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A B S T R A C T

With the widespread application of digital orthodontics in the diagnosis and treatment of oral diseases, more
and more researchers focus on the accurate segmentation of teeth from intraoral scan data. The accuracy of
the segmentation results will directly affect the follow-up diagnosis of dentists. Although the current research
on tooth segmentation has achieved promising results, the 3D intraoral scan datasets they use are almost
all indirect scans of plaster models, and only contain limited samples of abnormal teeth, so it is difficult to
apply them to clinical scenarios under orthodontic treatment. The current issue is the lack of a unified and
standardized dataset for analyzing and validating the effectiveness of tooth segmentation. In this work, we
focus on deformed teeth segmentation and provide a fine-grained tooth segmentation dataset (3D-IOSSeg).
The dataset consists of 3D intraoral scan data from more than 200 patients, with each sample labeled with
a fine-grained mesh unit. Meanwhile, 3D-IOSSeg meticulously classified every tooth in the upper and lower
jaws. In addition, we propose a fast graph convolutional network for 3D tooth segmentation named Fast-TGCN.
In the model, the relationship between adjacent mesh cells is directly established by the naive adjacency
matrix to better extract the local geometric features of the tooth. Extensive experiments show that Fast-
TGCN can quickly and accurately segment teeth from the mouth with complex structures and outperforms
other methods in various evaluation metrics. Moreover, we present the results of multiple classical tooth
segmentation methods on this dataset, providing a comprehensive analysis of the field. All code and data
will be available at https://github.com/MIVRC/Fast-TGCN.
1. Introduction

With the development of society and the improvement of people’s
livelihood, more and more people have begun to pay attention to dental
problems and hope to ensure the normal function of teeth and facial
shape through dental treatment, orthodontics, restoration, and dental
implants. Traditional diagnosis and treatment require dentists to make
diagnoses and treatment plans based on their own experience, which
is extremely difficult. More importantly, the outcome of the treatment
depends directly on the doctor’s judgment. And due to the current
shortage of medical resources, dentists need to deal with many patients,
which makes doctors face a huge challenge. In recent years, thanks to
the progress of computer technology, the digital dentistry has made
remarkable achievements in orthodontics, prosthesis, and implant. By
leveraging AI, dental care is becoming more convenient and scientific,
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directly benefiting patients and doctors. In dental diagnosis and treat-
ment, digital medical images are an important basis for doctors to
diagnose. Depending on the mode of acquisition, there are typically
three modality data based on 2D X-ray, 3D cone beam computed
tomography (CBCT) and 3D intraoral scan. Different from the other
two modes, 3D intraoral scans can obtain high-precision tooth surface
information, which can help doctors design orthodontic schemes [1],
deduce the orthodontic process [2] and produce braces. However,
manual labeling is tedious, so designing an automatic segmentation and
labeling method for tooth data is necessary (see Fig. 1).

In the past decade, deep neural networks have shined in various
fields and have also greatly promoted the development of tooth seg-
mentation, such as segmentation methods for 2D X-ray [3–8], 3D cone
beam computed tomography (CBCT) [9–14] and 3D intraoral scans
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Fig. 1. Example of 3D tooth segmentation. Different colors represent different types of teeth.
[15–18]. Most of these methods are data-driven, so how to obtain
high-precision patient data is crucial. However, most methods do not
disclose the used datasets or use different datasets, thus lacking a
common benchmark to fairly evaluate the performance of these meth-
ods. Moreover, these methods are often only applicable to tooth data
with normal morphology and cannot effectively segment the malformed
teeth in clinical applications.

To solve the aforementioned problems, in this work, we construct
the first fine-grained orthodontic tooth segmentation dataset (3D-
IOSSeg) based on 3D intraoral scan data and propose a new tooth
segmentation network. In the dataset, we collected oral scans from
90 patients with all common dental abnormalities. Subsequently, we
added an additional 130 data samples to encompass a broader range
of patient cases. Thus, the entire dataset comprises data from 220
patients, encompassing cases of dental anomalies such as missing teeth,
overlapping, misalignment, and malocclusion. Specifically, each patient
sample consisted of two rows of upper/lower tooth data. Meanwhile,
we used the most common form of triangular mesh to describe the
internal surface of the mouth to improve accuracy. It is worth noting
that each row of teeth (including the gums) consists of 100,000 to
30,000 points and 100,000 to 450,000 mesh cells, and there are more
than 20 million cells in the entire dataset. Based on this dataset, we
also propose a graph convolutional network for fast tooth segmentation,
called Fast-TGCN. In summary, this paper introduces the more extreme
dental conditions in practical applications into the dataset, aiming to
help researchers in the field address potential challenges that may arise
and to analyze them to inform future work. The main contributions of
this paper are as follows:

(1) We construct a standardized clinical orthodontic tooth segmen-
tation dataset (3D-IOSSeg). 3D-IOSSeg is based on 3D intraoral scan
data, which contain a rich array of deformed teeth, and all of them are
fine-grained labeled. Moreover, this will be a publicly available dataset.

(2) We propose a novel network for fast tooth segmentation called
Fast-TGCN, which uses a more naive adjacency matrix to construct
the relationship of 3D surfaces, and combines the information flow
characteristics of graph convolutional network (GCN), setting a new
benchmark for orthodontics segmentation.

(3) We present the results of multiple classical tooth segmentation
methods on the propose dataset, providing a comprehensive compari-
son and analysis of the field.

2. Related works

Common digital dental imaging includes 2D X-rays, 3D cone beam
computed tomography (CBCT), and 3D intraoral scans. Due to its
excellent surface modeling capabilities, 3D intraoral scans have been
widely used in the fields of prosthodontics and orthodontics. In order
to assist doctors to achieve accurate diagnosis and treatment, more
and more work has begun to focus on using intelligent algorithms to
segment different types of teeth from the 3D intraoral scan data.
2

3D intraoral scan data usually have extremely strong geometric
properties, so traditional segmentation methods include curvature-
based methods [19–23], contour-based methods [24,25]and harmonic
field-based methods [26]. There are also methods [27,28] to project
a 3D data into a 2D plane segment and then project it back into
3D space. However, these methods lack data-driven, resulting in poor
performance, and cannot be applied clinically.

