
Supplementary Material of Transformer for Single Image Super-Resolution

Zhisheng Lu1†, Juncheng Li2†, Hong Liu1⇤, Chaoyan Huang3, Linlin Zhang1, Tieyong Zeng2

1Peking University Shenzhen Graduate School 2The Chinese University of Hong Kong
3Nanjing University of Posts and Telecommunications
{zhisheng lu, hongliu, catherinezll}@pku.edu.cn

cvjunchengli@gmail.com, Huangchy2020@163.com, zeng@math.cuhk.edu.hk

1. Overview
In this work, we proposed a novel Efficient Super-

Resolution Transformer (ESRT). In this supplementary ma-
terial, we provide more experiments to further illustrate the
effectiveness and advancement of ESRT. All codes available
at https://github.com/luissen/ESRT.

1.1. Comparisons with Advanced SISR Models
1.1.1 Objective Evaluation

In TABLE 1, we compare our ESRT with more than 15 ad-
vanced SISR models. Most of them achieve the best re-
sults at the time with a well-designed lightweight network.
Obviously, our ESRT achieves competitive results with a
small amount of parameters. It can be seen that our ESRT
performs much better than other models on Urban100 and
Manga109 datasets. This is because there are many simi-
lar patches in each image of these datasets. Therefore, the
introduced LTB in our ESRT can used to capture the long-
term dependencies among these similar image patches and
learn their relevance, thus future improve the performance
of the model.

1.1.2 Subjective Evaluation

In Figure 1, we also provide more visual comparison be-
tween ESRT and other advanced SISR models. Obviously,
SR images reconstructed by our ESRT contains more ac-
curate texture details, especially in the edges and lines.
It is worth noting that in the ⇥4 scale, the gap between
ESRT and other SR models is more apparent. This bene-
fits from the effectiveness of the proposed Efficient Trans-
former, which can learn more information from other clear
areas. However, we also notice that there are still con-
tains some error lines in our reconstructed images. This
is because the LR image is a down-sampled image, some
regional features in the image are severely damaged. For

⇤Corresponding author †Co-first authors

these areas, it is difficult for the model to match the avail-
able reference patches for its learning. Therefore, the re-
constructed lines of these areas are not straight still.

1.2. Network Investigations

1.2.1 Study of Adaptive Residual Feature Block

In this work, we proposed a powerful Adaptive Residual
Feature Block (ARFB) for feature extraction. In this part,
we provide a detailed ablation study to validate the effec-
tiveness of ARFB. Specifically, HPB is composed of an up-
per branch and a lower branch. Among them, the upper
branch is used to extract high-frequency information and the
lower branch is used to mine potential features. It is worth
noting that all ARFBs share weights in the lower branch to
reduce parameters. This means that this is a recursive com-
ponent, which helps maximize the use of model parameters.
In Table 2, we provide the impact of different ARFBs in the
lower branch on model performance. According to the ta-
ble, we can find: a) The introduced weight sharing strategy
can further improve model performance; b) When the num-
ber of ARFB is increased, the model performance can be
further improved; c) When the number of ARFBs increased
to 6, the model performance no longer increased, and even
a slight decrease. Therefore, we use 5 ARFBs in the lower
branch on the final HPB to achieve the best results.

In the upper branch, we only use one ARFB to extract
high-frequency information. In Table 3, we provide the im-
pact of different ARFBs in the upper branch on model per-
formance. Obviously, adding more ARFB will further im-
prove model performance. However, it cannot be ignored
that as the number of ARFB increases, the number of pa-
rameter of the model will also increase, which is not con-
ducive to the construction of lightweight models. Mean-
while, the growth rate of model performance will also slow
down. Therefore, we only use one ARFB in HPB to achieve
a good balance between model size and performance.

