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Abstract—Recently, great progress has been made in single-image super-resolution (SISR) based on deep learning technology.
However, the existing methods usually require a large computational cost. Meanwhile, the activation function will cause some features
of the intermediate layer to be lost. Therefore, it is a challenge to make the model lightweight while reducing the impact of intermediate
feature loss on the reconstruction quality. In this paper, we propose a Feature Interaction Weighted Hybrid Network (FIWHN) to
alleviate the above problem. Specifically, FIWHN consists of a series of novel Wide-residual Distillation Interaction Blocks (WDIB)
as the backbone, where every third WDIBs form a Feature shuffle Weighted Group (FSWG) by mutual information mixing and fusion. In
addition, to mitigate the adverse effects of intermediate feature loss on the reconstruction results, we introduced a well-designed Wide
Convolutional Residual Weighting (WCRW) and Wide Identical Residual Weighting (WIRW) units in WDIB, and effectively cross-fused
features of different finenesses through a Wide-residual Distillation Connection (WRDC) framework and a Self-Calibrating Fusion (SCF)
unit. Finally, to complement the global features lacking in the CNN model, we introduced the Transformer into our model and explored
a new way of combining the CNN and Transformer. Extensive quantitative and qualitative experiments on low-level and high-level tasks
show that our proposed FIWHN can achieve a good balance between performance and efficiency, and is more conducive to downstream
tasks to solve problems in low-pixel scenarios.

Index Terms—Single-image super-resolution, Wide-residual distillation interaction, Hybrid network, Transformer
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1 INTRODUCTION

S Ingle-image super-resolution (SISR) aims to reconstruct
a high-resolution (HR) image from the degraded low-

resolution (LR) image. In recent years, SISR is receiving
increasing attention as high-resolution images are required
for various computer vision tasks, such as medical image
analysis, security surveillance, and autonomous driving [1],
[2]. However, it is still a challenging task since it is an
inverse problem. Recently, the appealing rise of deep neural
networks has further advanced the development of SISR.
For example, SRCNN [3] was pioneering work that first
used neural networks for image super-resolution, using
only a three-layer convolutional network but outperform-
ing other sparse representation-based methods by a large
margin. VDSR [4] increased the model depth to 20 layers
and achieved better performance. Subsequently, a range of
approaches [5], [6] relying on stacking network depth to
achieve better performance was proposed. However, the
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Fig. 1: Visual comparison of different interaction schemes
between CNN and Transformer. Existing methods suffer
from ambiguous artifacts.

computational overhead of these methods is so large that
they cannot be applied to realistic scenarios. For example,
the EDSR [5] has more than 40M parameters, which results
in slow inference speed and difficult deployment. Therefore,
lightweight models are urgently needed.

To shrink the model size, most existing approaches fo-
cus attention on the design of a rational model structure,
including weight sharing [7], multi-scale structures [8], [9],
strategies for neural structure search [10], grouped convo-
lution [11], [12]. However, MobileNetV2 [13] has verified
that activation functions such as Relu will cause the loss of
intermediate information, which is ignored by the existing
SISR approaches. Due to the loss of information caused by
the activation function, input features will be partially lost
during transmission as the depth of the network increases,
thus affecting the image reconstruction quality. The moti-
vation to mitigate the loss of information in the middle of
the model while lightweight motivates us to propose the
Feature Interaction Weighted Hybrid Network (FIWHN).
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Specifically, we designed wide-residual attention-weighted
units, including Wide Identical Residual Weight (WIRW)
and Wide Convolutional Residual Weighting (WCRW) as
the basic units of our CNN part. It mitigates the impact of
feature loss on image reconstruction by obtaining a broader
map of features before the activation function to compen-
sate for lost intermediate features. And according to the
Nyquist-Shannon sampling theorem, the down-sampling
process of LR generation from HR will cause aliasing effects
in the frequency domain, which which results in phase
distortion. The linear phase property of the lattice struc-
ture [14] can eliminate phase distortion and improve the
visual effect of the reconstruction [15]. So we chose the
Wide-residual Distillation Interaction Blocks (WDIB) with
the lattice structure as the block for combining wide-residual
attention weighted units. The WDIB has a paired butterfly
structure and adaptive combination of wide residual blocks
through attention-based connection weights, resulting in a
compact network with strong expressive power. Meanwhile,
the split-feature distillation plus jump connections brought
about by the Wide-residual Distillation Connection (WRDC)
framework and the fusion of different classes of features by
Self-Calibrating Fusion (SCF) give WDIB better generalisa-
tion. Then, Several WDIBs then form a a Feature shuffle
Weighted Group (FSWG), which achieves full use of the
middle layer information at group level by blending and
fusing the features output from each WDIB with each other
and then weighting them. It is worth noting that we have
introduced a parameter sharing mechanism between every
two WDIBs to achieve computational savings.

Recently, we note that Transformer has revealed remark-
able performance in many visual tasks [16], [17], and some
Transformer-based methods have also shown their great
potential for SISR. For instance, SwinIR [18] makes better
use of the Transformer’s long-range modeling to accomplish
SISR by using a sliding window mechanism to solve the
problem of uncorrelated edges between different patches.
By using a hybrid network of CNN and Transformer, [19],
[20], [21], [22] show advantages that pure CNN or pure
Transformer does not have. Therefore, our method also in-
troduces Transformer to help long-range modeling. It is ben-
eficial for CNN and Transformer to adjust their respective
weights by combining the information extracted from each
other during the training process, such as [23]. However,
due to the weak ability of existing SISR methods to interact
the flow of local information with global information, as
shown in Fig. 1, it is easy to generate ambiguous artifacts.
Therefore we also explore a better scheme of combining
CNN and Transformer, which can further facilitate the in-
teraction between the features extracted by both.

In summary, the main contributions are listed as follows:

• Wide-residual attention weighting units for SISR, in-
cluding Wide Identical Residual Weighting (WIRW)
units and Wide Convolutional Residual Weighting
(WCRW) units, are proposed that can mitigate the
negative impact of intermediate feature loss through
the mechanism of wide residuals.

• In WDIB, we have designed a Wide-residual Distilla-
tion Connection (WRDC) framework to enhance in-
formation flow by leapfrogging features with differ-

ent degrees of distillation within the module. Mean-
while, we propose a self-calibrating fusion (SCF) unit
to replace the traditional concat operation by an
effective feature-weighted interactive fusion.

• An elaborate feature shuffle weighted group (FSWG)
is used for pairwise feature shuffle fusion, which
consists of a series of interacting WDIBs, and it is
also the main fundamental component that forms the
CNN part of our model.

• We introduce the Transformer in our proposed ap-
proach to facilitate the exchange of global and local
middle layer information through a novel interaction
framework, and extensive experiments show that
our approach can achieve a better balance between
efficiency and performance.

In this work, we mainly expand the following contents
compared with the conference version [24]:

• To speed up the inference of the model, we in-
crease the dimensionality of the channels, reduce the
number of FSWGs modules, and further compress
the size of the CNN part by a parameter sharing
strategy. Experiments show that such a strategy can
exponentially accelerate the inference speed.