With the great success of deep learning in 3D point cloud seg-
mentation, some neural network-based 3D tooth segmentation methods
[29–34] have also been proposed.

At first, some methods [29,30,34] were inspired by voxelization,
which converts the 3D intraoral scans into a regular structure, which
is then directly processed by CNN, for example. However, this indirect
feature conversion method, as a compromise solution, will lead to the
loss of the original geometric information of the data and affect the
quality of tooth segmentation. At the same time, some tooth segmenta-
tion methods that combine geometry and CNN have emerged, such as
Xu et al. [35] used a two-level layered method to extract the features of
the intraoral scan data, and relied on CNN to extract different geometric
features, and finally obtained a refined tooth segmentation result. Tian
et al. [36] also adopted a two-level hierarchical network structure,
and this method also introduced a sparse voxel o-ctree to perform
pre-feature extraction on the original data. Although these methods
using a hierarchical network structure have better performance than
traditional geometric segmentation methods, due to the limitations of
the hierarchical structure, errors at the upper level cannot be corrected
at the next level, which affects the segmentation performance.

Later, with the rise and maturity of 3D point cloud processing, a
faster and more effective processing strategy [37] was provided for
the study of intraoral scan data. [38] presents an end-to-end deep
learning framework for semantic segmentation of individual teeth as
well as gingiva from point clouds representing IOS. By introducing non-
uniform resampling techniques, models can be trained and deployed at
higher spatial resolutions.

Since PointNet does not take into account the local features of the
3D data, Lian et al. [39] used KNN to build an end-to-end 3D intraoral
scans segmentation network MeshSegNet for automatic tooth marking
on the original tooth surface. This method integrates a series of graph
constraint learning modules to extract multi-scale local layers hier-
archically. Contextual features, achieving decent performance. Based
on MeshSegNet, the surface normal vector information of 3D teeth
is further considered, and a dual-branch tooth segmentation network
TSGCNet [40] is proposed that combines coordinate and normal vector
information. However, the KNN graph used in the above methods
usually contains cross-surface information, which will confuse the in-
formation on different surfaces and is not conducive to fine-grained
tooth segmentation. To extract the geometric features of the 3D tooth
data more effectively, we will construct an adjacency graph from the
spatial position adjacency relationship between mesh cells and use the
adjacency matrix to guide the network to focus on the local geometric
features of the teeth.
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Fig. 2. Visual comparison of 3DTeethSeg22 and 3D-IOSSeg datasets. Obviously, although 3DTeethSeg22 obtained a relatively regular 3D intraoral scans data through indirect
scanning, its sample will be accompanied by a plaster base, and the gingival part is not very obvious. In contrast, our 3D-IOSSeg can reflect the scanning results in the real
diagnostic environment through direct scanning modeling, and more importantly, it contains more and complex abnormal tooth samples.
3. Proposed 3D-IOSSeg dataset

To promote the development of digital orthodontics, we propose
a standardized clinical orthodontic tooth segmentation dataset, named
3D-IOSSeg. In this section, we will describe the acquisition of intraoral
scan data, organizational form, as well as the classification and tooth
labeling process. Finally, we will conduct a detailed analysis of the
sample distribution of the dataset.

3.1. Dataset acquisition and annotation

The acquisition of 3D intraoral scans data in clinical practice usually
uses a dedicated oral scanner and adopts digital intraoral impression
technology. The principle is to obtain digital impressions of teeth, gin-
giva, and mucosal tissues in the oral cavity through optical compression
technology. This work adopts the 3Shape Trios oral digital. It is worth
noting that digital intraoral scans data impression technology is divided
into direct and indirect methods. The indirect method is to obtain a 3D
intraoral scans data from a plaster cast or fine model of the patient’s
mouth. This is also a commonly used data set construction method in
previous works. The direct method is a technique of obtaining a digital
model directly through intraoral scans, which reduces errors in the
mold-making process. To better reflect the characteristics of the oral
cavity of patients, we adopted the direct method for data acquisition.

The 3D-IOSSeg dataset serves as a fully public 3D intraoral scan
dataset geared towards more specific orthodontic treatments. It is
worth noting that the 3DTeethSeg22,1 challenge in MICCAI 2022 has
released a segmentation dataset of 3D intraoral scan data. As shown
in Fig. 2 compared with 3DTeethSeg22, it can be clearly found that
the samples in 3D-IOSSeg have abundant abnormal teeth. Meanwhile,
both 3DTeethSeg22 and existing open-source datasets were obtained
by indirect scanning, accompanied by a plaster base. However, the
sample data in our 3D-IOSSeg is directly scanned, which contain a large
amount of oral tissue, which is closer to the human oral environment.
The above has a more positive effect on the diagnosis and treatment
of orthodontics. More importantly, both original and annotated data
of the proposed 3D-IOSSeg will be publicly available, and researchers
can freely manipulate the dataset through 3D view software such as
Meshlab to adapt to different research needs. In summary, 3D-IOSSeg
has the following properties:

(1) Broad coverage of the population. 3D-IOSSeg used in previous
works did not consider the age stage of the sample, which could not
guarantee the coverage of various populations. Through the statistics
of the age of patients (Fig. 3), we can clearly observe that our dataset
includes not only the oral data of adults but also a large number of
samples of adolescents under the age of 20. Teenagers have slightly
different tooth shapes than adults, and the shape and size of their
jaws are also different from adults. As one of the groups with a high
incidence of dental problems, teenagers should also be given extensive

1 https://3dteethseg.grand-challenge.org/.
3

Fig. 3. Patient age distribution of 3D-IOSSeg dataset.

attention. Therefore, the research on this kind of data is urgent and
challenging.

(2) Diverse and unusual teeth. Segmentation of abnormal teeth is
always a challenging task by investigating related tooth segmentation
methods. Because these teeth are often crowded, misplaced, or even
largely displaced, it is very difficult to extract them accurately from
other teeth. Moreover, this abnormality will lead to large changes in the
topology of the data, which will bring great challenges to the learning
of the segmentation network. Considering this situation, 3D-IOSSeg
introduces a higher proportion of abnormal tooth samples for training
and testing.