1



Method Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Bicubic

⇥2

- 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403 30.80 / 0.9339
SRCNN [6] 8K 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946 35.60 / 0.9663
FSRCNN [7] 13K 37.00 / 0.9558 32.63 / 0.9088 31.53 / 0.8920 29.88 / 0.9020 36.67 / 0.9710
VDSR [11] 666K 37.53 / 0.9587 33.03 / 0.9124 31.90 / 0.8960 30.76 / 0.9140 37.22 / 0.9750
DRCN [12] 1,774K 37.63 / 0.9588 33.04 / 0.9118 31.85 / 0.8942 30.75 / 0.9133 37.55 / 0.9732
LapSRN [13] 251K 37.52 / 0.9591 32.99 / 0.9124 31.80 / 0.8952 30.41 / 0.9103 37.27 / 0.9740
DRRN [20] 298K 37.74 / 0.9591 33.23 / 0.9136 32.05 / 0.8973 31.23 / 0.9188 37.88 / 0.9749
MemNet [21] 678K 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195 37.72 / 0.9740
IDN [10] 553K 37.83 / 0.9600 33.30 / 0.9148 32.08 / 0.8985 31.27 / 0.9196 38.01 / 0.9749
EDSR-baseline [16] 1,370K 37.99 /0.9604 33.57 /0.9175 32.16 / 0.8994 31.98 / 0.9272 38.54 / 0.9769
SRMDNF [24] 1,511K 37.79 / 0.9601 33.32 / 0.9159 32.05 / 0.8985 31.33 / 0.9204 38.07 / 0.9761
CARN [2] 1,592K 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256 38.36 / 0.9765
IMDN [9] 694K 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283 38.88 / 0.9774
RFDN-L [17] 626K 38.08 / 0.9606 33.67 / 0.9190 32.18 / 0.8996 32.24 / 0.9290 38.95 / 0.9773
MAFFSRN [19] 790K 38.07 / 0.9607 33.59 / 0.9177 32.23 / 0.9005 32.38 / 0.9308 - / -
LatticeNet [18] 756K 38.15 / 0.9610 33.78 / 0.9193 32.25 / 0.9005 32.43 / 0.9302 - / -
ESRT(ours) 677K 38.03 / 0.9600 33.75 / 0.9184 32.25 / 0.9001 32.58 / 0.9318 39.12 / 0.9774
Bicubic

⇥3

- 30.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349 26.95 / 0.8556
SRCNN [6] 8K 32.75 / 0.9090 29.30 / 0.8215 28.41 / 0.7863 26.24 / 0.7989 30.48 / 0.9117
FSRCNN [7] 13K 33.18 / 0.9140 29.37 / 0.8240 28.53 / 0.7910 26.43 / 0.8080 31.10 / 0.9210
VDSR [11] 666K 33.66 / 0.9213 29.77 / 0.8314 28.82 / 0.7976 27.14 / 0.8279 32.01 / 0.9340
DRCN [12] 1,774K 33.82 / 0.9226 29.76 / 0.8311 28.80 / 0.7963 27.15 / 0.8276 32.24 / 0.9343
LapSRN [13] 502K 33.81 / 0.9220 29.79 / 0.8325 28.82 / 0.7980 27.07 / 0.8275 32.21 / 0.9350
DRRN [20] 298K 34.03 / 0.9244 29.96 / 0.8349 28.95 / 0.8004 27.53 / 0.8378 32.71 / 0.9379
MemNet [21] 678K 34.09 / 0.9248 30.00 / 0.8350 28.96 / 0.8001 27.56 / 0.8376 32.51 / 0.9369
IDN [10] 553K 34.11 / 0.9253 29.99 / 0.8354 28.95 / 0.8013 27.42 / 0.8359 32.71 / 0.9381
EDSR-baseline [16] 1,555K 34.37 / 0.9270 30.28 / 0.8417 29.09 / 0.8052 28.15 / 0.8527 33.45 / 0.9439
SRMDNF [24] 1,528K 34.12 / 0.9254 30.04 / 0.8382 28.97 / 0.8025 27.57 / 0.8398 33.00 / 0.9403
CARN [2] 1,592K 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493 33.50 / 0.9440
IMDN [9] 703K 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519 33.61 / 0.9445
RFDN-L [17] 633K 34.47 / 0.9280 30.35 / 0.8421 29.11 / 0.8053 28.32 / 0.8547 33.78 / 0.9458
MAFFSRN [19] 807K 34.45 / 0.9277 30.40 / 0.8432 29.13 / 0.8061 28.26 / 0.8552 - / -
LatticeNet [18] 765K 34.53 / 0.9281 30.39 / 0.8424 29.15 / 0.8059 28.33 / 0.8538 - / -
ESRT(ours) 770K 34.42 / 0.9268 30.43 / 0.8433 29.15 / 0.8063 28.46 / 0.8574 33.95 / 0.9455
Bicubic

