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Abstract. Recent studies have shown that deep neural networks can sig-
nificantly improve the quality of single-image super-resolution. Current
researches tend to use deeper convolutional neural networks to enhance
performance. However, blindly increasing the depth of the network can-
not ameliorate the network effectively. Worse still, with the depth of the
network increases, more problems occurred in the training process and
more training tricks are needed. In this paper, we propose a novel multi-
scale residual network (MSRN) to fully exploit the image features, which
outperform most of the state-of-the-art methods. Based on the residual
block, we introduce convolution kernels of different sizes to adaptively
detect the image features in different scales. Meanwhile, we let these
features interact with each other to get the most efficacious image infor-
mation, we call this structure Multi-scale Residual Block (MSRB). Fur-
thermore, the outputs of each MSRB are used as the hierarchical features
for global feature fusion. Finally, all these features are sent to the recon-
struction module for recovering the high-quality image.

Keywords: Super-resolution - Convolutional neural network
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1 Introduction

Image super-resolution (SR), particularly single-image super-resolution (SISR),
has attracted more and more attention in academia and industry. SISR aims
to reconstruct a high-resolution (HR) image from a low-resolution (LR) image
which is an ill-posed problem since the mapping between LR and HR has multiple
solutions. Thence, learning methods are widely used to learn a mapping from
LR to HR images via applying large image datasets.

Currently, convolutional neural networks (CNNs) have indicated that they
can provide remarkable performance in the SISR problem. In 2014, Dong et al.
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proposed a model for SISR problem termed SRCNN [1], which was the first
successful model adopting CNNs to SR problem. SRCNN was an efficient net-
work that could learn a kind of end-to-end mapping between the LR and HR
images without requiring any engineered features and reached the most satis-
factory performance at that time. Since then, many studies focused on building
a more efficient network to learn the mapping between LR and HR images so
that a series of CNNs-based SISR models [2-9] were proposed. EDSR [9] was
the champion of the NTIRE2017 SR Challenge. It based on SRResNet [8] while
enhanced the network by removing the normalization layers as well as using
deeper and wider network structures. These models received excellent perfor-
mance in terms of peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM [10]) in the SISR problem. Nevertheless, all of these models tend
to construct deeper and more complex network structures, which means train-
ing these models consumes more resources, time, and tricks. In this work, we
have reconstructed some classic SR models, such as SRCNN [1], EDSR [9] and
SRResNet [8]. During the reconstruction experiments, we find most existing SR
models have the following problems:

(a) Hard to Reproduce: The experimental results manifest that most SR
models are sensitive to the subtle network architectural changes and some of
them are difficult to reach the level of the original paper due to the lack of the
network configuration. Also, the same model achieves different performance by
using different training tricks, such as weight initialization, gradient truncation,
data normalization and so on. This means that the improvement of the perfor-
mance may not be owing to the change of the model architecture, but the use
of some unknown training tricks.

(b) Inadequate of Features Utilization: Most methods blindly increase the
depth of the network in order to enhance the performance of the network but
ignore taking full use of the LR image features. As the depth of the network
increases, the features gradually disappear in the process of transmission. How
to make full use of these features is crucial for the network to reconstruct high-
quality images.

(c) Poor Scalability: Using the preprocessed LR image as input will add com-
putational complexity and produce visible artifacts. Therefore, recent approaches
pay more attention to amplifying LR images directly. As a result, it is difficult to
find a simple SR model that can accommodate to any upscaling factors, or can
migrate to any upscaling factors with only minor adjustments to the network
architecture.

