermore, Li et al. [87] and Uddin et al. [136] utilize techniques for 3D
point clouds to infer HR mesh data from LQ or incomplete 3D face point clouds. In contrast to the
aforementioned methods, L2R [195] directly reconstructs HQ faces from LQ faces by learning to
recover fine-grained 3D details on the proxy image.

4 FACE PRIOR TECHNOLOGY
Unlike image restoration, face restoration requires maintaining the coherence and naturalness of
facial features, especially in restoring key areas such as the eyes and mouth. In contrast, image
restoration typically focuses more on overall consistency and detail recovery, without necessarily
emphasizing the fine restoration of specific parts. Based on this, using appropriate face priors
becomes particularly important, as it helps the model better understand the structure of face
images and effectively restore damaged areas. Therefore, many methods in the aforementioned
tasks have chosen to incorporate facial priors to enhance restoration outcomes. To provide a better
understanding of the diverse roles played by these priors in face restoration, this section focuses on
exploring the technology of facial priors. We present existing priors in Fig. 13 for reference. Based
on whether they additionally utilize the structural information of the external face, we categorize
these priors into two classes: internal proprietary prior-based methods and external compensatory
prior-based methods. A summary of representative methods can be found in TABLE 4. In the
following sections, we will discuss these two classes of methods and their network structures
in detail. It is worth noting that a few methods [177, 202] utilize both priors. These methods are
categorized based on the specific type of prior they primarily focus on.
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Table 4. An overview of deep learning-based representative blind/non-blind and joint FR methods.

Methods Publication Prior Task Improved Technology Highlight
BCCNN [200] AAAI 2015

Plain

Non-Blind
Task

Plain Bi-channel CNN
ATMFN [69] TMM 2019 GAN+Attention Channel Attention Mechanism
SPARNet [16] TIP 2020 Attention Spatial Attention Mechanism

MSG-GAN [71] CVPR 2020 GAN Multi-Scale GAN
SFMNet [141] CVPR 2023 Attention Self-attention / Fourier

IDM [45] CVPR 2023 Diffusion Model Diffusion Probabilistic Models
CTCNet [6] TIP 2023 Attention Self-attention / Spatial Attention
WFEN [93] MM 2024 Attention Self-Attention Mechanism

DTWSR [34] ICCV 2025 Diffusion Model Wavelet-based Diffusion
LCGE [131] IJCAI 2017

Internal
Proprietary Prior

Prior Facial Components Prior
FSRGFCH [169] ECCV 2018 GAN+Prior Facial Heatmap / Components Prior

AEDN [170] CVPR 2018 GAN+Prior Given Facial Attribute Prior
FSRNet [20] CVPR 2018 Prior Facial Landmarks / Parsing Maps Prior
FACN [159] AAAI 2020 Prior Estimated Facial Attribute Prior
DIC [112] CVPR 2020 Attention+Prior Facial Landmarks / Components Prior

PAP3D [61] TPAMI 2021 Attention+Prior 3D Facial Prior / Spaital Attention
HCRF [107] TIP 2021 Prior Facial Semantic Labels Prior

GWAInet [32] CVPR 2019 External
Compensatory Prior

GAN+Prior High Quality Images As Reference Prior
KDFSRNet [140] TCSVT 2022 Prior Pre-trained Teacher’s Knowledge As Generative Prior

LRGAN [10] ECCV 2018

Plain

Blind Task

GAN Unsupervised / Two-Stage GAN
HiFaceGAN [161] MM 2020 GAN Semantic-Guided Generation

GCFSR [52] CVPR 2022 GAN Generative And Controllable Framework
SCGAN [56] TIP 2023 GAN Unsupervised / Semi-Cycled GAN
DR2 [156] CVPR 2023 Diffusion Model Diffusion-based Robust Degradation Remover

IDDM [197] ICCV 2023 Diffusion Model Iteratively Learned System
Super-FAN [9] CVPR 2018

Internal
Proprietary Prior

GAN+Prior Facial Heatmap Prior
MDCN [129] IJCV 2020 GAN+Prior Semantic labels Prior
UMSN [166] TIP 2020 GAN+Prior Facial Components Prior

PSFRGAN [17] CVPR 2021 GAN+Prior Facial Parsing Maps Prior
SGPN [202] CVPR 2022 GAN+Prior 3D Faical / Pre-trained Generative Prior
GFRNet [97] ECCV 2018

External
Proprietary Prior

GAN+Prior High Quality Images As Reference Prior
PULSE [114] CVPR 2020 GAN+Prior Pre-trained StyleGAN’s Generative Prior
ASFFNet [96] CVPR 2020 GAN+Attention+Prior Reference / Landmark Prior

GFPGAN [147] CVPR 2021 GAN+Prior Pre-trained StyleGAN’s Generative Prior
VQFR [51] ECCV 2022 GAN+Prior Pre-trained VQGAN’s Codebook Prior

CodeFormer [201] NIPS 2022 GAN+Prior Pre-trained VQGAN’s Codebook Prior
DMDNet [98] TPAMI 2023 GAN+Prior Faical Component Dictionaries Prior / Reference Prior
PGDiff [162] NIPS 2023 Diffusion Model Pre-trained Diffusion Prior
DAEFR [134] ICLR 2024 GAN+Prior Pre-trained VQGAN’s Codebook Prior
gen2res [31] CVPR 2024 Diffusion+Prior Pre-trained Diffusion Prior
DifFace [178] TPAMI 2024 Diffusion+Prior Pre-trained Diffusion Prior
PMRF [118] ICLR 2025 Diffusion+Prior Pre-trained Diffusion Prior / Flow Matching
MGFR [133] ICLR 2025 Diffusion+Prior Pre-trained Diffusion Prior / HQ Reference
SSDiff [94] NIPS 2025 Diffusion+Prior Pre-trained Diffusion Prior
TDN [172] AAAI 2017

Plain

Joint Task

GAN CNN / Joint Face Alignment
TANN [175] TPAMI 2019 GAN CNN / Joint Face Frontalization