⇥4

- 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577 24.89 / 0.7866
SRCNN [6] 8K 30.48 / 0.8628 27.50 / 0.7513 26.90 / 0.7101 24.52 / 0.7221 27.58 / 0.8555
FSRCNN [7] 13K 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280 27.90 / 0.8610
VDSR [11] 666K 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524 28.83 / 0.8870
DRCN [12] 1,774K 31.53 / 0.8854 28.02 / 0.7670 27.23 / 0.7233 25.14 / 0.7510 28.93 / 0.8854
LapSRN [13] 502K 31.54 / 0.8852 28.09 / 0.7700 27.32 / 0.7275 25.21 / 0.7562 29.09 / 0.8900
DRRN [20] 298K 31.68 / 0.8888 28.21 / 0.7720 27.38 / 0.7284 25.44 / 0.7638 29.45 / 0.8946
MemNet [21] 678K 31.74 / 0.8893 28.26 / 0.7723 27.40 / 0.7281 25.50 / 0.7630 29.42 / 0.8942
IDN [10] 553K 31.82 / 0.8903 28.25 / 0.7730 27.41 / 0.7297 25.41 / 0.7632 29.41 / 0.8942
EDSR-baseline [16] 1,518K 32.09 / 0.8938 28.58 / 0.7813 27.57 / 0.7357 26.04 / 0.7849 30.35 / 0.9067
SRMDNF [24] 1,552K 31.96 / 0.8925 28.35 / 0.7787 27.49 / 0.7337 25.68 / 0.7731 30.09 / 0.9024
CARN [2] 1,592K 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837 30.47 / 0.9084
IMDN [9] 715K 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
RFDN-L [17] 643K 32.28 / 0.8957 28.61 / 0.7818 27.58 / 0.7363 26.20 / 0.7883 30.61 / 0.9096
MAFFSRN [19] 830K 32.20 / 0.8953 26.62 / 0.7822 27.59 / 0.7370 26.16 / 0.7887 - / -
LatticeNet [18] 777K 32.30 / 0.8962 28.68 / 0.7830 27.62 / 0.7367 26.25 / 0.7873 - / -
ESRT (ours) 751K 32.19 / 0.8947 28.69 / 0.7833 27.69 / 0.7379 26.39 / 0.7962 30.75 / 0.9100

Table 1. Quantitative comparison with SISR models. The Best and the second-best results are highlighted and underlined, respectively.



Bicubic SRCNN IMDNLapSRN CARN ESRT（Ours） Ground-Truth�2：

Bicubic SRCNN IMDNLapSRN CARN ESRT（Ours） Ground-Truth�3：

Bicubic SRCNN IMDNLapSRN CARN ESRT（Ours） Ground-Truth�4：

Figure 1. Visual comparison with lightweight SISR models. Obviously, ESRT can reconstruct realistic SR images with sharper edges.



ARFBs Set5 Set14 BSD100 Urban100 Manga109
1 32.07dB 28.53dB 27.58dB 26.23dB 30.60dB
3 32.11dB 28.60dB 27.63dB 26.38dB 30.70dB
5 32.19dB 28.69dB 27.69dB 26.39dB 30.75dB
6 32.18dB 28.69dB 27.70dB 26.37dB 30.74dB

Table 2. Study on the impact of different numbers of ARFB in the
low branch on model performance (x4).

ARFBs Set5 Set14 BSD100 Urban100 Manga109
0 32.17dB 28.59dB 27.55dB 26.22dB 30.61dB
1 32.19dB 28.69dB 27.69dB 26.39dB 30.75dB
2 32.20dB 28.71dB 27.71dB 26.44dB 30.78dB

Table 3. Study on the impact of different numbers of ARFB in the
upper branch on model performance (x4).

Adaptive Set5 Set14 BSD100 Urban100 Manga109
X 32.13dB 28.58dB 27.56dB 26.24dB 30.62dBp

32.19dB 28.69dB 27.69dB 26.39dB 30.75dB

Table 4. Study on the impact of adaptive scaling on model perfor-
mance (x4).

Case PSNR(dB) Parame.(K) GPU Memory
w/o TR 31.96 554 1931M

Original TR [22] 32.14 971 16057M
1 ET 32.18 751 4191M
2 ET 32.25 949 6499M
s=1 32.14 751 13580M
s=2 32.15 751 6731M
s=4 32.18 751 4191M
s=6 32.04 751 3159M

Table 5. Study of Efficient Transformer (ET) on Set5 (⇥4). The
GPU memory here refers to the cost of the model during training,
which patch size = 48*48 and batch size=16.