• After compressing the volume of the CNN part, we
supplement the missing global information of the
model with an effective Transformer part. Based on
current common combinatorial frameworks, we de-
sign a framework that is more conducive to informa-
tion flow, and extensive experiments show that our
proposed combined CNN and Transformer model
outperforms existing state-of-the-art methods.

• We have added more detailed experiments and anal-
ysis, such as quantitative inference times and more
detailed feature visualizations. In addition, the effec-
tiveness of our proposed method is also validated
on wider range of super-resolution tasks and down-
stream tasks. The experiments show that our method
is a competitive approach in super-resolution tasks.

2 RELATED WORK
Deep learning methods have made great progress in the task
of image super-resolution, and here we focus on the related
lightweight SISR model, wide-Residual attention weighting
learning, and Transformer-based SISR model.

2.1 Lightweight SISR Model
For SISR to successfully apply to mobile devices, compre-
hensive concerns have been paid to lightweight models of
SISR in research [25], [26], [27], [28]. In summary, the existing
methods can be roughly grouped into the following cate-
gories: efficient model structure design-based methods [24],
[29], [30], pruning or quantification techniques based meth-
ods [31], and knowledge distillation based methods [32].
Weight sharing and channel grouping are the methods used
to reduce the model size for most of the models related
to structural design. [11], [33] learns the representation
of features in different layers by recursive cascading, and
then [34] reuses the features in the intermediate layers by
recursive learning. IDN [35] and IMDN [29] use a strategy
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Fig. 2: The architecture of the proposed Feature Interaction Weighted Hybrid Network (FIWHN). The ”Trans” in the
diagram is short for ”Transformer”.

of channel splitting followed by hierarchical distillation to
extract more features at different levels. And FALSR [10] ap-
plies neural architecture search (NAS) to the SISR task to get
a compact network and achieve good performance by the
search strategy, which also provides a new paradigm for us
in the structure design-based methods. In addition, model
compression methods based on knowledge transfer [32] are
gradually being explored in the direction of SISR to improve
student model performance by distillation of small student
models with pre-trained large teacher models. Finally, for
the pruning-based approach, [36] prunes the secondary
model weights to achieve a smaller loss of accuracy while
reducing the model size. Our proposed FIWHN belongs
to the first class of structural design-based approaches. By
discussing the inter-block deployment design relationships
between modules, we aim to explore how to combine exist-
ing basic units, such as convolutional layers and transform-
ers, to efficiently make the model lightweight. Although
work on lightweighting such as this has been extensively
explored, there are still many unanswered topical questions
that require further research.

2.2 Wide-Residual Weighting Learning
Studies [4], [37] have argued that deeper networks have the
potential to be more expressive and to obtain better per-
formance. For example, VDSR [4] uses a 20-layer network,

EDSR [5] uses a 65-layer network, and RCAN [37] has a
network depth of even more than 800 layers. However, it
was then found that the performance of the model does not
necessarily get better with the depth of the network but may
decrease instead. Studies such as MobileNetV2 [13] point
out that the activation functions we use extensively in our
models may be responsible for the formation of this feature
degradation situation. It points out that the Relu function
causes the death of some neurons while increasing the non-
linearity, resulting in the loss of intermediate features, and
the model degradation will be more severe as the number of
network layers increases. The residual structure represented
by ResNet [38] can largely alleviate this feature degradation
problem, and this mechanism is also widely used on the task
of SISR, but it is still not enough. Since MobileNetV2 [13]
also points out that the ReLU activation function causes a
large loss of low-dimensional feature information, but less
and less information is lost as the dimensionality increases.
Meanwhile, WDSR [39] also found that models with wider
features before the Relu activation layer can achieve better
performance. Motivated by these works, we combine the
wide residual mechanism with the attention mechanism,
and together with the use of adaptive multipliers that can
change the network weights adaptively with training, so
our proposed residual block can achieve efficient feature
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extraction while keeping it lightweight.

2.3 Transformer-based SISR Model

Transformer first appeared in natural language process-
ing(NLP) and has recently demonstrated its powerful ca-
pabilities in many tasks [23], [40] in computer vision.
The Transformer-based approach for SISR has also been
widely studied recently. SwinIR [18] achieved state-of-the-
art performance when it first introduced Transformer-based
strategies to the SISR task. ESRT [19] and LBNet [20]
then combined the lightweight CNN with the lightweight
Transformer in the SISR task to achieve a good balance in
many metrics. Next, ELAN [21] further improves perfor-
mance and accelerates the model by grouping multi-scale
self-attentive schemes and attention-sharing mechanisms.
With the advantage of long-range modeling, Transformer
is able to capture global texture features that are difficult
to obtain by CNN but beneficial for image recovery. Given
Transformer’s impressive performance in SISR tasks and its
unique feature extraction capabilities, we introduced it into
our approach to complement global features and leverage its
efficient feature extraction capabilities to facilitate our model
to further recover sharper and more accurate textures.

3 PROPOSED METHOD

In this section, we first give the general structure of the
model, including the backbone FSWG of the CNN part
and the backbone of the Transformer. And then give our
proposed WDIB, which consists of three parts: the wide
residual attention weighting unit as the basic unit, the lattice
block structure for combining the wide residual attention
units, and the WRDC framework and SCF unit. Finally,
the combined model of CNN and Transformer and the
supervision function for model training are given.

3.1 Feature Interaction Weighting Hybrid Network
FIWHN for SISR. As presented in Fig. 2, it is mainly
composed of three parts, shallow feature extraction part,
deep feature extraction part, and upsampling part, where
the deep feature extraction part is composed of CNN to-
gether with the cooperation of Transformer. We use ILR and
ISR to represent the input low-resolution image and super-
resolution image, respectively.

Firstly, the shallow feature extraction module consists of
a convolutional layer with a boosted convolutional kernel
size of 1. The shallow features FS can be expressed as:

FS = GS(X), (1)

whereGS(.) denotes the shallow feature extraction function.
Then, FS is sent to the deep feature extraction stage for
feature mapping:

FD = GConcat(C(FS)↔ T (FS)), (2)

where C(.) denotes the CNN group, T (.) denotes the Trans-
former group,↔ denotes the information exchange process
between CNN and Transformer, and GConcat represents the
feature fusion process. After extracting and then fusing the
local features and global features respectively, we obtain the
depth feature FD.