FSRDENet [138] AAAI 2024 Diffusion Model Diffusion / Joint Illumination Compensation
CCPI [188] TIP 2025 GAN CNN / Joint Face Completion

SICNN [183] ECCV 2018

Internal
Proprietary Prior

Prior Identity Prior / Joint Face Recognition
FCSR-GAN [11] TBIOM 2020 GAN+Prior Landmark/ Semantic labels / Joint Face Compensation
ID-GAN [168] TCSVT 2020 GAN+Prior Semantic labels / Identity Prior / Joint Face Recognition

SiGAN [58] TIP 2019 GAN+Prior Identity Prior / Joint Face Recognition
MDFR [135] TCSVT 2021 GAN+Prior Landmark/ 3D Facial Prior / Joint Face Frontalization

FT-TDR [142] TMM 2022 GAN+Attention+Prior Landmark Prior/ Self-Attention / Joint Face Completion
L2R [195] CVPR 2022 GAN+Prior Generative / 3D Prior / Joint 3D Face Reconstruction
FVIP [165] TIP 2023 GAN+Prior 3D Face Prior / Joint Face Completion

CPGAN [192] CVPR 2020 External
Proprietary Prior

GAN+Attention+Prior Reference Prior / Joint Illumination Compensation
ViVidGAN [190] TIP 2021 GAN+Attention+Prior Reference Prior / Joint Illumination Compensation

4.1 Internal Proprietary Prior
This type of method primarily utilizes knowledge about the attributes and structural features
inherent to the face itself. It incorporates information such as identity, facial features, and contours
to guide restoration. Standard techniques employed in this approach include identity recognition,
facial attribute description, facial landmarks creation, semantic labeling maps, and more.
The first type of information used is the face’s own 1D information, such as identity prior and

attribute prior. Identity prior refers to information related to an individual’s identity, indicating
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whether the restored face corresponds to the same person as the ground truth. Integrating identity
prior to the restoration process enhances the model’s ability to recover facial features faithfully.
Methods based on identity prior, such as SICNN [183], FH-GAN [7], IPFH [25], C-SRIP [48], and
others, aim to maintain identity consistency between the restored image and the HQ face im-
age. During training, these frameworks typically include a restoration network and a pre-trained
face recognition network. The face recognition network serves as an identity prior, determining
whether the restored face belongs to the same identity as the HQ face, thereby improving the
identity accuracy of the restored face. The face attribute prior provides 1D semantic information
about the face for face restoration, such as attributes like long hair, age, and more. This prior aids
the model in understanding and preserving specific facial characteristics during restoration. For
instance, incorporating age attributes into the restoration process assists models in accurately
preserving natural textures such as skin wrinkles. Earlier methods, such as EFSRSA [170], AT-
Net [90], ATSENet [91], AACNN [83], and others, directly connect the attribute information to
the LQ image or its extracted features. Other methods, like AGCycleGAN [111] and FSRSA [170],
use a discriminator to encourage the network to pay more attention to attribute features during
restoration. However, these methods may experience significant performance degradation when
attributes are missing. To address this issue, attribute estimation methods [158, 159] have been
proposed. These approaches design appropriate attribute-based losses that enable the network to
predict attribute information adaptively. RAAN [158] utilizes three branches to predict face shape,
texture, and attribute information separately. It emphasizes either face shape or texture based on
the attribute channel. FACN [159] introduces the concept of capsules to enhance the recovered face.
This is achieved by performing multiplication or addition operations between the face attribute
mask estimated by the network and the semantic or probabilistic capsule obtained from the input.

Another class of methods emphasizes using the face’s unique 2D geometric or 3D spatial infor-
mation as priors. Facial landmarks [74, 112, 142] and facial heatmaps [139, 142, 177] are examples
of these priors, representing coordinate points or probability density maps that indicate key facial
components such as the eyes, nose, mouth, and chin. They provide accurate and detailed facial
location information. Methods like DIC [112] utilize the predicted coordinates of facial landmarks
from the prior estimation network to guide the restoration network. However, using a large num-
ber of facial landmarks may lead to error accumulation in coordinate estimation, particularly for
severely degraded face images, resulting in distortion of the restored facial structure. In contrast,
facial parsing maps [17, 20, 176] and facial semantic labels [128, 129, 166] are more robust to severe
degradation as they segment the face into regions. Even if some areas are severely degraded,
intact regions can still guide restoration. Moreover, these priors contain more comprehensive facial
information, enabling the restoration model to understand the overall facial structure and propor-
tions better, leading to more coherent restorations. However, these priors may involve multiple
semantic labels for different facial regions, requiring more complex networks [17, 166] to address
semantic ambiguity. On the other hand, facial components [3, 109, 169] provide a straightforward
representation of critical facial features, reducing the need for complex models while effectively
guiding the restoration process. In addition to those above 2D facial priors, Hu et al. [60] introduce
using a 3D face prior to handling faces with significant pose variations. Subsequent 3D prior-based
methods [29, 165, 202] demonstrate their robustness in handling complex facial structures and sig-
nificant pose changes. There are also methods [91, 194] that strive to achieve more comprehensive
restoration by synergistically combining multiple internal proprietary priors.
• Discuss. Internal proprietary priors primarily rely on geometric or attribute properties intrinsic
to the face itself. Consequently, they can be employed to recreate face images more authenti-
cally. Nevertheless, accurately estimating and effectively utilizing such priors remains a challenge,
particularly in scenarios characterized by extremely blurred facial features.
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4.2 External Compensatory Prior
Methods that leverage external priors primarily rely on externally guided faces or information
sources derived from external HQ face datasets to facilitate restoration. These external priors can
take various forms, including reference priors, dictionary priors, and pre-trained generative priors.
Reference prior-based methods [32, 96, 97] utilize HQ face images of the same individual as a