(3) Fine-grained division. Different from the method of symmetri-
cal division of tooth categories adopted by other methods, we treat each
tooth as an independent class division, so that the number of target cat-
egories in this dataset reaches 33 categories. Such fine-grained division
can better assist dentists in their diagnosis in practice. Meanwhile, it
also is more difficult to accurately distinguish individual teeth, as many
teeth have similar shapes, making the dataset more challenging.

After obtaining patient oral data, we started to label each group
of samples. This work adopts a combination of expert guidance and
cross-labeling. 3D-IOSSeg uses Meshlab as a marking tool, which can
easily color the target area of the 3D data directly. We use different
color marks to distinguish different types of teeth. Each sample in
3D-IOSSeg contains more than 100,000 mesh cells, and more than 20
million mesh cells in the entire dataset need to be classified and labeled.
Finally, we export the annotated tooth data as a PLY file. Specifically,
we invited 10 people to carry out data labeling work, and each person
was assigned 22 groups of samples. It is worth noting that each group of
samples contained two 3D intraoral scans of the upper and lower jaws.
Meanwhile, the whole labeling process is divided into three rounds.

https://3dteethseg.grand-challenge.org/
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Fig. 4. The corresponding color coding for FDI tooth notation.

The first round of marking is carried out under the guidance of dental
experts. After each marking is completed, the experts will check and
give feedback on the marking results. The second round adopts the
crossover method between different groups, and the annotators will be
reassigned data for modification. The third round of annotation will
fine-tune the edges of the different teeth in the data and check again
for errors. Therefore, the data obtained after the above three rounds
of labeling are used as the final result of the dataset. The advantages
of the method include: 1. Avoid human factors that cause data to be
mislabeled, such as wrong coloring of tooth categories. 2. Reduce the
impact of the subjective bias of the annotators on the accuracy of
the data. With the help of this method, we are able to build a tooth
segmentation dataset that is as accurate as possible.

3.2. Organizational form of 3D-IOSSeg dataset

3D-IOSSeg takes 3D mesh data as the processing object. 3D mesh
data is a kind of 3D data that is easier to operate and observe based on
3D point cloud data. As shown in Fig. 5, mesh is a refined extension of
point clouds. Therefore, dentists can quickly make a diagnosis through
mesh data.

In particular, each tooth sample of the 3D-IOSSeg is stored in a PLY
file format that consist of a header, a list of vertex, and a list of face.
Among them, the header defines the internal organization of the file,
such as which face are used by the 3D sample to describe the mesh, and
the data type and attribute arrangement order of the spatial coordinates
in the vertex and face lists. The vertex list and face list are used to
store vertex data (spatial coordinates and normal vectors) and mesh
data (vertex numbers and color labels).

Adults usually have 32 permanent teeth, which are divided into
incisors, canines, premolars, and molars according to their function
and morphology, and previous work usually makes a coarse-grained
classification according to the above categories. However, in the actual
diagnosis process, it is often necessary to precisely locate the position of
a certain tooth, which makes the previous methods unable to accurately
segment specific teeth. Therefore, fine-grained labeled data samples
are needed to drive current segmentation models. As shown in Fig. 4,
in this work, we analyze the relevant data for a fine-grained division
of 32 human teeth. According to the different positions of the upper
and lower jaws and the left and right distribution, we divide the teeth
into frontal incisors, lateral incisors, canines, first premolars, second
premolars, first molars, second molars, and third molars, a total of 32
tooth categories. More detail definitions can be found in the Tables 1
and 2 for details.
4

Table 1
Statistical details of upper jaw teeth.

Class Name Mesh cells Proportion Definition

0 T11 770 113 3.17% Upper jaw front incisor (left)
1 T12 764 112 3.12% Upper jaw side incisor (left)
2 T13 630 428 2.57% Upper jaw canine (left)
3 T14 775 465 3.20% Upper jaw first premolar (left)
4 T15 606 966 2.47% Upper jaw second premolar (left)
5 T16 1 186 691 4.87% Upper jaw first molar (left)
6 T17 959 921 3.88% Upper jaw second molar (left)
7 T18 85 656 0.32% Upper jaw third molar (left)
8 T21 788 404 3.24% Upper jaw front incisor (right)
9 T22 595 660 2.43% Upper jaw side incisor (right)
10 T23 628 243 2.57% Upper jaw canine (right)
11 T24 788 811 3.22% Upper jaw first premolar (right)
12 T25 752 012 3.09% Upper jaw second premolar (right)
13 T26 1 202 707 4.94% Upper jaw first molar (right)
14 T27 935 754 3.80% Upper jaw second molar (right)
15 T28 111 378 0.42% Upper jaw third molar (right)
32 Gingiva 12 931 958 52.69% Upper jaw gingiva

Table 2
Statistical details of lower jaw teeth.

Class Name Mesh cells Proportion Definition

16 T31 464 287 2.58% Lower jaw front incisor (left)
17 T32 494 379 2.71% Lower jaw lateral incisor (left)
18 T33 569 232 3.09% Lower jaw canine (left)
19 T34 654 778 3.57% Lower jaw first premolar (left)
20 T35 690 873 3.78% Lower jaw second premolar (left)
21 T36 1 152 077 6.28% Lower jaw first molar (left)
22 T37 889 824 4.81% Lower jaw second molar (left)
23 T38 77 463 0.40% Lower jaw third molar (left)
24 T41 446 978 2.45% Lower jaw front incisor (right)
25 T42 487 693 2.67% Lower jaw lateral incisor (right)
26 T43 580 307 3.16% Lower jaw canine (right)
27 T44 660 538 3.59% Lower jaw first premolar (right)
28 T45 726 970 4.01% Lower jaw second premolar (right)
29 T46 1 121 742 6.10% Lower jaw first molar (right)
30 T47 894 965 4.83% Lower jaw second molar (right)
31 T48 102 208 0.53% Lower jaw third molar (right)
32 Gingiva 8 347 289 45.47% Lower jaw gingiva

3.3. Classification of teeth in intraoral scan data

Unlike coarse-grained segmentation, fine-grained tooth segmenta-
tion is more difficult. The table shows the proportion of surface area
occupied by different teeth in the upper and lower jaws in the dataset.
It can be observed that the proportion of each tooth is very small, and
it is challenging to segment them accurately. According to the table, we
found large differences in distribution between different teeth. Among
them, the proportion of molars is the largest, and the proportion of
wisdom teeth is the least. This reflects the larger volume and more
complex crowns of the molars. For wisdom teeth, which are only
present in a small number of samples, segmenting them is difficult.
In addition, we also found some samples of missing teeth and broken
teeth. This means that the dataset contains a rich variety of samples,
which further increases the challenge of the task.