Feature Shuffe Weighted Group (FSWG). Most of the
existing methods connect only the residuals between blocks,
and the hierarchy of feature interaction between blocks is
often ignored. Therefore, we introduce a feature shuffling
and fusion mechanism in FSWG to fuse, group, and shuffle
the features of different receiver domains successively. As
shown in Fig. 2, the FSWG, as the backbone component of
the CNN part, consists of 3 interacting WDIBs. Specifically,
we blend and shuffle the adjacent WDIB output features
forward progressively. The cascade operation GCGS can be
represented as:

GCGS = GShuffle(GGConv(GConcat[xi, xi+1])), (3)
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Fig. 4: The detail of the combination coefficient learning.

where GGConv represents the operation of group convolu-
tion, GShuffle represents the operation of channel shuffling,
xi and xi+1 represent the output features of the two blocks
to be fused respectively. Next, we set up a reasonable group
to control the optimal number of graded shuffle fusions.
Finally, adaptive multipliers are applied to the fused fea-
tures between blocks as well as to the original features of
the input, respectively, allowing the network to better adjust
the weights with training. Defining the input asWin and the
output as Wout, the process can be represented as:

WCGS = F 2
CGS(F 1

CGS(W1,W2),W3), (4)

Wout = λx(WCGS +W3) + λresWin, (5)

where Wi represents the output of the i-th WDIBs, FCGS
represents the function of the i-th F iCGS , and WCGS rep-
resents the output features obtained from different blocks
after a series of fusion grouping and shuffling.

Efficient Transformer (ET). Due to the limited network
depth of lightweight models and the fact that convolutional
neural networks (CNN) follow a local feature extraction
pattern. Under these conditions, the lightweight pure CNN
network is far from adequate for reconstructing high-quality
images. To improve this problem, we compressed the size of
the CNN and introduced an efficient Transformer to learn
the long-distance dependence of the images. In terms of
details, as show in Fig. 5, we follow ESRT’s [19] design
philosophy in terms of multi-headed attention (MHA) so
that it takes up less GPU training memory. By splitting the
token of Q, K, V (Q,K, V ) ∈ (B, heads,H ∗W,C/heads)
generated by the linear layer along the dimensions of width
and height, it can be formulated as the following:

(Q1...Qn), (K1...Kn), (V1...Vn) = Split(Q,K, V ). (6)

Then, the sub-token obtained after subsequent splitting is
matrix multiplied on a field of only 1

n (n represents the
number of feature splits, and we chose four splits.) of the
original perception, effectively reducing the memory con-
sumption. Finally, the sub-attention obtained from the ma-
trix dot product is merged to obtain the final self-attention,
and the process can be described as follows:

Oi = Attentioni(Qi,Ki, Vi) = softmax(
QiK

T
i√

dk
)Vi, (7)

Attention(Q,K, V ) = Concat(O1, ..., On). (8)
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Fig. 5: The architecture of the Efficient Transformer (ET).

3.2 Wide-Residual Distillation Interaction Block
Lattice structure. Inspired by the advantages of lattice
blocks [30], as shown in Fig. 3, we use this structure to
combine wide-residual weighted blocks, which consist of
paired butterfly structures that are designed to connect
upper and lower features by combining learning coeffi-
cients. And each butterfly structure can bring a different
combination pattern for the residual units. And we perform
jump feature splitting and information refinement while
combining residual blocks, and use the idea of information
distillation [29], [35] to efficiently perform feature selection
and fusion. Specifically, For the input feature Xin, which is
fed into the upper and lower branches, we define Fir as the
WIRW unit and Fcr as the WCRW unit, and the operation
of the upper branch can be described as:

Xremain1, Xdistill1 = Split(Fir(Xin)), (9)

X1 = Fcr(Xremain1). (10)

The upper and lower branches are then connected via the
first butterfly mechanism, and the process can be formulated
as:

Vi−1 = Θ(Xin, X1) = Xin +X1M
u
i−1

(X1), (11)

Ui−1 = Θ(X1, Xin) = X1 +XinM
d
i−1

(Xin), (12)

where Mu
i−1

and Md
i−1

represent the two combined coeffi-
cient learning mechanisms connecting the upper and lower
branches in the first butterfly structure, respectively, and
their details can be found in Fig. 4. Compared to the average
pooling used in traditional channel attention, the standard
difference pooling branch is added here to obtain better
visualization, as has been verified in [29]. Where Ui−1 and
Vi−1 represent the output features of the upper and lower
branches after passing through the first butterfly structure,
respectively. Subsequently, Ui and Vi are fed into the second
butterfly structure, which proceeds similarly to the first
butterfly structure and the process can be expressed as:

Xremain2, Xdistill2 = Split(Fir(Vi−1)), (13)

X2 = Fcr(Xremain2), (14)
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Vi = Θ(X2, Ui−1) = X2 + Ui−1M
u
i (Ui−1), (15)

Ui = Θ(Ui−1, X2) = Ui−1 +X2M
d
i

(X2). (16)

Similar to the previous, Ui and Vi represent the output
features of the upper and lower branches after the second
butterfly structure, respectively, and Mu

i and Mu
i represent

the combined coefficient learning mechanism above and
below the connection of the second butterfly structure. At
the same time, the features split out of the upper and lower
branches also complete the non-linearization of the coarse
features by the operation of convolution plus sigmoid, and
the coarse features Xdistill u of the upper branch and the
coarse features Xdistill d of the lower branch are obtained,
respectively, and the process can be expressed as:

Xdistill u = Fsigmoid(Fconv3(Xdistill1)), (17)

Xdistill d = Fsigmoid(Fconv3(Xdistill2)). (18)

Next, the obtained coarse features Xdistill u and Xdistill d

interact with the fine features Ui and Vi modulated by
the attention-based combined coefficient learning mecha-
nism to achieve feature blending with different degrees of
refinement. Finally, the blended features Xi and Xj are
fused using our well-designed Self-Calibration Fusion (SCF)
module to jump-start the adaptive fusion of the blended
features obtained from the two branches. And the original
input features are retained using residual concatenation. It
can be formulated as:

Xout = FSCF (Fir(Xi), Fir(Xj)) +Xin, (19)

where FSCF represents the SCF module. As for the fusion
method within SCF, the output of the upper and lower
branches is first multiplied by the adaptive weights, and
then a concat operation is executed. Subsequently, different
degrees of refinement is implemented on the fused features,
and the various types of information finally obtained make
up the reference fused features. Due to the adaptive multi-
pliers in the module that continuously adjust and calibrate
the output network weights during training, a better perfor-
mance than the traditional fusion operation can be achieved.