In order to solve the mentioned problems, we propose a novel multi-scale
residual network (MSRN) for SISR. In addition, a multi-scale residual block
(MSRB) is put forward as the building module for MSRN. Firstly, we use the
MSRB to acquire the image features on different scales, which is considered as
local multi-scale features. Secondly, the outputs of each MSRB are combined
for global feature fusion. Finally, the combination of local multi-scale features
and global features can maximize the use of the LR image features and com-
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pletely solve the problem that features disappear in the transmission process.
Besides, we introduce a convolution layer with 1 x 1 kernel as a bottleneck layer
to obtain global feature fusion. Furthermore, we utilize a well-designed recon-
struction structure that is simple but efficient, and can easily migrate to any
upscaling factors.

We train our models on the DIV2K [11] dataset without special weight initial-
ization method or other training tricks. Our base-model shows superior perfor-
mance over most state-of-the-art methods on benchmark test-datasets. Besides,
the model can achieve more competitive results by increasing the number of
MSRB or the size of training images. It is more exciting that our MSRB module
can be migrate to other restoration models for feature extraction. Contributions
of this paper are as follows:

— Different from previous works, we propose a novel multi-scale residual block
(MSRB), which can not only adaptively detect the image features, but also
achieve feature fusion at different scales. This is the first multi-scale module
based on the residual structure. What’s more, it is easy to train and outper-
form the existing modules.

— We extend our work to computer vision tasks and the results exceed those of
the state-of-the-art methods in SISR without deep network structure. Besides,
MSRB can be used for feature extraction in other restoration tasks which
show promising results.

— We propose a simple architecture for hierarchical features fusion (HFFS) and
image reconstruction. It can be easily extended to any upscaling factors.

2 Related Works

2.1 Single-Image Super-Resolution

The SISR problem can be divided into three major stages roughly. Early
approaches use interpolation techniques based on sampling theory like linear
or bicubic. Those methods run fast, but can not rebuild the detailed, realistic
textures. Improved works aim to establish complex mapping functions between
LR and HR images. Those methods rely on techniques ranging from neighbor
embedding to sparse coding.

Recent works tend to build an end-to-end CNNs model to learn mapping
functions from LR to HR images by using large training datasets. Since Dong et
al. proposed the SRCNN [1] model, various CNNs architectures have been used
on SISR problem. Previous work often used pre-processed LR image as input,
which was upscaled to HR space via an upsampling operator as bicubic. However,
this method has been proved [2] that it will add computational complexity and
produce visible artifacts. To avoid this, new methods are proposed, such as Fast
Super-Resolution Convolutional Neural Networks (FSRCNN [3]) and Efficient
Sub-pixel Convolutional Networks (ESPCN [2]). All of the models mentioned
above are shallow networks (less than 5 layers). Kim et al. [12] first introduced the
residual architecture for training much deeper network (20 layers) and achieved
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Fig. 1. The structure of feature extraction blocks: (a) residual block, (b) dense block,
and (c) inception block.

great performance. After that, many SR models have been proposed, including
DRCN [5], DRNN [7], LapSRN [6], SRResNet [8], and EDSR [9]. Unfortunately,
these models become more and more deeper and extremely difficult to train.

2.2 Feature Extraction Block

Nowadays, many feature extraction blocks have been proposed. The main idea
of the inception block [13] (Fig.1(c)) is to find out how an optimal local
sparse structure works in a convolutional network. However, these different scale
features simply concatenate together, which leads to the underutilization of
local features. In 2016, Kim et al. [12] proposed a residual learning framework
(Fig. 1(a)) to ease the training of networks so that they could achieve more com-
petitive results. After that, Huang et al. introduced the dense block (Fig. 1(b)).
Residual block and dense block use a single size of convolutional kernel and the
computational complexity of dense blocks increases at a higher growth rate. In
order to solve these drawbacks, we propose a multi-scale residual block.

Based on the residual structure, we introduce convolution kernels of different
sizes, which designed for adaptively detecting the features of images at different
scales. Meanwhile, a skip connection is applied between different scale features
so that the features information can be shared and reused with each other.
This helps to fully exploit the local features of the image. In addition, a 1 x 1
convolution layer at the end of the block can be used as a bottleneck layer, which
contributes to feature fusion and reduces computation complexity. We will give
a more detailed description in Sect. 3.1.