reference to enhance the restoration of a target face image. The challenge lies in handling reference
faces with varying poses and lighting conditions. GFRNet [97] is the pioneering work, which
employs a WarpNet, coupled with a landmark loss, to rectify pose and expression disparities
present in reference faces. This enables models to effectively utilize reference faces that exhibit
differences compared to those undergoing restoration. GWAInet [32] utilizes the structure of
generative networks of GAN and achieves favorable results without relying on facial landmarks.
Subsequently, ASFFNet [96] further enhances performance by refining the selection of guide faces
and improving the efficiency of feature fusion between guide faces and inputs. MGFR [133] enhances
fidelity by integrating attribute text prompts, HQ reference, and identity information.
However, the above methods require reference images, limiting their applicability in various

scenarios. To address this limitation, DFDNet [95] employs a strategy that creates a facial component
dictionary. Initially, an HQ face dataset categorizes a dictionary comprising facial elements such
as eyes, nose, and mouth. During the training phase, the network dynamically selects the most
analogous features from the component dictionary to guide the reconstruction of corresponding
facial parts. RestoreFormer [154] and RestoreFormer++ [155] integrate the Transformer and leverage
the face component loss to more effectively utilize the potential of the facial component dictionary.
DMDNet [98] leverages external facial reference images of the same individual to construct two
distinct facial dictionaries. This process enables a gradual refinement from the external dictionary
to the personalized dictionary, resulting in a coarse-to-fine bootstrapping approach.

Unlike face dictionary that requires manual separation of facial features, pre-trained face GAN
models [36, 72, 73] can automatically extract information beyond facial features, including tex-
ture, hair details, and more. This makes methods based on pre-trained generative priors simpler.
PULSE [114] is a pioneering breakthrough in FR that utilizes a generative prior. It identifies the most
relevant potential vectors in the pre-trained GAN feature domain for input LQ faces. Subsequently,
mGANprior [50] enhances the PULSE method by incorporating multiple potential spatial vectors
derived from the pre-trained GAN. However, these methods are complex and may need help to
ensure fidelity in restoration while effectively leveraging input facial features. Approaches like
GLEAN [15], GPEN [164], and GFPGAN [147] integrate a pre-trained GAN into their customized
networks. They employ GANs’ generative prior to guide the forward process of networks, effec-
tively leveraging input facial features and leading to improved fidelity in restoration. Subsequent
techniques [57, 62, 99, 148, 149] aim to enhance the efficacy of pre-trained GAN priors by investigat-
ing optimal strategies for integrating pre-trained GANs with forward networks or exploring more
efficient forward networks. SGPN [202] incorporates a 3D shape prior along with the generative
prior to enhancing restoration, combining both spatial and structural information.
Apart from approaches based on pre-trained StyleGAN [72, 73], there is another category of

methods built upon pre-trained VQGAN [36]. The critical advantage of VQGAN lies in its utilization
of a vector quantization mechanism, enabling accurate manipulation of specific features within
the generated face images. Additionally, its training is more stable than some of StyleGAN’s
variants. VQFR [51] leverages discrete codebook vectors from VQGAN, using optimally sized
compression patches and a parallel decoder to improve detail and fidelity in the restored outcomes.
Codeformer [201] integrates Transformer technology into its network architecture, achieving a
favorable trade-off between quality and fidelity with a controlled feature conversion module. Zhao

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: February 2024.



Survey on Deep Face Restoration: From Non-blind to Blind and Beyond 19

et al. [198] explore the utilization of pre-training priors, aiming to strike a harmonious equilibrium
between generation and restoration aspects. DAEFR [134] additionally introduces an auxiliary LQ
codebook branch with information extracted from LQ inputs to collaborate with the restoration
branch. In addition, DifFace [178] utilizes a pre-trained diffusion model for the first time to assist in
blind face restoration. Subsequently, PGDiff [162] and SSDiff [94] further improve the performance
of such methods by bootstrapping the diffusion prior. BFRffusion [19], DiffBIR [102], InterLCM [92]
and OSDFace [143] improve performance by fine-tuning the prior of the large diffusion model.
• Discuss. External compensatory prior is well-suited for offering a robust solution in scenarios
with more pronounced face image degradation, successfully restoring clear faces in the majority of
cases. However, it does not guarantee the fidelity of the restored face images. Consequently, when
employing this type of prior, it is essential to fully leverage the input face features to guide the
external prior to enhancing the fidelity of the results.