Wide-Residual Distillation Connection (WRDC). As
shown in Fig. 3, the Wide Residual Distillation Connection
(WRDC) is the main component of the model, which in-
cludes Wide Convolutional Residual Weighting (WCRW),
Wide Identical Residual Weighting (WIRW) units, and jump
connections for feature refinement. Both WIRW and WCRW
introduce a wide range of activation mechanisms to reduce
the loss of intermediate layer features and extract richer
features with less computation by the idea of wide residuals.
For WIRW, specifically, the wide residual mechanism splits
the first 3 × 3 convolution in the original residual into two
1× 1 convolutions, and the channel dimension is increased
significantly on the first 1 × 1 convolution to cope with
the subsequent activation function and reduce the feature
loss. The second 1× 1 convolution is then used for channel
dimensionality reduction to avoid the huge number of pa-
rameters from the 3× 3 convolutional layers used to extract
features. For the input feature x, the broad features obtained
by this process can be expressed as:

xwide = Fconv3(Fconv1↓(Frelu(Fconv1↑(x)))), (20)

where Fconv1↑ represents the channel up-dimensioning op-
eration of the first 1× 1 convolution, Fconv1↓ represents the
channel down-dimensioning operation of the second 1 × 1
convolution, Frelu represents the Relu activation function
used for nonlinearization, and Fconv3 represents the 3 × 3
convolution used for feature extraction. Since all the high-
dimensional channel operations are performed on the 1× 1
convolution, such operations do not cause a large compu-
tational load. Subsequently, adaptive multipliers are added
to the main branch and the residual branch of the residual
block to achieve autonomous adjustment of the weights of
the residual block during training. It is worth noting that
WCRW has 3 × 3 convolution layers added to its shortcut
path compared to WIRW, allowing it to match the original
input channel size after channel splitting. Thus the outputs
ywirw and ywcrw of WIRW and WCRW can be expressed
respectively as:

ywirw = λx1xwide + λres1x, (21)

ywcrw = λx2xwide + λres2Fconv3(x), (22)

where λxk and λres2 (k=1,2) denote the adaptive weighted
multipliers of the k-th wide residual weighted unit. In addi-
tion, a convolutional layer is introduced in the distillation
connection part to extend the dimensionality of the split
channels, and the Sigmoid function nonlinearities of the
obtained coarse features to obtain the low-frequency feature
maps. Finally, these features are multiplied with the high-
frequency feature maps obtained by the dual action of wide
residual units plus combined coefficient learning to achieve
the interaction of various types of pattern features.

3.3 The Interaction of CNN and Transformer

In SISR tasks, methods based on the interaction of CNN
and Transformer have been widely applied recently, and
the architecture they are integrated can be roughly divided
into the three categories (a), (b), (c) in Fig. 6. Some methods
use the structure of (a) and (b) in Fig. 6 by concatenating
CNN and Transformer to focus on local and global features
in batches, such as ESRT [19], LBNet [20], and CFIN [22],
etc. Another class of methods, such as TANet [41], uses the
structure of (c) in Fig. 6 to accomplish the feature extraction
task in image reconstruction by connecting the CNN and
Transformer in parallel and then fusing the extracted local
features with the global features. However, most of these
methods ignore the issue that the local features extracted
from the middle layer of the model are more beneficial
to image reconstruction after interacting with the global
features. Our proposed interaction approach allows local
and global patterns to flow freely in the network, making
the two patterns guide each other. Thanks to this inter-
acted approach, our model has the potential for multiple
interaction between local and global features, as shown in
Fig 6. Compared with the single combined mode of previous
methods, our interaction approach is more conducive to
improve the generalization of the model and enhance the
image reconstruction quality.
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Fig. 6: Exploring how to combine CNN and Transformer
efficiently and the potential of our method for multiple
combinations of both.

3.4 Loss Function

For the pairs
{
IiLR, I

i
HR

}N
i=1

in the training set, the recon-
struction loss of our method FIWHN during training can be
expressed as:

Loss(θ) = argmin
θ

1

N

N∑
i=1

∥∥FIWHN(IiLR)− IiHR
∥∥
1
, (23)

where N represents the number of LR-HR pairs in the
training set, and θ represents the parameters size of FIWHN.

4 EXPERIMENTS
In this section, we describe in detail the ablation experi-
ments for each module and the performance of our method
for various types of super-resolution tasks.

4.1 Datasets

We use DIV2K [42] as the training set in this experiment,
which is a high-definition dataset including images of var-
ious natural scenes. It includes 900 high-resolution images,
of which the first 800 are used for training and the last
100 for validation. And the LR samples are generated using
a double triple downsampling method as used in articles
such as [37]. In addition, we test our method on commonly
used benchmark datasets including Set5 [43], Set14 [44],
BSDS100 [45], Urban100 [46], and Manga109 [47].

4.2 Implementation Details

For training, we set the initial learning rate to 5e-4 and use
the cosine annealing strategy to finally decay to 6.25e-6 at
1000 epochs. The optimizer is the Adam optimizer, where
the β1 parameter is set to 0.9 and the β2 parameter is set
to 0.999. We randomly crop patches of size 48×48 from
the training set as the input for training, while performing
data enhancement strategies such as random rotation and
random flipping on them. All our training is done using
the Pytorch framework on an NVIDIA RTX 2080Ti. In the
final model, we set the initial channel to 32 for the CNN
part and 144 for the Transformer part, and we use weight
normalization [48] after the convolutional layers in the wide
residual block to speed up the convergence of the training.
It takes about one to two days to train our full model.
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Fig. 7: Study of different numbers of WDIBs.

For evaluations, we mainly use the commonly used eval-
uation metrics, including peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM). It is worth noting that both
metrics are measured on the Y channel on YCbCr space [37].
In addition, for the task of face super-resolution, we intro-
duce two extra key metrics, Learned Perceptual Image Patch
Similarity (LPIPS) and Visual Information Fidelity (VIF), to
measure the perceptual quality of the face images.

4.3 Ablation Study
The effectiveness of WIRW and WCRW. To compare the
superiority of the residual blocks under the broad activation
mechanism over the normal residual blocks, we use the
basic residual blocks instead of WIRW and WCRW and
repositioned them in WDIB, and treat them as the base-
line model. The baseline residual block includes two 3×3
convolutions and one relu activation function. To explore
the effect of the number of channels before the activation
function on the quantitative performance of SR, we set the
number of channels before the activation function to 64 and
120, respectively. We can see from TABLE 1 that: i) FIWHN
can achieve better performance and faster inference speed
with less number of parameters and Multi-adds compared
to the baseline model; ii) by increasing the number of
channels before the activation function (case2 and case3),
the performance of the model can be further improved with
a little additional computational load.

In addition, we also provide visual results to observe
the beneficial effects of the wide residual mechanism on
feature extraction. As shown in Fig. 8, we depict the feature
maps for the normal residual block and our wide residual
block, respectively. It can be seen that the features extracted
by the normal residual block lost many details in contour
texture regions, which are crucial for faithful image recov-
ery. On the contrary, our wide residual mechanism can
significantly alleviate the loss of these intermediate useful
features mentioned above. This further validates that our
proposed WIRW and WCRW can help to recover higher-
quality images with more realistic details.

The effectiveness of WDIB. First, we analyze the in-
ternal composition of WDIB in TABLE 2, including our
proposed modules WRDC (Case 1), SCF (Case 2) and ⊗
(adaptive multiplier, Case 4), demonstrating their indis-
pensability in the model composition. From the compar-
ison of case 1, case 2 and baseline, We can see that our
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TABLE 1: Analysis of the effect of the wide residual mecha-
nism on WIRW and WCRW.