3 Proposed Method

In this work, our intent is to reconstruct a super-resolution image I°® from a
low-resolution image I*%. The I*? is the low-resolution version of I7%  which
is obtained by the bicubic operation. We convert the image to the YCbCr color
space and train only on the Y channel. For an image with C color channels, we
describe the I™" with a tensor of size W x H x C and denote the IH% [5F
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Fig. 2. The complete architecture of our proposed model. The network is divided into
feature extraction and reconstruction, different color squares represent different oper-
ations, the top-right of the picture gives a specific description.

with rW x rH x C, where C = 1, represents the Y channel and r represents the
upscaling factor.

Our ultimate goal is to learn an end-to-end mapping function F' between
the X% and the I"®. Given a training dataset {IF I v

;—1» we solve the
following problem:

N
N _ 1 SR LR HR
Gfargmgmﬁ2£ (Fo (I, 177, (1)

where 0 = {Wq, Wy, Ws..W,,,, b1, ba, b3...b,, }, denotes the weights and bias of
our m-layer neural network. £5% is the loss function used to minimize the dif-
ference between I°F and I'F. Recently, researchers also focus on finding a
superior loss function to improve the network performance. The most widely-
used image objective optimization functions are the MSE function and L2 func-
tion. Although these methods can obtain high PSNR/SSIM, solutions for MSE
optimization and L2 optimization problems often produce excessively smooth
textures. Now, a variety of loss functions have been proposed such as VGG [4]
function and Charbonnier Penalty function [6]. On the contrary, we find that
their performance improvement is marginal. In order to avoid introducing unnec-
essary training tricks and reduce computations, we finally choose the L1 function.
Thus, the loss function £9% can be defined as:

LOR(Fp(1FR), IR = ||[Fo (1) R) = IR, (2)

As shown in Fig. 2, it is the complete architecture of our proposed model. Our
model takes the unprocessed LR images as input, which are directly upsampled
to high-resolution space via the network. Our model can be divided into two
parts: the feature extraction module and the image reconstruction module. The
feature extraction module is composed of two structures: multi-scale residual
block (MSRB) and hierarchical feature fusion structure (HFFS).
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Fig. 3. The structure of multi-scale residual block (MSRB).

3.1 Multi-scale Residual Block (MSRB)

In order to detect the image features at different scales, we propose multi-scale
residual block (MSRB). Here we will provide a detailed description of this struc-
ture. As shown in Fig.3, our MSRB contains two parts: multi-scale features
fusion and local residual learning.

Multi-scale Features Fusion: Different from previous works, we construct a
two-bypass network and different bypass use different convolutional kernel. In
this way, the information between those bypass can be shared with each other
so that able to detect the image features at different scales. The operation can
be defined as:

S1 = o(w3ys * My,_1 +bY), 3

(3)
P1 o(why s % M, 1 +bb), (4)
= o(wix * [S1, Pi] +b7), (5)

= o(wixs * [P1, 1] + b%), (6)
S =wd, , «[Sa, Po] + b7, (7)

where w and b represent the weights and bias respectively, and the superscripts
represent the number of layers at which they are located, while the subscripts
represent the size of the convolutional kernel used in the layer. o(z) = maz(0, z)
stands for the ReLU function, and [S1, p1], [P1, S1], [S2, P2] denote the concate-
nation operation.

Let M denote the number of feature maps sent to the MSRB. So the input
and output of the first convolutional layer have M feature maps. And the second
convolutional layer has 2M feature maps, either input or output. All of these
feature maps are concatenated and sent to a 1 x 1 convolutional layer. This layer
reduces the number of these feature maps to M, thus the input and output of
our MSRB have the same number of feature maps. The distinctive architecture
allows multiple MSRBs to be used together.