4.3 Advancing the Effectiveness of Prior
In this section, we will delve into approaches aimed at enhancing the effectiveness of prior knowl-
edge for facial restoration. These approaches include combining multiple priors, developing efficient
network structures, and adopting the prior guide approach.
• Combining Multiple Priors. Since different priors are suitable for different scenarios, the
effectiveness of prior utilization diminishes significantly when inappropriate priors are used. To
address this issue, some methods enhance the effectiveness of individual prior by incorporating
multiple priors during face restoration, leveraging the flexible complementarity of various prior
information. MFPSNet [177] utilizes multiple priors, including face parsing maps, face landmarks,
and a face dictionary to assist in restoration. Compared to approaches relying on a single prior,
MFPSNet exhibits better robustness in highly blurry scenes. In general, some methods [20, 91, 98,
166] use either multiple internal proprietary priors or external compensating priors. For example,
UMSN [166] employs face semantic labels and facial components as priors. DMDNet [98] utilizes
both facial dictionaries and external reference faces. Additionally, some methods [147, 154, 202]
combine internal proprietary priors with external compensating priors. For instance, SGPN [202]
leverages a 3D face shape prior alongside a pre-trained GAN prior. FREx [22] combines structure-
accurate 3D priors and texture-rich 2D priors, enabling the restoration of natural-looking faces even
under severe degradation and extreme poses. It is worth noting that individual prior combinations
also affect the restoration results. Combining internal proprietary prior with each other, e.g., the
combination of face landmarks and parsing maps facilitates the continuous adjustment of facial
landmarks’ positions according to the facial semantic regions, which can more accurately localize
damaged facial features and faithfully deal with facial changes. The combination of an internal
proprietary prior and an external compensatory prior allows the estimated face geometry prior to
being utilized to adjust for unfaithful face features introduced by the externally compensated prior.
However, employing an approach that utilizes multiple priors requires increased computational
resources for prior estimation and often demands a larger dataset for modeling.
• Efficient Network Structures. Initial methods [20, 112] primarily focused on utilizing simple
residual block structures for prior fusion, although these structures were not always optimal so-
lutions. Subsequently, some methods [51, 96, 147, 201] aimed to design more efficient networks
for prior fusion or estimation to enhance restoration performance. RestoreFormer [154] designs a
custom multi-head cross-attention mechanism (MHCA) to comprehensively integrate facial dictio-
nary information with facial features, showcasing significantly superior performance compared
to multi-head self-attention (MHSA) alone. Similarly, ASFFNet [96] enhances the fusion of prior
information with facial semantic features through a specially crafted adaptive spatial feature fusion
block. VQFR [51] employs a parallel decoder structure to blend the generated prior information
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CelebA HelenMethods PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
FSRNet [20] 27.05 0.7714 0.2127 170.4 25.45 0.7364 0.3090 228.8
FACN [159] 27.22 0.7802 0.1828 167.7 25.06 0.7189 0.3113 218.0
SPARNet [16] 27.73 0.7949 0.1995 161.2 26.43 0.7839 0.2674 211.5
DIC [112] 27.42 0.7840 0.2129 166.5 26.15 0.7717 0.2158 214.1
SISN [110] 27.91 0.7971 0.2005 162.3 26.64 0.7908 0.2571 210.7
SwinIR [100] 27.88 0.7967 0.2001 163.2 26.53 0.7856 0.2644 213.2
CTCNet [44] 28.37 0.8115 0.1702 156.9 27.08 0.8007 0.2094 205.8
SCTANet [6] 28.26 0.8100 0.1710 156.8 27.01 0.8068 0.1901 203.3
SFMNet [141] 27.85 0.7967 0.1837 156.5 26.98 0.8049 0.1865 199.5
WFEN [93] 28.04 0.8032 0.1803 156.5 27.01 0.8051 0.2148 203.6
Input 23.61 0.6779 0.4899 362.2 22.95 0.6762 0.4912 289.1

Table 5. Performance comparison of key non-blind
methods on CelebA and Helen Test Sets at the scale of
×8. In this paper, the best and the second-best values
are highlighted and underlined respectively.
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Fig. 14. Complexity analysis of non-blind methods
on Helen test set.
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Fig. 15. Visual comparison of different non-blind methods on the CelebA and Helen test sets.

with low-level features, ensuring enhanced fidelity without compromising the quality of the prior
guidance. Overall, exploring the model structure based on the model improves the model per-
formance to a certain extent, but brings limited performance improvement for scenarios such as
non-positive faces and highly blurred.
• Prior Guide Approach. The way the prior is bootstrapped plays a crucial role in determining its
effectiveness, as different bootstrapping methods yield varying restoration outcomes. For example,
PFSRGAN [17] aims to enable the model to leverage the raw input information more effectively
by directly estimating the prior knowledge from the LQ facial images to guide the restoration.
In contrast, FSRNet [20] partially restores the LQ faces before estimating the prior to address
inaccuracies in prior knowledge estimation. JASRNet [168] adopts a bootstrapping structure with
parallel communication to leverage the interaction between prior estimation and restoration fully.
Furthermore, CHNet [109] modifies the process of estimating priors by estimating them from
HQ faces instead of directly or indirectly from LQ faces. For more comprehensive generalizations
regarding the prior guide approach, please refer to the provided Appendix.
• Discuss. Each strategy above for augmenting the prior validity of faces comes with its own
advantages and disadvantages, requiring consideration based on the specific scenarios. For instance,
combining multiple priors is beneficial for performance but may not be optimal for the practical
deployment of the model. The efficient network structure needs to be carefully designed, and
different degrees of blurred face images may be suitable for distinct prior guide approaches.

5 METHODS ANALYSIS
In recent years, face restoration methods have focused on two subtasks: face super-resolution
and blind face restoration. In this section, we evaluate existing non-blind and blind methods for
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Method FSRNet [20] FACN [159] SPARNet [16] DIC [112]
Params 27.5M 4.4M 10.6M 22.8M
MACs 40.7G 12.5G 7.1G 35.5M
Speed 89ms 22ms 40ms 122ms

SISN [110] CTCNet [44] SCTANet [6] SFMNet [141] WFEN [93]
9.8M 22.4M 27.7M 8.6M 6.8M
2.3G 47.2G 10.4G 30.6G 7.5M
68ms 106ms 58ms 48ms 31ms

Table 6. Speed and overhead comparison of typ-
ical non-blind methods that were measured on
128 × 128 face images. We test all non-blind mod-
els using a single NVIDIA RTX 3090 GPU.
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Fig. 16. Comparison of non-blind/blind face restoration
methods in real-world scenarios.
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Fig. 17. Complexity analysis of
blind FR methods on the synthetic
face test set CelebA-HQ.
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Fig. 18. Complexity analysis of
blind FR methods on the real face
test set LFW-Test.
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these tasks, with additional comparisons provided in the Appendix. Given the broad scope of joint
tasks, their comparisons are also included there. Methods presented in all performance comparison
Tables of this survey are sorted chronologically from oldest to newest.

5.1 Experimental Setting
5.1.1 Non-blind Task. We utilize the initial 18,000 face images from the CelebA dataset for training.
For testing, we randomly select 1,000 faces from the CelebA dataset and 50 random faces from the
Helen dataset. All face images are cropped and resized to a size of 128×128. LQs are derived by
downsampling HQs with a factor of ×8 using bicubic interpolation, as described in Eq.3. Models
are optimized using the Adam optimizer for 100 epochs, with an initial learning rate of 2e-4.