Methods Channels Params Multi-adds Set5(×4)
PSNR / Time

Baseline 32 223K 12.69G 31.75 / 7.22ms
FIWHN 64 147K 4.46G 31.76 / 5.72ms
FIWHN 120 175K 9.89G 31.83 / 6.49ms

TABLE 2: Impact analysis of different module combinations
in the WDIB framework.

Methods WRDC SCF BI ⊗ Params Multi-adds Set5(×4)
PSNR / SSIM

Baseline # # # # 59.3K 3.36G 31.17 / 0.8791
Case 1 ! 49.2K 2.11G 31.17 / 0.8799
Case 2 ! 69.5K 3.62G 31.35 / 0.8824
Case 3 ! 59.3K 3.36G 31.22 / 0.8791
Case 4 ! 59.3K 3.36G 31.21 / 0.8794

FIWHN ! ! ! ! 69.9K 2.57G 31.42 / 0.8835

proposed WRDC module is able to save about 13% of the
number of parameters and 37% of the Multi-adds due to
the wide residual mechanism, while performing slightly
better performance than that of baseline. The SCF module
even improves the PSNR value by 0.18 dB with less than
10K parametric gain. Although the adaptive multiplier only
improves the PSNR by 0.04 dB compared to baseline, it is
worth noting that its usage does not impose any additional
computational load and does not slow down the inference
process. Ultimately our model improves the performance
substantially after aggregating these submodules.

Next, we present in TABLE 3 a cross-sectional compari-
son of our proposed WDIB with the sub-block of some meth-
ods in terms of PSNR values, model complexity, and infer-
ence speed. These methods include state-of-the-art models
such as RCAN [37], IMDN [29], RFDN [49], LatticeNet [30],
ESRT [19], and LBNet [20]. Since the number of parameters
of individual blocks in different methods varies greatly, to
make a fair comparison, we stack these blocks to a similar
number of parameters and then compare them in all aspects.
As can be seen from the table, our proposed WDIB achieves
the best performance with less computation. Moreover, due
to the parallel structure adopted in the module, our model
depth is shallower and the inference speed is the second
fastest among these methods. After weighing the model ca-
pacity, inference speed, and reconstruction accuracy, WDIB
is a better choice to cope with efficient image reconstruction.

The combination structure of FIWHN. The combination
structure of our proposed model consists of two main parts.
The first is the feature grouping shuffle fusion part of the
combined WDIB, which is mainly designed to alleviate the
problem that the output are not well communicated be-
tween blocks. In TABLE 2, we compare the performance of
the model with and without Block Interaction (BI) between
blocks. Case 3 has only one more BI part compared to the
baseline and with almost no increase in computational load.
The PSNR value of the small model increases by 0.05 dB.
This also illustrates that the communication between blocks
benefits image reconstruction. In addition, since the outputs
between blocks may suffer from information loss during
information transfer, we also explore the optimal number of
inter-block feature mixing and fusion. As can be seen from

TABLE 3: Evaluate the effectiveness of our WDIB.

Methods Depth Params Multi-adds Set5(×4)
PSNR / Time

RCAB [37] 35 66.8K 3.78G 31.27 / 2.43ms
IMDB [29] 32 60.0K 3.42G 31.40 / 4.37ms
RFDB [49] 24 63.2K 3.51G 31.36 / 3.51ms

LB [30] 39 65.2K 3.66G 31.34 / 4.41ms
HPB [19] 48 64.5K 3.78G 31.36 / 6.81ms

LFFM [20] 25 61.2K 3.47G 31.37 / 3.05ms
WDIB 26 61.0K 2.49G 31.44 / 3.02ms

TABLE 4: Experiments about the performance of various
combined CNN and Transformer architectures setting.

Scale Architecture Set14 B100 Urban100 Manga109

×4
Fig. 6 (a) 28.72 27.63 26.40 30.89
Fig. 6 (b) 28.71 27.64 26.33 30.75
Fig. 6 (c) 28.61 27.58 26.18 30.56
ours: (d) 28.76 27.68 26.57 30.93

Fig. 7, the performance of the model reaches its best when
the number of WDIBs composing FSWG is 3. Therefore, we
use three WDIBs to form the FSWG in this work.

The second part of the combined structure is combining
the CNN with the Transformer. In TABLE 4, we evaluate
several combinations as shown in Fig. 6. Compared with
simple CNN followed by Transformer or simple Trans-
former followed by CNN, or simple parallel CNN with
Transformer, our scheme achieves better performance. It is
worth noting that the combination approach does not affect
the overall computational load, and the parallel structure
will have a lower model depth and faster inference speed
compared to the serial one. These experiments on com-
bination architectures all show that a good combination
architecture can significantly enhance model representation
ability while imposing little computational load. And also
demonstrates that the features in the middle layer, both
local-based and global-based, need to be well connected
and combined to maximize the model generalization ability.
To visualize the effects of CNN and Transformer on the
attention area, we provide the feature heat maps at the
branch of the model with different structures. As shown
in Fig. 9, when the model contains only the CNN part,
the attention to the image can only focus on the local area.
When the model contains only the Transformer part, it can
effectively focus on the global image information but may
ignore some local detail information. After integrating CNN
and Transformer, it can take into account the local and global
areas simultaneously and more details are activated.

Model complexity analysis. As shown in Fig. 10, we
have made comprehensive comparisons with some state-of-
the-art methods in terms of inference time, PSNR perfor-
mance, and the number of parameters. It can be seen that
our method achieves the best performance with a smaller
number of parameters. Moreover, it is worth mentioning
that our method is one of only halves of the methods that
have an average single-image inference speed of fewer than
0.1 seconds. Therefore, we can conclude that our approach
achieves a better balance between model complexity, perfor-
mance, and inference speed compared to other methods.
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Fig. 9: Heat maps about the internal composition of FIWHN.

4.4 Comparisons with State-of-the-Art Methods

In this section, we perform an extensive comparison with
state-of-the-art methods on the mainstream SR benchmark
datasets. The quantitative comparison results for ×2, ×3,
and ×4 image SR are given in TABLE 7, where ”+” is the
result of using self-ensemble. It can be clearly seen that our
proposed FIWHN and FIWHN+ achieve the best and the
second-best performance on almost all datasets. Moreover,
by stacking limited computational resources, the number of
parameters and the Multi-adds of our method is much lower
than most of the methods. Meanwhile, compared to our
conference version FDIWN [24], we have further improved
the performance with only a small increase in computational
cost. In particular, on Urban100 and Manga109 test sets, the
performance gain is more than 0.3 dB on average for all
three scale factors. These improvements demonstrate the
effectiveness of our enhanced utilization of intermediate
layer features through a wide residual mechanism and the
necessity of using the Transformer to complement the global
features of the CNN model.