Local Residual Learning: In order to make the network more efficient, we
adopt residual learning to each MSRB. Formally, we describe a multi-scale resid-
ual block (MSRB) as

M, =5 +M, i, (8)
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where M,, and M,,_; represent the input and output of the MSRB, respectively.
The operation S "+ M,_qis performed by a shortcut connection and element-wise
addition. It is worth mentioning that the use of local residual learning makes the
computational complexity greatly reduced. Simultaneously, the performance of
the network is improved.

3.2 Hierarchical Feature Fusion Structure (HFFS)

For SISR problem, input and output images are highly correlated. It is crucial to
fully exploit the features of the input image and transfer them to the end of the
network for reconstruction. However, as the depth of the network increases these
features gradually disappear during transmission. Driven by this problem, vari-
ous methods have been proposed, among which the skip connection is the most
simple and efficient method. All of these methods try to create different connec-
tions between different layers. Unfortunately, these methods can’t fully utilize
the features of the input image, and generate too much redundant information
for aimlessness.

In the experiment, we notice that with the growth of depth, the spatial
expression ability of the network gradually decreases while the semantic expres-
sion ability gradually increases. Additionally, the output of each MSRB contains
distinct features. Therefore, how to make full use of these hierarchical features
will directly affect the quality of reconstructed images. In this work, a simple
hierarchical feature fusion structure is utilized. We send all the output of the
MSRB to the end of the network for reconstruction. On the one hand, these
feature maps contain a large amount of redundant information. On the other
hand, using them directly for reconstruction will greatly increase the computa-
tional complexity. In order to adaptively extract useful information from these
hierarchical features, we introduce a bottleneck layer which is essential for a
convolutional layer with 1 x 1 kernel. The output of hierarchical feature fusion
structure (HFFS) can be formulated as:

Frr = wx* [Mo, My, M,, ..., My] + b, 9)

where M is the output of the first convolutional layer, M;(i # 0) represents the
output of the i*» MSRB, and [My, M1, Ms, ..., My] denotes the concatenation
operation.

3.3 Image Reconstruction

The previous work paid close attention to learn a mapping function between LR
and HR images, where the LR image was upsampled to the same dimensions
as HR by bicubic. Yet, this approach introduced redundant information and
increased the computational complexity. Inspired by it, recent work tends to
use the un-amplified LR as the input image to train a network that can be
directly upsampled to HR dimensions. Instead, it is difficult to find an SR model
which is able to migrate to any upscaling factors with only minor adjustments
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Fig. 4. Comparison of some common image reconstruction structure (x4).

to the network architecture. Moreover, most of these networks tend to be a fixed
upscaling factor (x4), with no specific instructions given to migrate to other
upscaling factors.

PixelShuffle [2] and deconvolutional layer are widely used in SISR tasks.
As shown in Fig. 4, there are several common reconstruction modules. Taking
the upscaling factor of x4 as an example, all of these modules use pixelShuffle
or deconvolution operation and the SR image is reconstructed gradually with
upscaling factor 2 as the base. However, as the upscaling factor increases (e.g.
x8), the network becomes deeper accompanied with more uncertain training
problems. Moreover, these methods does not work on odd upscaling factors,
while one might expect a tardy growth in upscaling factor (e.g. x2, x3, x4, x5)
rather than exponential increase.

For this purpose, we put forward a new reconstruction module (Fig. 4(ours)),
which is a simple, efficient, and flexible structure. Thanks to pixelshuffle [2], our
modules can be migrated to any upscaling factor with minor adjustments. In
Table 1. We provide thorough configuration information about the reconstruc-
tion structure. In our network, for different upscaling factors, we only need to
change the value of M whose change is negligible. Experiments indicate that this
structure performs well on different upscaling factors.