5.1.2 Blind Task. We conduct training on the FFHQ dataset, which consists of 70,000 high-quality
face images. We follow the degradation model used in GFPGAN [147] to get synthesized LQ face
images. The degradation process is defined by Eq.8 and Eq.6, which represent blind restoration
and blind super-resolution, respectively. In Eq.6, and 8, the standard deviation 𝜎 in Gaussian blur
kernels, noise intensity 𝛿 , downsample scale 𝑠 , and JPEG quality scale 𝑞 in degradation models are
randomly drawn from ranges {0.2 : 10}, {1 : 8}, {0 : 20}, and {60 : 100}, respectively. Models are
trained with the Adam optimizer for 800k iterations, starting with a learning rate of 2e-3, which
was then decayed by a factor of 2 at the 700k-th and 750k-th iterations.

We conduct testing on the CelebA-HQ dataset, which is a synthetic dataset with 3,000 face images
from its testing partition, and the LQ images were generated in the same way as during training.
Furthermore, we incorporate real-world face test sets such as LFW-Test with 1,711 LQ face images,
WebPhoto-Test with 407 LQ face images, CelebChild with 180 LQ face images, and CelebAdult with
180 LQ face images to ensure a more comprehensive evaluation. All face images in training and
testing are aligned and resized to a size of 512×512.
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Table 7. Comparison of primary blind method performance on the synthetic test set CelebA-HQ and real
datasets LFW-Test, WebPhoto, Celeb-Child, and Celeb-Adult. Speed and overhead are measured on 512 × 512
images. Methods presented in Table 5, Table 7, and Table 8 are sorted chronologically from oldest to newest.

CelebA-HQ LFW-Test WebPhoto CelebChild CelebAdultMethods Param MACs Speed PSNR↑ LPIPS↓ IDD↓ FID↓ NIQE↓ FID↓ NIQE↓ FID↓ NIQE↓ FID↓ NIQE↓ FID↓ NIQE↓
HiFaceGAN [161] 79.9M 40.7G 90ms 24.92 .4770 .7310 66.09 5.002 64.50 4.520 116.1 4.943 113.0 4.871 104.0 4.340
DFDNet [95] 133.3M 599.8G 2.1s 24.26 .4421 .6884 54.34 5.921 59.69 4.776 93.28 5.812 107.1 4.452 105.6 3.782
PSFRGAN [17] 60.2M 464.9G 53ms 24.65 .4199 .6664 43.33 4.099 49.53 4.095 84.98 4.151 106.6 4.670 104.1 4.246
GPEN [164] 71.1M 138.1G 235ms 25.59 .4009 .6019 36.46 5.364 57.00 5.071 101.3 6.326 112.1 4.945 110.8 4.362
GFPGAN [147] 48.7M 51.6G 46ms 25.08 .3646 .5709 42.59 4.158 50.04 3.965 87.13 4.228 111.4 4.447 105.0 4.033
VQFR [51] 71.8M 1.07T 495ms 24.14 .3515 .5959 41.29 3.693 50.65 3.590 75.41 3.608 105.2 3.938 105.0 3.756
GCFSR [52] 88.7M 119.8G 145ms 26.31 .3400 .5122 50.10 4.943 52.23 4.998 93.27 5.640 115.1 5.326 107.1 4.824
SGPN [202] 15.2M 18.3G 134ms 24.93 .3702 .6028 39.44 4.095 44.95 3.863 75.61 4.269 109.4 4.234 104.9 4.402
RestoreFor [154] 72.4M 340.8G 172ms 24.64 .3655 .5339 41.82 4.405 48.38 4.169 77.33 4.459 101.2 4.580 103.5 4.321
CodeFormer [201] 73.6M 292.4G 98ms 25.15 .3432 .6171 52.43 4.650 52.36 4.484 83.19 4.705 116.2 4.983 111.1 4.541
DMDNet [98] 40.4M 187.2G 219ms 25.62 .3670 .6179 39.94 4.786 43.38 4.617 88.55 5.154 114.2 4.884 114.2 4.884
PGDiff [162] 47.7M 127.5G 16.3s 22.69 .4134 .9606 47.79 4.859 48.39 3.894 96.06 5.117 121.0 5.070 103.9 4.774
DAEFR [134] 111.2M 449.5G 627ms 23.07 .3697 .7602 40.73 3.816 47.53 3.552 75.38 4.041 105.7 4.072 101.7 3.752
ResShift [179] 118.6M 5491G 3.3s 25.82 .3435 .5545 43.76 4.375 52.38 4.300 74.74 4.451 108.1 4.635 106.4 4.337
DifFace [178] 175.4M 268.8G 14.4s 24.76 .3994 .7656 37.88 4.286 46.33 4.019 80.49 4.361 104.7 4.198 97.6 3.921
DiffBIR [102] 1717M 24234G 13.2s 25.38 .3878 .5367 58.16 6.083 40.32 5.737 91.83 6.069 118.9 5.549 108.8 5.651
Input - - - 23.35 .4866 .8577 144.0 13.23 137.6 11.02 170.1 12.7 144.4 9.03 118.3 7.56

5.1.3 Evaluation Metric. We employ full reference metrics, such as PSNR, SSIM, LPIPS, and IDD.
These metrics assess various aspects, including pixel structure similarity, visual fidelity, and identity
preservation. In addition, we also utilize non-reference or semi-reference metrics like NIQE and
FID. These metrics allow us to evaluate image fidelity and visual quality without ground truth.

5.2 Experimental Results
5.2.1 Non-blind Task. Regarding the non-blind task, we choose to focus on evaluating non-blind
super-resolution methods due to their predominant emphasis in the field. TABLE 5 presents a
compilation of ten state-of-the-art non-blind methods, including fine-tuned image restoration
methods [100, 187], methods based on attention mechanisms [6, 44, 93, 110, 141], and methods
relying on various priors [20, 112, 159]. Among these, methods employing hybrid attention mecha-
nisms, namely CTCNet [44], SCTANet [6], and SFMNet [141], achieve either the best or second-best
performance across all metrics on both test sets. TABLE 6 provides detailed information about
the model characteristics of these methods, including parameters, computation, and inference
duration. Furthermore, Fig. 14 visually illustrates the efficiency of these techniques through three
perspectives: performance, inference speed, and model size. Notably, attention-based methods,
particularly SFMNet [141] and WFEN [93], stand out as they achieve superior performance while
maintaining smaller computations. Finally, Fig. 15 provides a visual comparison of these methods.
Attention-based methods also recovered the clearest results compared to other types of methods.