3.4. Overview of abnormal teeth

Abnormal teeth are very common in the clinical diagnosis of or-
thodontics, and their irregular distribution in position and geometry
leads to the complexity of spatial distribution, which brings greater
challenges to 3D tooth segmentation. In this work, we introduced many
scan samples with abnormal teeth in the 3D-IOSSeg dataset. Fig. 6
shows some representative abnormal tooth morphology in 3D-IOSSeg.
In addition to the common misalignment of the teeth, we also collected
some samples of patients with labially inclined anterior teeth, such as
sample 26, the front teeth of these patients are towards the lip The
directional tilt causes the overall arch to protrude outward. We also
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Fig. 5. (a) represents point cloud data, which is composed of a large number of discrete points. Although point cloud can be processed well by computer, it is difficult to present
intuitively; (b) represents mesh data. Obviously, it has more advantages than point cloud. Good visual expression.
Fig. 6. Some samples of abnormal teeth in 3D-IOSSeg. 3D-IOSSeg covers a wealth of abnormal dental conditions, including common irregular incisors (indicated by the blue
arrows in 21-L, 37-L, and the red boxes in 32-U), as well as the less common atrophied teeth (indicated by blue arrows in 32-U); Sample 26 represents a data of a patient with
anteverted lips (the incisors in the area circled by a red frame slope in the direction indicated by the blue arrow); Samples 36-L and 27 -L shows two kinds of mandibular arch
shapes (the red curve shows the outline of the dental arch), and 27-L also has abnormal distortion of the mandibular arch; sample 31-L shows the situation that the spee curve
is too large, which is also exclusive to 3D-IOSSeg; Sample 58 is a dental data of a child whose teeth are shaped differently than those of an adult. In addition, the yellow arrows
in the figure indicate other complex situations in the oral cavity, which pose a great challenge for tooth segmentation.
considered an abnormal Spee Curve, which is one of the important fac-
tors for the success of orthodontics. Sample 31-L reflects the excessive
curvature of the Spee Curve, which affects the overall tooth alignment.
Not only that, but we further considered some children’s tooth data
(58), these samples will contain a large number of deciduous teeth,
which are different from the permanent teeth in size and arrangement,
so they also need to be widely concerned.

3.5. Dataset split

In this work, we divide the annotated dataset regarding the rec-
ommendations of professional dentists and the results of data analysis,
respectively. First, dentists divided the samples into three categories
of low, medium, and high degrees of deformity based on their own
experience. On this basis, we use the principal component analysis
(PCA) method to reduce the dimensionality of the samples and map
the samples into a two-dimensional space. Furthermore, we searched
for patient samples corresponding to different locations and found that
the degree of deformity of the samples increases with the distance
from the origin. Through the data distribution information and the
doctor’s division results, it is found that the sample points distributed
in the marginal area correspond to samples of highly abnormal cat-
egories. According to the above results, we selected some abnormal
tooth samples as the test data set to ensure that the distribution of
test samples and training samples is different, which increases the
challenge of segmentation and also helps other researchers to verify
the effectiveness of the proposed method.
5

4. Proposed method

4.1. Challenge

It is well known that 3D data have richer geometric information
than 2D images. In 3D mesh data, these features are usually composed
of several adjacent mesh cells. However, depending on the save format
and software, the order of mesh cells in the generated 3D data file is
random. For the intraoral scan data, the spatial geometric information
contained in it is more diverse. Especially for data with missing, mis-
placed, and deformed teeth, they often lead to higher uncertainty in the
tooth arrangement of the entire data and the topology of mesh cells.
Therefore, effectively guiding the network to extract stable feature
representation from the unstable distribution of the oral data is a
challenging task.

4.2. Method

4.2.1. Adjacency matrix graph
Previous works often use multi-layer perceptrons or one-dimens-

ional convolution to extract stable features and combine global pooling
to obtain global features to solve the problem of disorder of data input.
Further, to solve the problem that the heterogeneity between samples
is too large and difficult to learn due to various deformities in the
oral cavity, many studies have introduced the idea of constructing
KNN graphs using spatial Euclidean distance. Undoubtedly, this method
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Fig. 7. Schematic diagram of the discontinuity phenomenon in the construction of KNN graph.
effectively enhances the expression of local information and can signif-
icantly improve the segmentation performance of the 3D intraoral scan
data by matching the normal vector of the space. However, we found
that the KNN diagram could not reflect the local characteristics of the
data well under certain circumstances. When the distance between two
surfaces is very close, the neighbor cell of the mesh cell in the center
of one surface is likely to contain the mesh cell of the other surface,
which will result in a discontinuous area. According to Fig. 7, it can
be observed that the neighbor cell of one tooth contains the cell of the
other tooth, while the middle part of the two teeth is not divided. Since
the 3D data is formed by the interrelation of mesh cells in different
positions, the curvature of the surface can usually be described by the
normal vector of the mesh cells of the surface. In addition, the 3D
tooth data is composed of continuous and uninterrupted clusters of
curved surfaces. If discontinuity occurs in the process of constructing
the KNN diagram, a lot of information will be lost, and the normal
vector information cannot be effectively transmitted between adjacent
cells.

To solve the above problems, we replace the traditional KNN graph
with the adjacency matrix graph in graph theory. First of all, the
natural topology of the 3D mesh data can be directly described by the
adjacency matrix, and the adjacency matrix diagram has very good
stability. It is only generated according to the 3D mesh data file and
will not change with the characteristics, which is impossible with KNN
diagrams. In Fig. 8, we compare the difference between the adjacency
matrix graph and the KNN graph. It can be seen that the adjacency
matrix strictly follows the dependencies between adjacent points, and
there will be no jumping relationship across the surface of the KNN
graph. Meanwhile, unlike the implicit feature representation of the
KNN graph, the adjacency matrix graph is an explicit feature represen-
tation that can be directly reflected by the surface of the tooth, which
significantly improves the interpretability of the segmentation network.
Moreover, the construction of the adjacency matrix also avoids the
unnecessary overhead of frequent calculation of euclidean distance,
thereby improving the efficiency of the network segmentation.