4 Experiments

In this section, we evaluate the performance of our model on several benchmark
test-datasets. We first introduce the dataset used for training and testing, then
we give implementation details. Next, we compare our model with several state-
of-the-art methods. Finally, we give a series of qualitative analysis experiments
results. In addition, we show some of the results on other low-level computer
vision tasks with our MSRB.

4.1 Datasets

The most widely used training dataset in previous studies includes 291 images,
of which 91 images are from [14] and the other 200 images are from [15]. And
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Table 1. Detailed configuration information about the reconstruction structure. For
different upscaling factors, we only need to change the value of M.

Laye_name Input_channel | Output_channel | Kernel_size
conv_input 64 64 x 2 x 2 3x3
PixelShuffle(x2) 164 x 2 x 2 64 /
conv_output 64 1 3x3
conv_input 64 64 x 3 x 3 3 x3
PixelShuffle(x3) 164 x 3 x 3 64 /
conv_output 64 1 3x3
conv_input 64 64 x 4 x 4 3x3
PixelShuffle(x4) |64 x 4 x 4 64 /
conv_output 64 1 3 x3
conv_input 64 64 x 8 X 8 3x3
PixelShuffle(x8) |64 x 8 x 8 |64 /
conv_output 64 1 3 x3
conv_input 64 64 x M x M 3 x3
PixelShuffle(xM) | 64 x M x M |64 /
conv_output 64 1 3 x3

some methods take ImageNet [16] as training dataset, since it contains richer
samples. In our work, we choose DIV2K [11] as our training dataset, a new
high-quality image dataset for image restoration challenge. During testing, we
choose five widely used benchmark datasets: Set [17], Set14 [18], BSDS100 [19],
Urbanl00 [20] and Mangal09 [21]. These datasets contain a wide variety of
images that can fully verify our model. Following previous works, all our train-
ing and testing are based on luminance channel in YCbCr colour space, and
upscaling factors: x2, x3, x4, x8 are used for training and testing.

4.2 Implementation Details

Following [6], we augment the training data in three ways: (1) scaling (2) rotation
(3) flipping. In each training batch, we randomly extract 16 LR patches with the
size of 64x64 and an epoch having 1000 iterations of back-propagation. We train
our model with ADAM optimizer [22] by setting the learning rate Ir = 0.0001.
In our final model, we use 8 multi-scale residual blocks (MSRB, N = 8) and the
output of each MSRB has 64 feature maps. Simultaneously, the output of each
bottleneck layer (1 x 1 convolutional layer) has 64 feature maps. We implement
MSRN with the Pytorch framework and train them using NVIDIA Titan Xp
GPU. We do not use a special weight initialization method or other training
tricks, and code is available at https://github.com/MIVRC/MSRN-PyTorch.
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Fig. 5. Quantitative comparison of three different feature extraction blocks (residual
block [12], dense block [24], and MSRB(our)) on SISR. The green line represents our
model and it achieves the best results under different upscaling factors.

4.3 Comparisons with State-of-the-art Methods

We compare our model with 10 state-of-the-art SR methods, including Bicu-
bic, A+ [23], SelfExSR [20], SRCNN [1], ESPCN [2], FSRCNN [3], VDSR [4],
DRCN [5], LapSRN [6] and EDSR [9]. For fair, we retrain most of these models
(except for EDSR, [9], the results of EDSR provided by their original papers).
Taking the equality of comparison into account, we evaluate the SR images with
two commonly-used image quality metrics: PSNR, and SSIM. Moreover, all the
reported PSNR/SSIM measures are calculated on the luminance channel and
remove M-pixel from each border (M stands for the upscaling factor).

The evaluation results of the SR method including our model and 10 state-
of-art methods are demonstrated in Table 2. Our model outperforms by a large
margin on different upscaling factors and test-datasets. It can be seen that our
results are slightly lower than EDSR [9]. But it is worth noting that EDSR [9] use
RGB channels for training, meanwhile, the data augment methods are different.
To better illustrate the difference with EDSR [9], we show a comparison of model
specifications in Table3. EDSR [9] is an outstanding model gained amazing
results. However, it is a deep and wide network which contains large quantities
of convolutional layers and parameters. In other words, training this model will
cost more memory, space and datasets. In contrast, the specifications of our
model is much smaller than EDSR [9], which makes it easier to reproduce and
promote.