5.2.2 Blind Task. A range of state-of-the-art methods are selected for the blind task, including
approaches that do not rely on prior knowledge, such as network architecture design [52, 161]
and diffusion modeling techniques [126]). Additionally, techniques utilizing internally-specific
priors such as parsing maps [17] and 3D face shapes [202] are considered. Furthermore, methods
employing external compensatory prior like pre-trained StyleGAN prior [147, 164, 202], pre-trained
VQGAN prior [51, 134, 201], pre-trained diffusion prior [102, 162, 178, 179], face dictionary [98, 154],
and reference prior [98]) are also included.
In the context of the blind task, our evaluation primarily focuses on blind face restoration, as

blind methods primarily emphasize this specific direction. We also complement the evaluation
with blind super-resolution. TABLE 7 presents a comprehensive quantitative assessment of these
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Synthetic Input HiFace [161] PFSRGAN [17] GPEN [164] GFPGAN [147] VQFR [51] GCFSR [52] ResShift [179]

SGPN [202] Restore [154] CodeFormer [201] PGDiff [162] DifFace [178] DAEFR [134] DiffBIR [102] Grouth-truth

Synthetic Input HiFace [161] PFSRGAN [17] GPEN [164] GFPGAN [147] VQFR [51] GCFSR [52] ResShift [179]

SGPN [202] Restore [154] CodeFormer [201] PGDiff [162] DifFace [178] DAEFR [134] DiffBIR [102] Grouth-truth

Fig. 20. Visual comparison of different blind methods on the CelebA-HQ test set for blind face restoration.

techniques across three dimensions: model size, inference speed, and performance on the synthetic
dataset CelebA-HQ. It can be observed that GCFSR [52] achieves the best performance in structural
similarity metrics of restored face images. Regarding visual and perceptual quality, pre-trained
GAN-based [51, 164] and diffusion-based methods [178] exhibit superior performance. Methods
such as DMDNet [154], SGPN [202], and GPEN [164] strike a better balance between structural
similarity and perceptual quality. Furthermore, to handle more complex degradation, blind methods
tend to employ larger models compared to non-blind approaches, resulting in slower inference
times. Fig. 17 illustrates the efficiency trade-offs of these methods on the synthetic. This figure
considers methods closer to the upper-left corner with smaller circles as more efficient. The figure
demonstrates that both PFSRGAN [17] and pre-trained GAN-based methods [147, 201, 202] are more
efficient, whereas diffusion-based approaches [102, 178, 179] generally exhibit a poor efficiency.
Comparative visualization in Fig. 20 shows that methods relying on pre-trained GAN [147, 201] or
diffusion priors [102] tend to achieve superior performance when dealing with severely degraded
facial images. Finally, as depicted in Fig. 22, we select four metrics: SSIM for face similarity, IDD for
identity consistency, LPIPS for sensory quality assessment, and FID for image fidelity to highlight
the strengths and weaknesses of each method in terms of image quality. It is evident that some
methods [154, 178, 202], while exhibiting better sensory quality, show subpar performance in two
metrics, such as SSIM and IDD. On the other hand, methods [52, 201] with higher structural and
identity similarity often display inferior perceptual quality. Therefore, the community needs to
develop more balanced approaches to address these disparities.
TABLE 7 also provides the performance of the blind method on four real-world datasets: LFW-

Test, WebPhoto, CelebChild, and CelebAdult. As shown in this table, the methods VQFR [51]
and DAEFR [28], which are based on the VQGAN-generated prior, achieved most of the best
and second-best results. In addition, as shown in Fig. 21, in the face of more complex real-world
scenarios, many of the blind methods have serious distortions. The ones that perform better
are CodeFormer [201] and DAEFR [28], which are based on the VQGAN generating prior, and
ResShift [179], which is based on the diffusion prior. It is important to note that, although the latest
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Real Input HiFace [161] DFDNet [95] PFSRGAN [17] GPEN [164] GFPGAN [147] VQFR [51] ResShift [179]

GCFSR [52] SGPN [202] Restore [154] CodeFormer [201] PGDiff [162] DAEFR [134] DifFace [178] DiffBIR [102]

Real Input HiFace [161] DFDNet [95] PFSRGAN [17] GPEN [164] GFPGAN [147] VQFR [51] ResShift [179]

GCFSR [52] SGPN [202] Restore [154] CodeFormer [201] PGDiff [162] DAEFR [134] DifFace [178] DiffBIR [102]

Fig. 21. Qualitative comparison of restoration for the real test sets, including Celeb-Child and WebPhoto-Test.

diffusion-based methods [102, 178, 179] don’t achieve the highest metrics on all benchmarks, they
are primarily designed to handle extremely blurred scenarios. As shown in the second image of
Fig. 21, diffusion-based methods exhibit greater robustness in the extreme conditions, demonstrating
a lower susceptibility to distortion. However, existing benchmarks encompass a broad range of
degradations without prioritizing any particular type, meaning the metrics may struggle to reflect
the advantages of the latest diffusion methods. Furthermore, we give the efficiency trade-off in
Fig. 18, this efficiency comparison show GFPGAN [147] and PFSRGAN [17] are relatively efficient
methods. Therefore, we need to choose the reasonably appropriate methods for actual needs.
The second part focuses on blind super-resolution, and TABLE 8 provides a quantitative per-