In addition, we also compare our method with some
advanced Transformer-based methods in TABLE 6. It can be
clearly seen that the average performance of our method on
several datasets is much better than those of ESRT [19], LB-
Net [20], CFIN [22], and roughly comparable to SwinIR [18].
However, it is worth noting that SwinIR additionally uses
a pre-training strategy to enhance the model performance
and uses a larger patch size for training, which is known to
imply potentially better performance. And it has a substan-
tially higher number of parameters and computations than
our method. In terms of the difficulty of model promotion
and deployment, our model has no major disadvantage in
terms of training memory and inference time. The training
of our model can be done on an NVIDIA RTX 2080Ti, and
the inference speed is the second fastest among these meth-
ods. The smaller computation size is also an advantage of
our FIWHN in deployment. All these experiments illustrate
that our proposed FIWHN is a very competitive approach.

Fig. 10: Model inference time studies on Urban100 (×2).

TABLE 5: Analyze the accuracy of face detection and recog-
nition on the CelebA and Helen datasets.

Methods CelebA Helen
Detection
Accuracy↑

Recognition
Accuracy↑

Detection
Accuracy↑

Recognition
Accuracy↑

HR 100% 99.8% 100% 100%
Bicubic 96.5% 19.8% 94.0% 76.0%

SAN [50] 99.7% 95.7% 100% 88.0%
RCAN [37] 99.6% 96.9% 100% 84.0%
HAN [51] 99.7% 96.8% 98.0% 66.0%

SPARNet [52] 99.6% 97.3% 100% 94.0%
IMDN [29] 99.7% 97.5% 96.0% 94.0%

FDIWN [24] 99.7% 97.8% 100% 96.0%
FIWHN(ours) 99.8% 98.6% 100% 98.0%

A qualitative comparison of our method with other
methods is shown in Fig. 11. To make the comparisons more
convincing, these comparison methods include the latest
CNN-based methods and Transformer-based methods. And
we not only give the visual comparison, but also the cor-
responding PSNR/SSIM values for each image. As can be
seen in the figure, our method not only has higher PSNR
values, but also outperforms other methods in terms of the
visual quality of details on multiple validation sets, and can
recover diverse texture details more accurately at all scales.

5 EFFECTIVENESS ON OTHER SISR TASKS
In this section, we describe the performance of FIWHN
on face super-resolution and real-world image super-
resolution. To further illustrate the effectiveness of our
method, we also verify the beneficial effects of low-quality
images after super-resolution on some downstream high-
level tasks.

5.1 Face Image Super-Resolution
Dataset and implement details. We use CelebA [62] to
train and Helen [63] to evaluate. We crop face images with
128×128 pixels from the CelebA set to use as HR and then
obtain LR images of the desired size by several downsam-
pling. Face super-resolution methods such as Sparnet [52]
are used for face reconstruction by encoding, feature extrac-
tion and decoding. The encoding and decoding processes
are almost same for most methods, so we replace the feature
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TABLE 6: Comparison with some Transformer-base methods for ×4 SR. * means this model is pre-trained based on the ×2
setup and the training patch size is set to 64 × 64 (ours is 48 × 48 and without pre-training).

Methods Params Multi-adds GPU Time Set14 BSD100 Urban100 Manga109 Average
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

SwinIR* [18] 897K 49.6G 10500M 55ms 28.77 / 0.7858 27.69 / 0.7406 26.47 / 0.7980 30.92 / 0.9151 28.46 / 0.8192
ESRT [19] 751K 67.7G 4191M 34ms 28.69 / 0.7833 27.69 / 0.7379 26.39 / 0.7962 30.75 / 0.9100 28.38 / 0.8160
LBNet [20] 742K 38.9G 6417M 49ms 28.68 / 0.7832 27.62 / 0.7382 26.27 / 0.7906 30.76 / 0.9111 28.30 / 0.8147
CFIN [22] 699K 31.2G 11419M 45ms 28.74 / 0.7849 27.68 / 0.7396 26.39 / 0.7946 30.73 / 0.9124 28.35 / 0.8169

FIWHN(ours) 725K 35.6G 7579M 38ms 28.76 / 0.7849 27.68 / 0.7400 26.57 / 0.7989 30.93 / 0.9131 28.49 / 0.8186

Urban100 (×2):
img092

HR Bicubic VDSR [4] CARN-M [11] CARN [11] IMDN [29]
PSNR/SSIM 19.15/0.6690 22.37/0.8185 22.54/0.8261 23.21/0.8410 23.72/0.8511

MADNet [54] AWSRN-M [53] LBNet [20] BSRN [61] FDIWN [24] Ours
22.89/0.8337 23.70/0.8510 24.05/0.8552 23.53/0.8498 23.84/0.8532 24.40/0.8625

Urban100 (×3):
img048

HR Bicubic VDSR [4] CARN-M [11] CARN [11] IMDN [29]
PSNR/SSIM 19.59/0.7581 21.31/0.8550 21.97/0.8757 22.32/0.8842 22.36/0.8872

MADNet [54] AWSRN-M [53] LBNet [20] BSRN [61] FDIWN [24] Ours
22.15/0.8784 22.26/0.8860 22.84/0.8955 22.41/0.8871 22.48/0.8892 23.49/0.9100

BSDS100 (×4):
148026

HR Bicubic VDSR [4] CARN-M [11] CARN [11] IMDN [29]
PSNR/SSIM 20.75/0.5573 21.71/0.6578 21.94/0.6760 22.10/0.6883 22.13/0.6889

MADNet [54] AWSRN-M [53] LBNet [20] BSRN [61] FDIWN [24] Ours
22.04/0.6823 22.08/0.6880 22.24/0.6983 22.17/0.6930 22.14/0.6940 22.33/0.7055

Manga109 (×3):
MomoyamaHaikagura

HR Bicubic BSRN [61] IMDN [29]
PSNR/SSIM 23.74/0.7034 25.92/0.8550 25.90/0.8534

AWSRN-M [53] LBNet [24] FDIWN [20] Ours
25.90/0.8534 25.66/0.8435 25.98/0.8557 26.16/0.8605

Manga109 (×4):
TaiyouNiSmash

HR Bicubic BSRN [61] IMDN [29]
PSNR/SSIM 29.49/0.8712 35.90/0.9536 35.41/0.9499

AWSRN-M [53] LBNet [24] FDIWN [20] Ours
35.68/0.9513 36.08/0.9522 35.65/0.9508 36.50/0.9550

Fig. 11: Visual comparison of FIWHN with other advanced SISR methods.

extraction process within Sparnet’s framework with the
model we need to perform comparisons.

Comparison results. For fair comparisons, we also list
some general image super-resolution approaches. TABLE 8
shows the obtained quantitative comparison results in terms
of PSNR, SSIM, LPIPS, and VIF. From the table, we can
see that our approach effectively improves the performance
while significantly reducing the computational cost com-
pared to the face super-resolution approaches [52], [64]. The
qualitative visual results of ×8 SR on face test set images
are illustrated in Fig. 12. Since the pupil of the human eye is
crucial to the face recognition task, we deliberately selected
features around the eye region of the face for comparison.

As can be seen from the figure, some methods cannot even
recover the contour of the human eye. Although others
can recover the orbital contour, their reconstruction details
are still inaccurate compared to HR. Compared to these
methods, our method tends to recover more accurate human
eye contours and pupil positions. This further demonstrates
the effectiveness of our FIWHN.