In Figs.6 and 7 we present visual performance on different datasets with
different upscaling factors. Our model can reconstruct sharp and natural images,
as well as outperforms other state-of-the-art methods. This is probably owing
to the MSRB module can detect the image features at different scales and use
them for reconstruction. For better illustration, more SR images reconstructed
by our model can be found at https://goo.gl/bGnZ8D.

4.4 Qualitative Analysis

Benefit of MSRB: In this work, we propose an efficient feature extraction
structure: multi-scale residual block. This module can adaptively detect image
features at different scales and fully exploit the potential features of the image.
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Table 2. Quantitative comparisons of state-of-the-art methods. Red text indicates the
best performancen and blue text indicate the second best performance. Notice that the
EDSR results were not retrained by us, but were provided by their original paper.

Algorithm

Scale

Setb
PSNR/SSIM

Set14
PSNR/SSIM

BSDS100
PSNR/SSIM

Urban100
PSNR/SSIM

Mangal09
PSNR/SSIM

Bicubic

x2

33.69/0.9284

30.34/0.8675

29.57/0.8434

26.88/0.8438

30.82/0.9332

A+ [23]

x2

36.60/0.9542

32.42/0.9059

31.24/0.8870

29.25/0.8955

35.37/0.9663

SelfExSR. [20]

36.60/0.9537

32.46/0.9051

31.20/0.8863

29.55/0.8983

35.82/0.9671

SRCNN [1]

36.71/0.9536

32.32/0.9052

31.36/0.8880

29.54/0.8962

35.74/0.9661

ESPCN [2]

37.00/0.9559

32.75/0.9098

31.51/0.8939

29.87/0.9065

36.21/0.9694

FSRCNN [3]

37.06/0.9554

32.76/0.9078

31.53/0.8912

29.88/0.9024

36.67/0.9694

VDSR [4]

37.53/0.9583

33.05/0.9107

31.92/0.8965

30.79/0.9157

37.22/0.9729

DRCN [5]

37.63/0.9584

33.06/0.9108

31.85/0.8947

30.76/0.9147

37.63/0.9723

LapSRN [6]

37.52/0.9581

33.08/0.9109

31.80/0.8949

30.41/0.9112

37.27/0.9855

EDSR [9]

38.11/0.9601

33.92/0.9195

32.32/0.9013

-/-

-/-

MSRN (our)

38.08/0.9605

33.74/0.9170

32.23/0.9013

32.22/0.9326

38.82/0.9868

Bicubic

30.41/0.8655

27.64/0.7722

27.21/0.7344

24.46/0.7411

26.96/0.8555

A+ [23]

32.63/0.9085

29.25/0.8194

28.31/0.7828

26.05/0.8019

29.93/0.9089

SelfExSR [20]

32.66/0.9089

29.34/0.8222

28.30/0.7839

26.45/0.8124

27.57/0.7997

SRCNN [1]

32.47/0.9067

29.23/0.8201

28.31/0.7832

26.25/0.8028

30.59/0.9107

ESPCN [2]

33.02/0.9135

29.49/0.8271

28.50/0.7937

26.41/0.8161

30.79/0.9181

FSRCNN [3]

33.20/0.9149

29.54/0.8277

28.55/0.7945

26.48/0.8175

30.98/0.9212

VDSR [4]

33.68/0.9201

29.86/0.8312

28.83/0.7966

27.15/0.8315

32.01/0.9310

DRCN [5]

33.85/0.9215

29.89/0.8317

28.81/0.7954

27.16/0.8311

32.31/0.9328

LapSRN [6]