formance comparison of these methods at three scales: ×4, ×8, and ×16. Prior-free methods like
GCFSR [52] excel in face structure. However, they exhibit shortcomings in FID and NIQE metrics,
suggesting that their restored faces might lack realism and may contain artifacts. On the other
hand, pre-trained GAN-based and diffusion-based approaches such as VQFR [51], DAEFR [134], and
DifFace [178] perform better in these two metrics, indicating more realistic and artifact-free results.
Moving forward, Fig. 19 illustrates the efficiency of methods at the ×8 scale, with PFSRGAN [17]
and SGPN [202] emerging as the more efficient choices. Lastly, in Fig. 23, we visually compare
methods at three scales. Methods leveraging pre-trained GAN or diffusion priors perform favorably
without introducing artifacts when dealing with substantial downsampling factors.
• Performance Analysis. Due to varying priorities in prior knowledge, no single method excels
across all evaluation metrics. Approaches that achieve the highest fidelity scores tend to avoid
generative priors, which can hinder the faithful reproduction of facial details. In contrast, methods
utilizing generative priors, such as GAN or diffusion, perform better on visual metrics, with diffusion
models being effective in handling severe blurring or profile-view scenarios. However, due to the
diverse degradations in our data, the latest methods do not achieve optimal performance on all
metrics. In summary, performance variations arise from trade-offs between priors and the balance
between model size and restoration quality, with each method excelling in specific scenarios.
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Table 8. Quantitative comparisons with blind methods on CelebA-HQ for ×4, ×8, ×16 super-resolution.

CelebA-HQ (×4) CelebA-HQ (×8) CelebA-HQ (×16)Methods PSNR↑ LPIPS↓ IDD↓ FID↓ NIQE↓ PSNR↑ LPIPS↓ IDD↓ FID↓ NIQE↓ PSNR↑ LPIPS↓ IDD↓ FID↓ NIQE↓
PSFRGAN [17] 27.99 .3055 .2924 42.35 4.623 25.50 .3639 .4445 47.56 4.446 23.20 .4216 .8603 49.31 4.197
HiFaceGAN [161] 29.49 .2736 .2065 39.72 4.535 26.76 .3496 .3704 51.32 4.830 23.68 .4746 1.012 92.31 5.836
DFDNet [95] 27.47 .3108 .2888 41.26 4.710 25.26 .3982 .4097 45.58 6.054 23.24 .4713 .9003 60.06 7.070
GPEN [164] 28.35 .2600 .2972 47.83 4.603 26.60 .3193 .4052 54.17 5.086 24.12 .3950 .8329 68.35 5.896
VQFR [51] 26.29 .2989 .3654 43.98 3.884 24.84 .3287 .4600 45.72 3.826 22.17 .3761 .8128 38.42 3.431
GCFSR [52] 30.73 .2369 .2132 52.02 4.915 26.66 .3073 .4146 54.74 5.059 22.90 .3799 .8564 46.99 4.622
SGPN [202] 28.64 .2456 .2581 41.06 4.425 26.18 .3033 .3846 44.69 4.330 23.65 .3602 .7506 46.66 4.444
RestoreFor [154] 24.99 .3353 .4146 41.38 4.392 24.65 .3495 .4525 41.66 4.340 22.60 .3974 .8068 38.45 4.216
CodeFormer [201] 27.10 .3020 .4462 51.30 4.739 25.75 .3229 .5115 51.42 4.698 23.26 .3666 .7776 48.69 4.496
DMDNet [98] 28.43 .2724 .3080 39.06 4.652 26.31 .3292 .3967 41.49 4.576 22.91 .3890 .8318 39.61 4.358
DAEFR [134] 23.11 .3525 .7109 39.86 3.792 23.02 .3614 .7283 41.09 3.764 22.20 .3864 .8331 42.55 3.739
ResShift [179] 28.60 .2741 .3195 43.79 4.698 26.72 .3081 .3908 44.89 4.532 23.29 .3736 .8023 42.46 4.166
DifFace [178] 25.26 .3838 .6882 36.02 3.995 24.86 .3917 .7031 36.85 4.163 23.57 .4200 .8181 42.01 4.487
DiffBIR [102] 27.21 .3296 .2854 49.44 5.769 25.89 .3628 .3895 49.64 5.829 23.28 .4218 .7038 61.11 5.939
Input 31.05 .2425 .2216 107.0 8.155 27.51 .3748 .5898 195.7 11.24 24.21 .5007 1.076 163.7 13.47

• Discuss. To evaluate the application scope of non-blind and blind methods, we randomly selected
several real face photos. We restored them using a fine-tuned non-blind method, SFMNet [141], and
a blind method, GFPGAN [147], respectively. As shown in Fig. 16, it is evident that SFMNet struggles
to handle real-world photos effectively. In contrast, GFPGAN, despite showing some racial bias
in certain images, generally offers superior visual quality. Consequently, the blind method holds
greater promise for real-world applications. However, blind methods require more computational
load than non-blind methods, which subsequent researchers will need to consider optimizing.

6 REAL-WORLD APPLICATION SCENARIOS
Face restoration methods have significant potential in enhancing visual quality across various
fields, and their real-world applications continue to grow as the technology improves, including:
• Security and Forensic Applications: Face restoration plays a crucial role in both security
surveillance and forensic investigations by enhancing the quality of facial images captured in
low-resolution or degraded conditions. In security, it improves facial recognition and identification,
boosting the effectiveness of surveillance systems. Similarly, in forensic science, face restoration aids
in recovering facial features from unclear or obscured images, assisting in criminal investigations,
identifying suspects or victims, and supporting cold cases.
•Digital Entertainment: In areas like gaming, animation, and movie remastering, face restoration
is used for character generation and to restore facial features in old or low-quality video footage.
This process enhances visual quality and realism, contributing to a more immersive and lifelike
user experience. By improving the clarity of facial details, it elevates content quality, making it
more engaging for audiences.
• Social Media:With the growing popularity of social media and Communication, face restoration
techniques are also applied in applications that improve the quality of user-uploaded photos or
videos, especially in situations where face images are taken under poor lighting conditions, low
resolution, or with motion blur. However, it’s important to note that facial restoration may be
misidentified as a forgery by deepfake detection systems, so its use in these contexts should be
approached with caution [2, 38, 145].