1.3. Study of Adaptive Scaling

ARFB contains two Residual Units (RUs) and two con-
volutional layers, which is one of the most basic compo-
nents to build the High Preserving Block (HPB). Mean-
while, a residual scaling with adaptive weights (RSA) is
designed to dynamically adjust the importance of residual
path and identity path. To verify the effectiveness of the
adaptive scaling mechanism, we provide a ablation study in
Table 4. Among them, X and

p
represent the models with

and without the adaptive scaling mechanism in ARFB, re-
spectively. Obviously, with the help of the adaptive scaling
mechanism, the performance of the model can be further
improved. This fully demonstrates the effectiveness of the
adaptive scaling mechanism.

1.3.1 Study of Efficient Transformer (ET)

To capture the long-term dependencies of similar local re-
gions in the image, we introduced the Transformer and pro-
posed a Efficient Transformer (ET). To illustrate the effi-
ciency and effectiveness of ET, we provide the following
experiments:

A. TR v.s. w/o TR: Firstly, we analyze the model with
and without Transformer in TABLE 5. We can see that if we
remove the Transformer, the model performance descends
obviously from 32.18dB to 31.96dB. From this case, it can
be inferred that the correlation of long-term image patches
is beneficial for image super-resolution. The reason is that a
natural scene image has many similar pixel blocks and these
blocks always can complete other missing information as a
reference. Therefore, the introduced Transformer can make
full advantage of this relationship.

B. ET v.s. Original TR: Secondly, we compare our ET
with the original Transformer in computer vision (ViT [8]).
From TABLE 5 we can see that for the original TR, it will
increase 417M parameters while our ET (1 ET) only in-
creases 197M parameters. This benefits from the Reduction
module that can reduce the number of channels. In addi-
tion, for GPU memory, the original TR occupies 16057M
memory which even cannot run on some common NVIDIA
GPUs like 1080Ti and 2080Ti. Contrastly, our ET just oc-
cupies 4191M GPU memory, which is only 1/4 of the origi-
nal Transformer. More surprising is that the performance of
the model with the original Transformer is even worse than
our ESRT (1 ET). This is because the model with the origi-
nal Transformer needs more data to train while the datasets
are usually small in the SISR task. This experiment further
verified the effectiveness of our proposed ET.

C. The Number of ET: In general, increasing the num-
ber of convolutional layers can increase the model perfor-
mance. In view of this, we also added the number of ET in
our model to explore its performance. From TABLE 5, we
can see that when the number of ET increases, the model
performance will be further improved. However, it is worth
noting that the model parameters and GPU memory will
also increase when the number of ET increases. Therefore,
to keep consistent with other lightweight models in the as-
pect of parameters, only one ET is used in the final ESRT.

D. The Splitting Factor s: In MHA, a Feature Split
Module (FSM) is used to split the original Q, K, and V into
s segments to save the GPU memory. Commonly, the s is
larger, the split segments are shorter and the GPU memory
occupation is less. In TABLE 5, we investigate the different
value of s. Obviously, the model achieves the best perfor-
mance when s = 4. Meanwhile, we can observe that the
change of s will not affect the number of model parameters.
Therefore, we set s = 4 in the final model.



Model Parameter GPU occupy Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR / SSIM

ESRT (Ours) 751K 4191M 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100
Pure ESRT (1ET) 357K 3967M 31.01/0.8751 27.85/0.7636 27.10/0.7203 25.00/0.7459 28.22/0.8726
Pure ESRT (2ET) 564K 5685M 31.77/0.8878 28.39/0.7758 27.42/0.7312 25.73/0.7728 29.76/0.8978
Pure ESRT (3ET) 771K 7409M 32.10/0.8926 28.59/0.7808 27.57/0.7360 26.13/0.7853 30.32/0.9057
Pure ESRT (4ET) 978K 9121M 32.29/0.8948 28.71/0.7830 27.64/0.7384 26.42/0.7936 30.69/0.9109
Pure ESRT (6ET) 1392K 12647M 32.36/0.8965 28.80/0.7850 27.70/0.7405 26.69/0.8016 30.97/0.9135
Pure ESRT (8ET) 1806K 16163M 32.40/0.8751 28.84/0.7858 27.73/0.7412 26.83/0.8048 31.11/0.9146

SAN [5] 15700K 12912M 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 31.18/0.9169

Table 6. Quantitative comparison between our ESRT, Pure ESRT, and SAN [5] (⇥4). The GPU memory here refers to the cost of the
model during training, which patch size = 48*48 and batch size=16.