33.82/0.9207

29.89/0.8304

28.82/0.7950

27.07/0.8298

32.21/0.9318

EDSR [9]

34.65/0.9282

30.52/0.8462

29.25/0.8093

-/-

-/-

MSRN (our)

34.38/0.9262

30.34/0.8395

29.08/0.8041

28.08/0.8554

33.44/0.9427

Bicubic

28.43/0.8022

26.10/0.6936

25.97/0.6517

23.14/0.6599

24.91/0.7826

A+ [23]

30.33/0.8565

27.44/0.7450

26.83/0.6999

24.34/0.7211

27.03/0.8439

SelfExSR [20]

30.34/0.8593

27.55/0.7511

26.84/0.7032

24.83/0.7403

27.83/0.8598

SRCNN [1]

30.50/0.8573

27.62/0.7453

26.91/0.6994

24.53/0.7236

27.66,/0.8505

ESPCN [2]

30.66/0.8646

27.71/0.7562

26.98/0.7124

24.60/0.7360

27.70/0.8560

FSRCNN [3]

30.73/0.8601

27.71/0.7488

26.98/0.7029

24.62/0.7272

27.90/0.8517

VDSR [4]

31.36/0.8796

28.11/0.7624

27.29/0.7167

25.18/0.7543

28.83/0.8809

DRCN [5]

31.56/0.8810

28.15/0.7627

27.24/0.7150

25.15/0.7530

28.98/0.8816

LapSRN [6]

31.54/0.8811

28.19/0.7635

27.32/0.7162

25.21/0.7564

29.09/0.8845

EDSR [9]

32.46/0.8968

28.80/0.7876

27.71/0.7420

-/-

-/-

MSRN (our)

32.07/0.8903

28.60/0.7751

27.52/0.7273

26.04/0.7896

30.17/0.9034

Bicubic

24.40/0.6045

23.19/0.5110

23.67/0.4808

20.74/0.4841

21.46/0.6138

A+ [23]

25.53/0.6548

23.99/0.5535

24.21/0.5156

21.37/0.5193

22.39/0.6454

SelfExSR. [20]

25.49/0.6733

24.02/0.5650

24.19/0.5146

21.81/0.5536

22.99/0.6907

SRONN [1]

25.34/0.6471

23.86/0.5443

24.14/0.5043

21.29/0.5133

22.46/0.6606

ESPCN [2]

25.75/0.6738

24.21/0.5109

24.37/0.5277

21.59/0.5420

22.83/0.6715

FSRCNN [3]

25.42/0.6440

23.94/0.5482

24.21/0.5112

21.32/0.5090

22.39/0.6357

VDSR [4]

25.73/0.6743

23.20/0.5110

24.34/0.5169

21.48/0.5289

22.73/0.6688

DRCN [5]

25.93/0.6743

24.25/0.5510

24.49/0.5168

21.71/0.5289

23.20/0.6686

LapSRN [6]

26.15/0.7028

24.45/0.5792

24.54/0.5293

21.81/0.5555

23.39/0.7068

MSRN (our)

x8

26.59/0.7254

24.88/0.5961

24.70/0.5410

22.37/0.5977

24.28/0.7517
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Table 3. Specifications comparison (x4). ‘RGB’ means the model is trained on RGB
channels, ‘Y’ means the model is trained on luminance channel in YCbCr colour space,
and ‘M’ means million.

Algorithm Feature Filters | Layers | Depth | Parameters | Updates | Channel
extraction

EDSR [9] 32 blocks |256 |69 69 43M 1x10° |RGB

MSRN (our) | 8 blocks 64 44 28 6.3M 4%x10° |Y

(our) .

(1]

(HR)

x4: SRCNN [1] x4: LapSRN [6] x4: MSRN (our) Orignal(HR)

Fig. 6. Visual comparison for x2, x3, x4 SR images. Our MSRN can reconstruct
realistic images with sharp edges.