7 CHALLENGE AND FUTURE DIRECTIONS
After reviewing various tasks and techniques and evaluating some prominent methods, it is
clear that significant progress has been made. However, several challenges persist in this domain.
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Fig. 22. A balanced analysis of multiple blind methods including PFSRGAN [17], HiFaceGAN [161], DFD-
Net [95], GPEN [164], GCFSR [52], SGPN [202], GFPGAN [147], VQFR [51], RestorFormer [154], DMDNet [98],
CodeFormer [201], PGDiff [162], ResShift [179], DifFace [178], and DiffBIR [102] is performed through four
main indicators: SSIM, LPIPS, FID, and IDD.

Additionally, numerous promising research opportunities exist to tackle these challenges and
further advance the field of facial restoration.
• Unified Large Model. Prominent advancements in macro-modeling, exemplified by techniques
such as Generative Pre-Training (GPT) and the Segment Anything Model [76] (SAM), have had a
significant impact on the field of computer vision. However, existing face restoration techniques
often have a limited scope. Most models are designed to address specific challenges such as
super-resolution or deblurring. Consequently, there is a pressing demand in the industry for
comprehensive, large-scale models capable of restoring a broad spectrum of degraded facial images.
• Multimodal Technology. The successful utilization of GPT-4 in integrating images and text
opens up new possibilities. For example, linguistic commands can be input to selectively restore
features such as hair, eyes, and skin. Language-based instructions can also achieve specific restora-
tion effects, such as emphasizing high resolution or maintaining identity resemblance. However,
current models face challenges in precisely controlling these factors due to a lack of interpretability
or handling intersectionality across different domains. As a result, the interpretability of FR models
and their application in multimodal tasks could emerge as significant research areas.
• Model Bias. Most FR datasets, such as CelebA and FFHQ, collect facial images from specific
geographical regions. It leads to the current trained models focusing on recovering facial features
typical of those specific regions while potentially disregarding distinctions in facial characteristics
across various areas, such as variations in skin color. As a result, restoration results for individuals
with black or yellow skin tonesmay inadvertently exhibit features characteristic of white individuals.
Addressing this challenge requires the development of algorithms that mitigate racial bias in FR or
creating datasets that prioritize racial balance.
• Face Privacy Protection. With the widespread use of facial recognition technology, improving
recognition accuracy in specific scenarios (such as low light or blur) is closely linked to face
restoration techniques. However, during the process of repairing and recognizing faces, there is
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Synthetic Input HiFace [161] DFDNet [95] PFSRGAN [17] GPEN [164] VQFR [51] CodeFormer [201] ResShift [179]

GCFSR [52] SGPN [202] Restore [154] SR3 [126] DifFace [178] DAEFR [134] DiffBIR [102] Grouth-truth

Synthetic Input HiFace [161] DFDNet [95] PFSRGAN [17] GPEN [164] VQFR [51] CodeFormer [201] ResShift [179]

GCFSR [52] SGPN [202] Restore [154] SR3 [126] DifFace [178] DAEFR [134] DiffBIR [102] Grouth-truth

Synthetic Input HiFace [161] DFDNet [95] PFSRGAN [17] GPEN [164] VQFR [51] CodeFormer [201] ResShift [179]

GCFSR [52] SGPN [202] Restore [154] SR3 [126] DifFace [178] DAEFR [134] DiffBIR [102] Grouth-truth

Fig. 23. Qualitative comparisons on CelebA-HQ for ×4, ×8, ×16 face super-resolution.

a risk of facial information leakage. This compassionate data is closely associated with financial
transactions and access permissions. Unfortunately, current face restoration methods often ignore
this aspect. Therefore, ensuring the protection of facial privacy during restoration remains an
ongoing challenge and opportunity.
• Practical Applications. The challenges faced by facial restoration applications are two-fold: the
disparity between synthetic and real data domains and significant computational costs. Compared
to synthetic counterparts, real-world images undergo more complex forms of degradation. For
example, most methods primarily focus on Gaussian blur kernels, while motion blur and spatially-
varying blur caused by camera displacement a potential factors that could negatively impact
these methods in real scenarios. Additionally, the computational overhead of existing methods is
excessive for deployment on mobile devices. To address these challenges, research efforts should
focus on developing realistic degradation models to model real-world degradation or add general
blur kernels in training, exploring unsupervised restoration approaches to alleviate the reliance on
large annotated datasets, and investigating model compression techniques to reduce computational
costs. These endeavors will contribute to advancing practical applications [40].
• Effective Benchmarks. Several commonly used benchmarks in current face restoration, includ-
ing datasets, loss functions, baseline network architectures, and evaluation metrics, may not provide
optimal solutions. For example, some datasets [72, 106] may lack comprehensive coverage, limiting
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the models’ generalization. Flawed loss functions may result in undesired artifacts in the restored
faces. Existing network architectures [51, 147, 154] may not be suitable for all restoration tasks,
limiting their applicability. Additionally, evaluating restoration results solely based on quantitative
metrics may overlook essential aspects of human perceptual quality. Ongoing research efforts
are actively addressing these issues, leading to improvements in various areas of face restoration.
However, these concerns remain focal points for future investigations.

8 CONCLUSION
In this review, we provide a systematic exploration of deep learning-based face restoration methods.
We begin by discussing factors that contribute to the degradation of facial images and artificial
degradations. Subsequently, we categorize the field into three distinct task categories: non-blind,
blind, and joint tasks, and discuss their evolution and technical characteristics. Furthermore, we
shed light on prevailing methods utilizing facial priors, including internal proprietary and external
compensatory priors. We summarize the prevalent strategies for enhancing the effectiveness of
priors in face restoration. Then, we thoroughly compare cutting-edge methods, highlighting their
respective strengths and weaknesses, and giving application scenarios of face restoration. Finally,
we dissect the prevailing challenges within existing paradigms and provide insights into potential
directions for advancing the field. Overall, we aim to serve as a valuable reference for researchers
who are starting their journey in developing techniques aligned with their research aspirations.
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