Specifically, we use each mesh cell in the data as a center point to
construct an adjacency matrix. Since the triangular mesh data is used
in this paper, each mesh cell is composed of three vertexes. First, we
define a set family 𝑉 as

𝑉 =
{

𝑣𝑘 ∣ 𝑘 ∈ 𝑁∗ ∧ 𝑘 ≤ 𝑛
}

, (1)

where 𝑣𝑘 represents the 𝑘th mesh cell in the sample, and 𝑣𝑘 =
{

𝑎𝑘, 𝑏𝑘, 𝑐𝑘
}

represents that 𝑣𝑘 is composed of three vertexes 𝑎𝑘, 𝑏𝑘, and
𝑐𝑘. 𝑁∗ is a set of positive integers, and n is the number of mesh cells
included in the sample. Then, we define that the cells sharing the same
vertexes are adjacent to each other, and initialize an 𝑁-order matrix 𝐴,
where the elements 𝑎𝑖𝑗 are

𝑎𝑖𝑗 =

{

0 if 𝑣𝑖 ∩ 𝑣𝑖 = ∅
1 if 𝑣𝑖 ∩ 𝑣𝑖 ≠ ∅,

(2)

According to the above definition, the adjacency matrix of the
intraoral scan data can be quickly obtained without additional calcu-
lation. After constructing the topology of the data, we introduced the
6

Fig. 8. Schematic diagram of KNN graph and adjacency matrix graph.

classic graph convolutional network (GCN) [41] in graph data mining
to extract the geometry of the tooth data. Since GCN can spread the
information contained in the graph (Graph) along the edges of the
topological structure to aggregate the information around the nodes:

𝐺𝐶𝑁(𝐹 ) = 𝑎𝑐𝑡(𝐴 ⋅ 𝐹 ⋅𝑊 ), (3)

where 𝐹 ∈ 𝑅𝑁×𝐷 represents the characteristics of the mesh cell, 𝑎𝑐𝑡()
represents the activation function, and 𝑊 represents the learnable
weight.

Therefore, GCN can extract local features of the intraoral under the
guidance of the above mesh adjacency matrix. According to the fact
that the normal vector can describe the geometric information of the
3D data, we feed the vertex normal vector and surface normal vector
of the mesh cells into the GCN, thus simulating the generation process
of the 3D surface through the message-passing mechanism.

4.2.2. Fast-TGCN
With the above analytical modeling, we propose a Fast Teeth Seg-

mentation Graph Convolutional Network (Fast-TGCN). As shown in
Fig. 9, Fast-TGCN uses the same 24-dimensional feature input as TS-
GCNet (the first 12 dimensions 𝑐 represent the center coordinates of
three vertexes and grid cells, and the last 12 dimensions 𝑛 represent
the normal vectors of vertexes and grid cells). And it adopts parallel
stream processing with two branches, which has been proved to be
a good representation of 3D oral data in TSGCNet. In addition, in
order to construct the constraints of the adjacency graph, we use the
method introduced in the previous section to regard the cells that have
common vertexes with each cell as adjacent to each other, so as to
construct an N-order binary adjacency matrix 𝐴. After that, the graph
convolution blocks (GCBs) are used to compose the graph convolution
network to transfer the normal vector feature along the path specified
by the adjacency matrix 𝐴, so that all cells can obtain the direction
information of the surrounding cells, and get the feature  ′

𝑛:

𝐺𝐶𝐵( ) = 𝜎
(

𝐴 ⋅ 𝐶𝑜𝑛𝑣1𝐷
(


)

⋅𝑊
)

, (4)
𝑛 𝑛
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Fig. 9. Schematic diagram of the proposed Fast Tooth Graph Convolutional Network (Fast-TGCN).
 ′
𝑛 = 𝐺𝐶𝐵(𝑛). (5)

The reason for performing graph convolution on the normal vector
instead of the coordinates is that the coordinates of each cell are deter-
mined relative to other cells, which already contain all the information
of its neighbors, so it does not make sense to perform graph convolution
on coordinates. As a representation of the global features of the 3D
data, Fast-TGCN only obtains the feature 𝑐 through 1D convolution
processing in parallel with GCB:

 ′
𝑐 = 𝐶𝑜𝑛𝑣1𝐷

(

𝑐
)

. (6)

Meanwhile, we use the local surface feature  ′
𝑛 obtained by the

normal vector branch and the global position feature  ′
𝑐 of the same

dimension obtained by the coordinate branch splicing, get 𝑢𝑛𝑖𝑜𝑛 =
 ′
𝑛 ⊕  ′

𝑐 , ⊕ represents tensor concatenation. The advantage of this is
to maintain the independence of the two features, which is convenient
for the network to learn features from different aspects. After fully
connected prediction, we can obtain the final segmentation result.

5. Experiments

5.1. Experimental setup

In this work, we used 380 intraoral scan samples of the upper and
lower jaws from 190 patients for training and the other 60 intraoral
scan samples for testing. Like other 3D mesh-based tooth segmentation
methods, we sample all samples in 3D-IOSSeg to 16,000 cells, which
maximizes the retention of tooth details in the oral cavity and facilitates
network learning. Meanwhile, we also added random translation and
random rotation operations during training. Specifically, we consider
the distribution of all training samples on the 𝑋, 𝑌 , and 𝑍 axes for
random translation, and the moving intervals are [−6, 6], [−8, 8] and
[−5, 5], and randomly rotate along the 𝑍 axis between

[

−𝜋
10 ,

𝜋
10

]

. In

this way, the position and shape distribution of abnormal teeth can
be effectively learned, which is conducive to improving the learning
efficiency of the network and the accuracy of tooth segmentation.