To validate the effectiveness of our module, we design a set of comparative exper-
iments to compare the performance with residual block [12], dense block [24] and
MSRB in SISR tasks. Based on the MSRN architecture, we replace the feature
extraction block in the network. The three networks contain different feature
extraction block, and each network contains only one feature extraction block.
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EREHOABC z;mamac EREEOABC  LXBEOABC
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x8: SRCNN | x8: LapSRN [6] x8: MSRN( r) Orignal(HR)

Fig. 7. Visual comparison of MSRN with other SR methods on large-scale (x8) SR
task. Obviously, MSRN can reconstruct realistic images with sharp edges.

X2 Setl4 X3 Setld x4 Setl4 X8 Setld

PSNR (dB)

PSNR (dB)

5 @ CIC)
Epoch Epoch

o o

100 0 0 r 00 0 0 r3 00 ED E r3 00

(a) Residual block (b) Dense block (c) MSRB (our)

Fig. 9. Feature maps visualization. Represent the output of the residual block [12], the
dense block [24], and our MSRB, respectively.

For quick verification, we use a small training dataset in this part, and all these
models are trained in the same environment by 10° iterations. The results (Fig. 5)
show that our MSRB module is superior to other modules at all upsampling fac-
tors. As shown in Fig.9, we visualize the output of these feature extraction
blocks. It deserves to notice that the activations are sparse (most values are
zero, as the visualization shown in black) and some activation maps may be all
zero which indicates dead filters. It is obvious that the output of the MSRB
contains more valid activation maps, which further proves the effectiveness of
the structure.
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(A.1) input (A.2) output (B.1) input (B.2) output

Fig. 10. Application examples for image denoising and image dehazing, respectively.

Benefit of Increasing the Number of MSRB: As is acknowledged, increas-
ing the depth of the network can effectively improve the performance. In this
work, adding the number of MSRBs is the simplest way to gain excellent result.
In order to verify the impact of the number of MSRBs on network, we design
a series of experiments. As shown in Fig.8, our MSRN performance improves
rapidly with the number of MSRBs growth. Although the performance of the
network will further enhance by using more MSRB, but this will lead to a more
complex network. While weighing the network performance and network com-
plexity, we finally use 8 MSRBs, the result is close to EDSR, but the number of
model parameters is only one-seventh of it.

Performance on Other Tasks: In order to further verify the validity of our
proposed MSRB module, we apply it to other low-level computer vision tasks for
feature extraction. As shown in Fig. 10, we provide the results of image-denoising
and image-dehazing, respectively. It is obvious that our model achieves promising
results on other low-level computer vision tasks.

5 Discussion and Future Works

Many training tricks have been proposed to make the reconstructed image more
realistic in SISR. For example, multi-scale (the scale here represents the upscal-
ing factor) mixed training method is used in [4,9], and geometric selfensemble
method is proposed in [9]. We believe that these training tricks can also improve
our model performance. However, we are more inclined to explore an efficient
model rather than use training tricks. Although our model has shown supe-
rior performance, the reconstructed image is still not clear enough under large
upscaling factors. In the future work, we will pay more attention to large-scale
downsampling image reconstruction.

6 Conclusions

In this paper, we proposed an efficient multi-scale residual block (MSRB), which
is used to adaptively detect the image features at different scales. Based on
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MSRB, we put forward multi-scale residual network (MSRN). It is a simple and
efficient SR model so that we can fully utilize the local multi-scale features and
the hierarchical features to obtain accurate SR image. Additionally, we achieved
promising results by applying the MSRB module to other computer vision tasks
such as image-denoising and image-dehazing.
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ural Science Foundation of China (No. 61731009), the National Science Foundation
of China (No. 61501188), the “Chenguang Program” supported by Shanghai Educa-
tion Development Foundation and Shanghai Municipal Education Commission (No.
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