As downstream tasks after face super-resolution, face
detection and face recognition tasks play an important role
in security surveillance and other fields. We use YuNet [65]
as a face detection model and SFace [66] as a face recognition
model, where SFace is working on face recognition based
on the bounding box of the face detected by YuNet on
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TABLE 7: Average PSNR/SSIM comparison with other advance CNN-based SISR models. The best and the second best
results are highlighted and underlined, respectively. ’+’ indicates that the model uses a self-ensemble strategy.

Methods Scale Params Multi-adds Set5 Set14 BSDS100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

IDN [35]

×2

553K 124.6G 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
CARN [11] 1592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IMDN [29] 694K 158.8G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
AWSRN-M [53] 1063K 244.1G 38.04/0.9605 33.66/0.9181 32.21/ 0.9000 32.23/0.9294 38.66/0.9772
MADNet [54] 878K 187.1G 37.85/0.9600 33.38/0.9161 32.04/0.8979 31.62/0.9233 -
MAFFSRN-L [55] 790K 154.4G 38.07/0.9607 33.59/0.9177 32.23/0.9005 32.38/0.9308 -
LAPAR-A [56] 548K 171.0G 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
RFDN [49] 534K 123.0G 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773
GLADSR [57] 812K 187.2G 37.99/0.9608 33.63/0.9179 32.16/0.8996 32.16/0.9283 -
LatticeNet+ [30] 756K 165.5G 38.15/0.9610 33.78/0.9193 32.25/0.9004 32.29/0.9291 -
SMSR [58] 985K 351.5G 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
DRSAN [59] 690K 159.3G 38.11/0.9609 33.64/0.9185 32.21/0.9005 32.35/0.9304 -
FDIWN [24] 629K 112.0G 38.07/0.9608 33.75/0.9201 32.23/0.9003 32.40/0.9305 38.85/0.9774
LatticeNet-CL [15] 756K 169.5G 38.09/0.9608 33.70/0.9188 32.21/0.9000 32.29/0.9291 -
FMEN [60] 748K 172.0G 38.10/0.9609 33.75/0.9192 32.26/0.9003 32.41/0.9311 38.95/0.9778
FIWHN (Ours) 705K 137.7G 38.16/ 0.9613 33.73/0.9194 32.27/ 0.9007 32.75/ 0.9337 39.07/0.9782
FIWHN+ (Ours) 705K 137.7G 38.23/ 0.9615 33.86/ 0.9201 32.33/ 0.9016 32.89/ 0.9350 39.23/ 0.9785
IDN [35]

×3

553K 56.3G 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
CARN [11] 1592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.43/0.9427
IMDN [29] 703K 71.5G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
AWSRN-M [53] 1143K 116.6G 34.42/0.9275 30.32/0.8419 29.13/0.8059 28.26/0.8545 33.64/0.9450
MADNet [54] 930K 88.4G 34.16/0.9253 30.21/0.8398 28.98/0.8023 27.77/0.8439 -
MAFFSRN-L [55] 807K 68.5G 34.45/0.9277 30.40/0.8432 29.13/0.8061 28.26/0.8552 -
LAPAR-A [56] 594K 114.0G 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
RFDN [49] 541K 55.4G 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449
GLADSR [57] 821K 88.2G 34.41/0.9272 30.37/0.8418 29.08/0.8050 28.24/0.8537 -
LatticeNet+ [30] 765K 76.3G 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538 -
SMSR [58] 993K 156.8G 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
DRSAN [59] 740K 76.0G 34.50/0.9278 30.39/0.8437 29.13/0.8065 28.35/0.8566 -
FDIWN [24] 645K 51.5G 34.52/0.9281 30.42/0.8438 29.14/0.8065 28.36/0.8567 33.77/0.9456
LatticeNet-CL [15] 765K 76.3G 34.46/0.9275 30.37/0.8422 29.12/0.8054 28.23/0.8525 -
FMEN [60] 757K 77.2G 34.45/0.9275 30.40/0.8435 29.17/0.8063 28.33/0.8562 33.86/0.9462
FIWHN (Ours) 713K 62.0G 34.50/ 0.9283 30.50/ 0.8451 29.24/ 0.8091 28.62/ 0.8607 33.97/ 0.9472
FIWHN+ (Ours) 713K 62.0G 34.64/0.9292 30.58/0.8465 29.27/0.8091 28.80/0.8638 34.25/0.9487
IDN [35]

×4

553K 32.3G 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
CARN [11] 1592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.42/0.9070
IMDN [29] 715K 40.9G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
AWSRN-M [53] 1254K 72.0G 32.21/0.8954 28.65/0.7832 27.60/0.7368 26.15/0.7884 30.56/0.9093
MADNet [54] 1002K 54.1G 31.95/0.8917 28.44/0.7780 27.47/0.7327 25.76/0.7746 -
MAFFSRN-L [55] 830K 38.6G 32.20/0.8953 28.62/0.7822 27.59/0.7370 26.16/0.7887 -
LAPAR-A [56] 659K 94.0G 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
RFDN [49] 550K 31.6G 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089
GLADSR [57] 826K 52.6G 32.14/0.8940 28.62/0.7813 27.59/0.7361 26.12/0.7851 -
LatticeNet+ [30] 777K 43.6G 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873 -
SMSR [58] 1006K 89.1G 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
DRSAN [59] 730K 49.0G 32.30/0.8954 28.66/0.7838 27.61/0.7381 26.26/0.7920 -
FDIWN [24] 664K 28.4G 32.23/0.8955 28.66/0.7829 27.62/0.7380 26.28/0.7919 30.63/0.9098
LatticeNet-CL [15] 777K 43.6G 32.30/0.8958 28.65/0.7822 27.59/0.7365 26.19/0.7855 -
FMEN [60] 769K 44.2G 32.24/0.8955 28.70/0.7839 27.63/0.7379 26.28/0.7908 30.70/0.9107
FIWHN (Ours) 725K 35.6G 32.30/0.8967 28.76/0.7849 27.68/0.7400 26.57/0.7989 30.93/0.9131
FIWHN+ (Ours) 725K 35.6G 32.45/0.8983 28.84/0.7869 27.73/0.7416 26.72/0.8028 31.18/0.9157

super-resolved faces. We still use CelebA and Helen as the
validation sets for face detection and recognition. As can
be seen in TABLE 5, the low-quality Bicubic is detrimental
to face recognition work, with only 19.8% recognition rate
on the CelebA dataset. The super-resolution reconstruction
methods can significantly improve face recognition rates.
And among all of the compared advanced super-resolution
methods, our method achieves the best results in face recog-
nition and detection tasks, infinitely close to the results
achieved by HR faces. Compared to the conference version,
our method can improve the recognition rate on each of the
two datasets with a smaller number of parameters.