This work is implemented under Python, and the neural network
model is constructed through the Pytorch deep learning framework.
Since the samples and labels in 3D-IOSSeg are stored in the same
PLY file, they can be read directly through the PlyData dependency
package in Python. Then use the pandas data processing code package
to separate the coordinates, normal vectors and category labels of the
samples. Finally, 200 Epochs are iterated for training with the support
of the NVIDIA RTX 3090 graphics processing unit.
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5.2. Evaluation metrics

We use Overall Accuracy (OA), mean class Accuracy (mAcc), mean
Intersection-over-Union (mIoU), and mean Dice coefficient (mDice),
four common performance measures on point cloud tasks, as the main
evaluation metrics for dataset benchmarks. The calculation formula for
each indicator is as follows:

𝑂𝐴 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

. (7)

𝑚𝐴𝑐𝑐 = 1
𝐶

𝐶
∑

𝑐

𝑇𝑃𝑐
𝑇𝑃𝑐 + 𝐹𝑁𝑐

. (8)

𝑚𝐼𝑜𝑈 = 1
𝐶

𝐶
∑

𝑐

𝑇𝑃𝑐
𝑇𝑃𝑐 + 𝐹𝑁𝑐 + 𝐹𝑃𝑐

. (9)

𝑚𝐷𝑖𝑐𝑒 = 1
𝐶

𝐶
∑

𝑐

2 × 𝑇𝑃𝑐
𝐹𝑁𝑐 + 2 × 𝑇𝑃𝑐 + 𝐹𝑃𝑐

(10)

Among them, TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively. Meanwhile, 𝐶
is the total number of semantic categories, which equals 33 in this work.

5.3. Classic baseline methods

In order to comprehensively evaluate the performance of existing
methods on abnormal teeth data, we choose 3 classic point cloud seg-
mentation pipelines and 2 representative tooth segmentation methods
as reliable baselines in this work.

PointNet [37]: This is an end-to-end network that can directly
process point clouds. It encodes the features of the input points through
MLP and then uses global pooling to extract the overall features of the
point cloud. PointNet addresses the challenges posed by the unstruc-
tured characteristics of point clouds and is a pioneering work in 3D
point clouds.

PointNet++ [42]: This network is an improvement based on Point-
Net, which adds multiple layers to focus on local and global features,
and introduces farthest-point sampling to reduce computational cost.

Point Transformer (PT) [43]: This network introduces the Trans-
former into the 3D point cloud task. It uses the global extraction ability
of the Transformer to obtain the geometric information of the 3D
objects well.

MeshSegNet [39]: This is a tooth segmentation network for 3D
intraoral scan data, which solves the defect that the traditional point
cloud segmentation network cannot pay attention to the geometric
details of the 3D data.
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Fig. 10. Visualization of representative segmentation results produced by five competing methods and Fast-TGCN. The results in the first and second rows show that Fast-TGCN
can effectively distinguish teeth with abnormalities; the results of the second to fifth rows show that Fast-TGCN does not confuse adjacent teeth, reflecting the effectiveness of the
adjacency graph.
Table 3
Overall Accuracy (OA), mean class Accuracy (mAcc), mean Intersection-over-Union (mIoU), mean Dice coefficient (mDice), and score statistics of each tooth class IoU on the
3D-IOSSeg dataset for classic benchmark methods (under 5-fold cross-validation condition). Among them, the best results are highlighted.

Class name Pointnet [37] Pointnet++ [42] Point Transformer [43] MeshSegNet [39] TSGCNet [40] Fast-TGCN (Ours)

T11/T31 78.42%/81.01% 66.37%/53.64% 60.93%/55.81% 70.01%/72.07% 88.00%/90.06% 87.20%/92.25%
T12/T32 70.82%/77.71% 68.77%/61.43% 77.70%/62.06% 79.91%/80.43% 90.72%/84.87% 91.04%/85.52%
T13/T33 82.26%/75.60% 58.04%/58.18% 72.30%/74.12% 72.00%/78.79% 94.32%/90.88% 94.27%/90.60%
T14/T34 74.82%/78.82% 52.32%/63.83% 78.96%/74.60% 67.82%/74.06% 90.82%/81.24% 91.40%/79.54%
T15/T35 74.92%/83.42% 56.67%/59.80% 64.16%/67.55% 69.01%/74.90% 87.92%/90.87% 90.49%/89.28%
T16/T36 72.24%/81.11% 58.42%/66.79% 74.75%/79.83% 73.49%/78.56% 88.34%/82.46% 90.92%/82.79%
T17/T37 87.59%/81.44% 67.52%/64.37% 71.75%/74.26% 77.21%/78.58% 89.48%/87.83% 93.64%/86.53%
T18/T38 68.35%/71.08% 66.72%/60.11% 69.50%/71.17% 65.31%/70.10% 76.46%/79.92% 80.64%/83.32%
T21/T41 83.52%/79.48% 61.93%/57.88% 65.91%/58.77% 76.45%/71.13% 85.48%/89.66% 85.28%/91.99%
T22/T42 75.10%/79.63% 53.92%/50.54% 58.97%/52.44% 68.46%/64.57% 84.84%/85.51% 84.49%/90.11%
T23/T43 71.82%/77.19% 82.48%/64.92% 66.07%/73.38% 71.28%/76.86% 91.03%/87.37% 90.16%/92.86%
T24/T44 76.38%/80.14% 60.26%/67.42% 70.36%/74.85% 67.23%/78.44% 92.29%/86.37% 90.32%/92.84%
T25/T45 64.53%/73.92% 65.47%/58.45% 67.22%/68.77% 66.47%/65.03% 89.70%/82.98% 89.83%/88.52%
T26/T46 66.54%/79.04% 54.88%/64.59% 72.46%/75.85% 56.70%/56.20% 89.43%/83.58% 93.76%/89.82%
T27/T47 68.30%/79.37% 55.88%/61.31% 70.95%/66.12% 68.41%/58.31% 90.70%/86.92% 92.52%/88.82%
T28/T48 72.49%/71.61% 64.30%/60.58% 67.14%/69.05% 73.44%/72.69% 80.78%/78.21% 81.60%/84.42%
mIoU 76.42 ± 0.45% 64.83 ± 0.32% 71.42 ± 0.20% 73.32 ± 0.39% 87.73 ± 0.22% 90.05 ± 0.40%
mAcc 73.49 ± 0.26% 60.94 ± 0.31% 70.18 ± 0.12% 64.71 ± 0.23% 78.76 ± 0.38% 80.71 ± 0.27%
OA 90.07 ± 0.13% 81.66 ± 0.36% 88.53 ± 0.41% 86.47 ± 0.29% 94.81 ± 0.25% 96.57 ± 0.41%
Dice 84.32 ± 0.74% 76.91 ± 0.25% 81.74 ± 0.13% 80.06 ± 0.16% 92.10 ± 0.33% 93.23 ± 0.39%
TSGCNet [40]: This is an end-to-end network for 3D intraoral scan
data segmentation. It ingeniously processes the coordinate and normal
vector information of the 3D mesh data in parallel and constructs the
attention convolution of the KNN graph to learn the two types of
information.