Scale Bicubic SRCNN [6] VDSR [11] SRResNet [14] IMDN [9] LK-KPN [3] ESRT (Ours)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

⇥2 32.61 0.907 33.40 0.916 33.64 0.917 33.69 0.919 33.85 0.923 - - 33.92 0.924
⇥3 29.34 0.841 29.96 0.845 30.14 0.856 30.18 0.859 30.29 0.857 30.60 0.863 30.38 0.857
⇥4 27.99 0.806 28.44 0.801 28.63 0.821 28.67 0.824 28.68 0.815 28.65 0.820 28.78 0.815

Table 7. PSNR and SSIM comparison with other advanced SISR methods on the RealSR dataset.

�2

�3

�4

LR HRESRT

Figure 2. Visual comparison on RealSR dataset (version3). The
SR images reconstructed by our ESRT have more accurate edges.

1.4. Study of the Pure Transformer

In general, the pure Transformer-based architecture is
more efficient and scalable than previous CNN-based ar-
chitecture in both model size and computational cost. How-
ever, we find that the hybrid Transformer can perform better
than the pure Transformer model on a lightweight model.
To verify this view, we provide the performance of pure
Transformer-based ESRT. Specifically, we modify ESRT to
the pure Transformer by removing the LCB. We define the
modified Transformer as ”Pure ESRT”. According to TA-
BLE 6, it can be seen that if the number of ET in LTB
is set to 1 in both Pure ESRT and ESRT, the performance
of Pure ESRT will significantly decrease compared with
ESRT. This means that LCB can effectively compensate
for the lack of feature extraction capabilities of the Trans-

former. When the number of ETs in pure Transformer is
increased to 3, the parameters of the model are close to our
ESRT, but its performance is not as good as our ESRT and
it will take up more GPU memory. This fully demonstrates
the effectiveness of our proposed hybrid Transformer.

Meanwhile, we can see that our ”Pure ESRT (8ET)”
achieves close performance compared with the state-of-the-
art method SAN [5] with only one-ninth parameters. More-
over, our model even achieves better performance on Ur-
ban100 than SAN. This reflects that building Pure-ESRT
can achieve comparable SR performance compared with a
well-designed CNN model.

1.5. Real Image Super-Resolution

In this part, we compare our ESRT with more classic
lightweight SR models (e.g., SRCNN [6], VDSR [11], SR-
ResNet [14], IMDN [9] and LK-KPN [3]) on the real image
dataset (RealSR [3]). It is worth noting that since the reso-
lution of the LR and HR images is the same in RealSR, the
PixelShuffle is removed in our model and only one convo-
lutional layer is applied to change the feature map into SR
images. According to TABLE 7, we can observe that com-
pared to IMDN, the performance of ESRT gains 0.07dB,
0.09dB, and 0.10dB for scaling factors ⇥2, ⇥3, and ⇥4,
respectively. Also, our model has a close performance to
LK-KPN which was specifically designed for the RealSR
task. In addition, we provide the reconstructed SR images
in Figure 2. Obviously, our ESRT recovers line edges ef-
fectively, such as some Chinese words and English words.
Meanwhile, our ESRT can restore the texture details well,
such as the grid lines in the air conditioner. All these ex-



Method Dataset Parame. GPU Memory Set5 Set4 BSD100 Urban00 Manga109
SwinIR DIV2k + Flickr2K 897K 6966M 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151
ESRT DIV2k 751K 4191M 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100

Table 8. A detailed comparison of SwinIR and our ESRT (⇥4). The GPU memory here refers to the cost of the model during training,
which patch size = 48*48 and batch size=16.

periments show that our ESRT can also obtain a good SR
property in the real world.

1.6. Different from other Transformer-base Methods

In recent years, some Transformer-base methods have
been proposed for low-level image processing tasks. For
example, In IPT [4], a novel Transformer-based network
is proposed as the pre-trained model for low-level image
restoration tasks. However, IPT utilizes ImageNet (more
than 1.3M images) for training and has a huge number of
parameters (115.5M), which is difficult to use in practical
applications. In [23], RefSR uses different patches as the
Q, K, and V to fuse various information of the reference im-
ages. Our method also follows this idea but the difference is
that similar patches of ESRT are explored in the original im-
age itself. Meanwhile, The complexity and computational
cost of ESRT are lower than RefSR. In [15], a SwinIR is
proposed for image restoration. The EMHA in our ESRT is
similar to the Swin Transformer layer of SwinIR. However,
SwinIR uses a sliding window to solve the high computa-
tion problem of the Transformer while ESRT uses a splitting
factor to reduce the GPU memory consumption.