5.2 Real-World Image Super-Resolution

Dataset and implement details. We use RealSR [67] as our
training and testing sets, where HR and LR are obtained by
acquiring data in the same scene, using the same camera
with different focal lengths. Compared with the DIV2K
dataset, its degradation model is more complex, and the
degradation kernel is spatially variable. It is worth noting
that the dimensions of LR and HR in this dataset are already
aligned, so all methods remove the upsampling operation
at the back end of the model when performing super-
resolution. Therefore, the number of parameters and the
calculations amount for all methods are basically the same
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TABLE 8: Quantitative comparisons for SR on the CelebA and Helen test sets.

Methods Scale Params CelebA Helen
PSRN↑ SSIM↑ VIF↑ LPIPS↓ PSNR↑ SSIM↑ VIF↑ LPIPS↓

Bicubic

×8

- 23.61 0.6779 0.1821 0.4899 22.95 0.6762 0.1745 0.4912
SAN [50] 16.00M 27.43 0.7826 0.4553 0.2080 25.46 0.7360 0.4029 0.3260

RCAN [37] 15.70M 27.45 0.7824 0.4618 0.2205 25.50 0.7383 0.4049 0.3437
HAN [51] 16.20M 27.47 0.7838 0.4673 0.2087 25.40 0.7347 0.4074 0.3274

FSRNet [64] 27.50M 27.05 0.7714 0.3852 0.2127 25.45 0.7364 0.3482 0.3090
SPARNet [52] 16.59M 27.73 0.7949 0.4505 0.1995 26.43 0.7839 0.4262 0.2674

IMDN [29] 12.70M 27.97 0.7998 0.4669 0.1928 26.66 0.7911 0.4363 0.2497
FDIWN [24] 11.10M 27.98 0.8002 0.4639 0.1893 26.73 0.7932 0.4451 0.2413

FIWHN (ours) 10.50M 28.10 0.8056 0.4720 0.1804 26.84 0.8004 0.4514 0.2297

PSNR/SSIM 26.47/0.7758 30.39/0.8275 30.40/0.8275 30.44/0.8290 31.10/0.8410 31.41/0.8472 31.35/0.8496 31.48/0.8561

PSNR/SSIM 25.15/0.7009 26.31/0.7359 26.17/0.7403 26.21/0.7394 27.65/0.8015 27.77/0.8053 27.89/0.8030 28.23/0.81774

PSNR/SSIM 21.44/0.6419 23.38/0.7392 23.15/0.7313 23.60/0.7481 23.29/0.7331 24.28/0.7847 24.68/0.7857 25.03/0.7974
HR Bicubic SAN [50] RCAN [37] HAN [51] SPARNet [52] IMDN [29] FDIWN [24] Ours

Fig. 12: Visual comparisons for ×8 SR on the CelebA test set and Helen test set.

as in TABLE 7. However, the requirement for the model to
align pixels during image recovery is increased due to the
pixel drift, scale factor changes, and other issues brought
about by adjusting the focal length. To alleviate the extra
difficulty caused by pixel alignment, most methods adopt
the strategy of cutting image patches into large patches
when cutting them to feed into the network for training.
Such an operation can alleviate the difficulty caused by the
edge information between too many patches not communi-
cating with each other for aligning pixels. These methods set
the image patch to 128×128 during training, while we can
only set the patch of FDIWN and FIWHN to 64×64 during
training due to the higher training memory associated with
a larger patch size. Therefore, our FIWHN can be trained on
one NVIDIA RTX 2080Ti GPU, while other methods cannot
be trained even on two NVIDIA RTX 2080Ti GPUs.

Comparison results. In a training situation where our
method is at a disadvantage, the final quantitative compari-
son results are given in TABLE 9. Our method still achieves
the best results at all scales, especially at the scale factor of
×3, where our method outperforms the second-best ESRT
method with a PSNR value of 0.19 dB. Next, we give visual
comparisons. The detailed comparisons in Fig. 13 show that
our FIWHN can recover more textural details than that of
the conference version FDIWN, and the recovery results are
closer to the HR image. To further validate the effectiveness
of FIWHN, we evaluate the benefits of our approach for

street image semantic segmentation tasks. To this end, we
first downsample the images from commonly used valida-
tion set of CamVid [69] dataset and then use the SR methods
to recover the high-quality images. Finally, segmenting them
with recently published real-time segmentation method FB-
SNet [70]. As can be seen in Fig. 14, the segmentation results
of the recovered images by our method is closer to the
ground truth. Specifically, for the segmented details, such
as the utility poles, our FIWHN clearly outperforms simple
Bicubic and our conference version FDIWN.

6 CONCLUSIONS

In this work, we have carefully designed a Feature Inter-
action Weighted Hybrid Network (FIWHN) to support effi-
cient super-resolution tasks. FIWHN is composed of groups
of WDIBs that are blended, fused and weighted. WDIBs use
combinatorial coefficient learning to connect wide residual
weighted units that can mitigate the loss of intermediate
layers to induce different combinatorial structures. And it
allows features with different refinement levels to exploit
different levels of information by jump joining and fusion.
Subsequently, a more enhanced model generalization archi-
tecture is designed by introducing Transformer to prompt
the model to capture global features. Subsequently, we
extend FIWHN to other SR tasks, including face SR and
real-world SR. Meanwhile, the effectiveness of our method
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TABLE 9: Comparison with other advance SISR model on RealSR dataset [67].

Scale Bicubic SRCNN [3] VDSR [3] SRResNet [68] IMDN [29] ESRT [19] FDIWN [24] FIWHN(ours)
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

×2 32.61 / 0.907 33.40 / 0.916 33.64 / 0.917 33.69 / 0.919 33.85 / 0.923 33.92 / 0.924 33.68/0.9242 33.96 / 0.927
×3 29.34 / 0.841 29.96 / 0.845 30.14 / 0.856 30.18 / 0.859 30.29 / 0.857 30.38 / 0.857 30.38 / 0.857 30.57 / 0.862
×4 27.99 / 0.806 28.44 / 0.801 28.63 / 0.821 28.67 / 0.824 28.68 / 0.815 28.78 / 0.815 28.70 / 0.815 28.82 / 0.828

RealSR (×2):
Canon010

HR LR
PSNR/SSIM 29.23/0.9102

FDIWN [24] Ours
32.24/0.9505 32.50/0.9517

RealSR (×3):
Nikon009

HR LR
PSNR/SSIM 29.33/0.8155

FDIWN [24] Ours
31.05/0.8740 31.45/0.8802

RealSR (×4):
Nikon006

HR LR
PSNR/SSIM 24.03/0.7896

FDIWN [24] Ours
24.77/0.8264 24.86/0.8327

Fig. 13: Visual comparison on RealSR dataset (Including Nikon and Canon).

Street View Bicubic FDIWN [24] Ours Ground Truth

Fig. 14: Comparison of image segmentation results (×2 SR).

is verified on many downstream tasks, including face de-
tection, face recognition, and semantic segmentation. All
of these experiments have demonstrated that our proposed
method can perform super-resolution tasks more efficiently.
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