5.4. Comparison and analysis

According to the above evaluation metrics, we evaluate the per-
formance of these classic benchmarks on 3D-IOSSeg via 5-fold cross-
validation. It is worth noting that since none of the datasets of existing
work is publicly available, testing was not possible. In order to guaran-
tee the accuracy of the evaluation, the above benchmarks are trained
with the same method to ensure data fairness and result reliability. The
scores of each method on mIoU, mAcc, OA, and Dice are reported in Ta-
ble 3. Moreover, we provide the result of the mIoU score for each tooth.
Compared to the results on other tooth segmentation datasets, the per-
formance of all these classic models degraded significantly on the new
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dataset. Classical algorithms for 3D point cloud segmentation cannot
recognize complex geometric features in dental data, limiting their
performance on abnormal dental data. And because 3D-IOSSeg has a
greater degree of abnormality and fine-grained division, these methods
have obtained worse scores than other dental datasets. Meanwhile, we
found that methods specifically designed for tooth segmentation also
do not perform satisfactorily on the dataset. In the segmentation of
regular 3D intraoral scanning data, TSGCNet demonstrates outstanding
performance with an impressive OA (Overall Accuracy) score of 96.69%
and mIoU (mean Intersection over Union) score of 91.19%. However,
results on 3D-IOSSe show a decrease in performance, particularly with
respect to the mIoU metric, where TSGCNet achieves only 87.73 ±
0.72%. Furthermore, MeshSegNet, as an advanced tooth segmentation
method, also cannot effectively deal with large-scale abnormal teeth
on 3D-IOSSeg. Different from the above methods, our Fast-TGCN is the
first tooth segmentation method specially designed for abnormal teeth.
According to the table, it can be observed that our method outperforms
previous methods in terms of overall performance. In particular, the
score on the overall mIoU performance index has a very obvious
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Fig. 11. Results of Fast-TGCN with different strategies.
Fig. 12. Segmentation comparison between TSGCN and our Fast-TGCN on abnormal tooth samples. Obviously, our Fast-TGCN achieves better segmentation results. (The left part
shows the segmentation results when the tooth is broken and the boundary between the tooth and gingiva is not clear, and the right part shows the segmentation result when the
tooth is misaligned/overlapping.)
Fig. 13. Radial diagram of Fast-TGCN with TSGCNet. Longer bars represent better
results.

advantage, which benefits from the natural advantages of the adjacency
matrix in representing the complex geometric information of the tooth.
It is worth noting that mACC represents the ratio of the number of
correctly segmented cells to the number of all cells in the entire dataset.
In 3D-IOSSeg, 60 dental samples are used for testing, and each sample
contains 16000 cells, so the entire data set has 960,000 cells. Therefore,
although our Fast-TGCN only improves mACC by 1.95% compared to
TSGCNet, it means that our method has correctly segmented 18720
cells more than TSGCNet. This further validates the effectiveness of our
proposed Fast-TGCN. In the Table 4, we also compare the inference cost
of these segmentation methods. Obviously, Fast-TGCN achieves an ex-
cellent balance in execution time (time from loading data to completion
of segmentation), GPU memory, model size and performance, which is
of great significance for improving the efficiency of clinical diagnosis.

In Fig. 10, we provide the visual segmentation effect of all these
methods in the 3D intraoral scan samples. From the results, we can
see that our Fast-TGCN outperforms all other methods in segmenting
9

Table 4
Evaluation results of all competing methods and Fast-TGCN on OA, mAcc and mIoU.

Matrix/Method mAcc mIoU Para Time GPU

PointNet 73.49 ± 0.26% 76.42 ± 0.45% 1.82M 0.32 s 2457MiB
PointNet++ 60.94 ± 0.31% 64.83 ± 0.32% 0.97M 0.64 s 2035MiB
PointTransformer 70.18 ± 0.12% 71.42 ± 0.20% 19.39M 1.18 s 3465MiB
MeshSegNet 64.71 ± 0.23% 73.32 ± 0.39% 1.79M 11.85 s 14655MiB
TSGCNet 78.76 ± 0.38% 87.73 ± 0.22% 4.13M 0.54 s 19967MiB
Fast-TGCN (Ours) 80.71 ± 0.27% 90.05 ± 0.40% 1.83M 0.35 s 12629MiB

Table 5
Performance comparison on normal samples.

Methods mACC mIoU OA Dice

TSGCNet 79.46 ± 0.24% 88.75 ± 0.10% 95.84 ± 0.56% 95.27 ± 0.28%
Fast-TGCN (Ours) 84.13 ± 0.21% 91.62 ± 0.33% 97.60 ± 0.23% 96.39 ± 0.19%

Table 6
Performance comparison on abnormal samples.