In addition, we selected the most representative SwinIR
for comparison. We use the official code and test it on our
server with the same environment and setting. The results
are provided in Table 8. Obviously, our ESRT achieves
close performance to SwinIR with fewer parameters and
GPU memory. It is worth noting that SwinIR uses an ex-
tra dataset (Flickr2K [1]) for training, which is the key to
further improving the model performance. For a fair com-
parison with methods such as IMDN, we did not use this
external dataset in this work. All these results further vali-
dates the effectiveness of the proposed ESRT.

2. Discussions
Benefits of LCB. LCB solves the problem of the poor

feature extraction ability of Transformer on small datasets.
It is a lightweight architecture that can efficiently extract
deep SR features. Meanwhile, LCB can be easily embed-
ded into any SISR model to reduce model parameters and
calculation costs, and maintain good performance.

Benefits of LTB. LTB solves the problem of heavy
GPU memory consumption in vision Transformer. Mean-
while, ET can model the dependence between long-term
sub-image blocks in the LR, enhancing the structural in-

formation of every image region. It has been improved that
model such a long-term dependency of similar local regions
is helpful for SR task. Meanwhile, ET is a lightweight and
universal module that can be embedded into any present SR
model to further improve model performance.

Limitations of ESRT. In this work, we propose a hy-
brid architecture consisting of CNN and Transformer. In
order to keep the low complexity of the model, we directly
connect the Transformer after the CNN. Although our ex-
periments have verified the effectiveness of this method, we
believe that there are more effective methods that can better
utilize the local features extracted by CNN and the global
relationship learned by Transformer. In future works, we
will explore more effective combining methods to further
improve the performance of the model.

References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In
CVPRW, 2017. 6

[2] N. Ahn, B. Kang, and K. A. Sohn. Fast, accurate, and
lightweight super-resolution with cascading residual net-
work. In ECCV, pages 252–268, 2018. 2

[3] Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei
Zhang. Toward real-world single image super-resolution: A
new benchmark and a new model. In ICCV, pages 3086–
3095, 2019. 5

[4] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yip-
ing Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu,
and Wen Gao. Pre-trained image processing transformer. In
CVPR, pages 12299–12310, 2021. 6

[5] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and
Lei Zhang. Second-order attention network for single im-
age super-resolution. In CVPR, pages 11065–11074, 2019.
5

[6] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. IEEE TPAMI, 38(2):295–307, 2015. 2, 5

[7] Chao Dong, Chen Change Loy, and Xiaoou Tang. Acceler-
ating the super-resolution convolutional neural network. In
ECCV, pages 391–407, 2016. 2

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 4



[9] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang.
Lightweight image super-resolution with information multi-
distillation network. In ACMMM, pages 2024–2032, 2019.
2, 5

[10] Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accu-
rate single image super-resolution via information distilla-
tion network. In CVPR, pages 723–731, 2018. 2

[11] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate
image super-resolution using very deep convolutional net-
works. In CVPR, pages 1646–1654, 2016. 2, 5

[12] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-
recursive convolutional network for image super-resolution.
In CVPR, pages 1637–1645, 2016. 2

[13] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-
Hsuan Yang. Fast and accurate image super-resolution
with deep laplacian pyramid networks. IEEE TPAMI,
41(11):2599–2613, 2018. 2

[14] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In CVPR, pages 4681–4690, 2017. 5

[15] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1833–1844,
2021. 6

[16] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In CVPRW, pages 136–144, 2017. 2

[17] Jie Liu, Jie Tang, and Gangshan Wu. Residual feature dis-
tillation network for lightweight image super-resolution. In
ECCV, pages 41–55, 2020. 2

[18] Xiaotong Luo, Yuan Xie, Yulun Zhang, Yanyun Qu, Cui-
hua Li, and Yun Fu. Latticenet: Towards lightweight image
super-resolution with lattice block. In ECCV, pages 272–
289, 2020. 2

[19] Abdul Muqeet, Jiwon Hwang, Subin Yang, JungHeum Kang,
Yongwoo Kim, and Sung-Ho Bae. Multi-attention based ul-
tra lightweight image super-resolution. In ECCV, pages 103–
118, 2020. 2

[20] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-
resolution via deep recursive residual network. In CVPR,
pages 3147–3155, 2017. 2

[21] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-
net: A persistent memory network for image restoration. In
ICCV, pages 4539–4547, 2017. 2

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 4

[23] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Bain-
ing Guo. Learning texture transformer network for image
super-resolution. In CVPR, pages 5791–5800, 2020. 6

[24] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a
single convolutional super-resolution network for multiple
degradations. In CVPR, pages 3262–3271, 2018. 2