Methods mACC mIoU OA Dice

TSGCNet 74.70 ± 0.14% 80.36 ± 0.17% 87.21 ± 0.34% 89.31 ± 0.11%
Fast-TGCN (Ours) 78.13 ± 0.25% 83.09 ± 0.19% 89.60 ± 0.28% 90.14 ± 0.20%

abnormal teeth. Specifically: 1. Three classic point cloud segmenta-
tion methods, PointNet, PointNet++, and Point Transformer cannot
accurately segment the tooth target. 2. The visualization results of
MeshSegNet and TSGCNet in the second and third lines prove that the
discontinuous area of the KNN graph caused the wrong segmentation.
Both methods use the KNN graph constructed by the spatial Euclidean
distance to guide the network segmentation. Although this method
can build a dynamic graph to learn the 3D data, it will confuse the
adjacent teeth when facing the fine-grained 3D-IOSSeg dataset full of
abnormal teeth. In contrast, our Fast-TGCN can accurately distinguish
the boundaries of adjacent teeth when dealing with such complex oral
data, which proves the effectiveness and feasibility of our adjacency
graph for modeling tooth surfaces.

Furthermore, we divided the dataset into two parts, one part only
contains pure abnormal samples, and the other part contains pure
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Fig. 14. Challenging cases of our proposed Fast-TGCN.
Table 7
Ablation study of graph convolutional operation and adjacency matrix graph strategy.

Case Matrix/Case OA mAcc mIoU

1 Coordinates 85.12% 71.88% 78.94%
2 Normal vector + Coordinates 86.69% 70.21% 76.52%
3 KNN graph 92.73% 75.68% 82.39%
4 Fast-TGCN (Ours) 96.57% 80.71% 90.05%

normal samples. Then, we use the pre-trained TSGCNet and Fast-TGCN
to test these two dataset, and the results are indicated in the Tables 5
and 6, respectively. According to the result, we can clearly observe
that our proposed Fast-TGCN achieves better results on normal and
abnormal samples. This verifies the effectiveness and generalizability of
the proposed Fast-TGCN. Meanwhile, we provide a visual comparison
between TSGCN and our Fast-TGCN on abnormal tooth samples in
Fig. 12. Among them, the upper part shows the segmentation results
when the tooth is broken and the boundary between the tooth and
gingiva is not clear, and the lower part shows the segmentation result
when the tooth is misaligned/overlapping. Obviously, our Fast-TGCN
achieves better segmentation results when confronted with samples
exhibiting tooth damage, displacement, and atypical tooth morphol-
ogy. This further verifies the effectiveness and generalizability of the
proposed Fast-TGCN.

5.5. Ablation study

The key idea of the proposed Fast-TGCN is the introduced adjacency
matrix graph strategy. To verify the effectiveness of this strategy, we
designed a series of ablation experiments and provided the results
in Table 7. Among them, case 1 represents the network that uses
graph convolution only in the coordinates branch, and case 2 repre-
sents the use of graph convolution in both coordinates and normal
vector branches. According to the result, we found that convolving
coordinates alone cannot achieve good segmentation results, and con-
voluting two kinds of information simultaneously will also affect the
segmentation accuracy. This is because the coordinates contain obvious
global features, and their role is usually to place spatial constraints on
the segmentation target, such as distinguishing between incisors and
molars. However, for two types of teeth whose spatial distribution is
significantly different, no such information is needed. For the normal
vector, it only contains limited local features. If the network wants to
use these features to segment the 3D data more carefully, it needs to ob-
tain the overall surface information of a certain area. At this point, the
graph convolution guided by the adjacency matrix graph can effectively
connect all mesh cell normal vectors so that the network can perceive
various curved features of the tooth surface. Meanwhile, in case 3, we
also replace the GCB in our network with the KNN graph attention
method in TSGCNet [40] for training and testing. According to the
table, we can observe that the performance of the modified network
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drops significantly. In contrast, our Fast-TGCN achieves great results.
This is because Fast-TGCN adopts the expression method of adjacency
matrix graph, which greatly avoids the discontinuity problem of the
KNN graph and transmits the surface information contained in the
normal vector of adjacent mesh cells to the surrounding area. In Fig. 11,
we also provide their segmentation results. This further verifies the
effectiveness of our proposed method.

6. Discussion

The challenge of fine-grained segmentation. Although our Fast-
TGCN achieves satisfactory results in 3D-IOSSeg, we found that the
segmentation results of some teeth was not accurate due to the dif-
ference in the jaw. In addition, through Fig. 13, we found that the
results of our Fast-TGCN were not the best on some teeth. This is mainly
due to the lack of a constraint between teeth for the transmission
of information in the adjacency graph, resulting in some information
being diffused to other tooth regions. Fig. 14 displays some less sat-
isfactory segmentation results. We observed that individual meshes
are erroneously segmented in certain areas. Additionally, when faced
with horizontally misaligned teeth, the current segmentation method
requires further improvement. Since we employ a direct scanning ap-
proach, the oral environment in our samples is more intricate, including
irregular gums, further emphasizing the greater complexity the 3D-
IOSSeg dataset presents as a challenge for future oral segmentation.
In future research, we intend to study tooth segmentation with a more
refined network.

Simplified mesh data. Original 3D intraoral scan data are usually
composed of more than 100,000 cells. It is impossible to perform di-
rectly on the original data with existing methods. The current solution
is usually to simplify the original tooth data into a unified and smaller
mesh data, but this also leads to the loss of some geometric details. In
future work, we will explore a simplified algorithm for the mesh data,
which enables they to perform directly on raw data.

7. Conclusion

In this work, we proposed a fine-grained tooth segmentation dataset
3D-IOSSeg dedicated to orthodontics, which not only has rich abnormal
tooth distribution and finer-grained segmentation markers, but also
uses real intraoral scan data. These characteristics make 3D-IOSSeg bet-
ter reflect the diversity of clinical patients, and lay the foundation for
the further application of tooth segmentation. Meanwhile, 3D-IOSSeg is
a open and editable orthodontic dataset, which means that researchers
can flexibly adjust each sample through 3D view software to suit
specific works. In addition, we proposed a fast graph convolutional
network (Fast-TGCN) for tooth segmentation. Different from previous
tooth segmentation methods, Fast-TGCN replaces the KNN graph with
a more naive adjacency matrix graph and use the node message passing
mechanism of GCN to gradually transmit the generation process of
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the simulated 3D surfaces to the entire space. This method has a
significant impact on the geometric information modeling of the 3D
intraoral scans, greatly improving the efficiency of tooth segmentation.
Extensive results show that Fast-TGCN has strong advantages in fine-
grained abnormal tooth segmentation, laying the foundation for digital
dentistry.
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