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Abstract

Neural-networks based image restoration methods tend
to use low-resolution image patches for training. Although
higher-resolution image patches can provide more global
information, state-of-the-art methods cannot utilize them
due to their huge GPU memory usage, as well as the in-
stable training process. However, plenty of studies have
shown that global information is crucial for image restora-
tion tasks like image demosaicing and enhancing. In this
work, we propose a HighEr-Resolution Network (HERN)
to fully learning global information in high-resolution im-
age patches. To achieve this, the HERN employs two par-
allel paths to learn image features in two different resolu-
tion, respectively. By combining global-aware features and
multi-scale features, our HERN is able to learn global in-
formation with feasible GPU memory usage. Besides, we
introduce a progressive training method to solve the insta-
bility issue and accelerate model convergence. On the task
of image demosaicing and enhancing, our HERN achieves
state-of-the-art performance on the AIM2019 RAW to RGB
mapping challenge. The source code of our implementa-
tion is available at https://github.com/MKFMIKU/
RAW2RGBNet.

1. Introduction

Image enhancement is a hot topic in the field of low-
level computer vision, which aims to improve the visual
quality of degraded images by using prior-based methods
or example-based methods. Inspired by the powerful non-
linear learning ability of neural networks, current meth-
ods [5, 9] tend to use deep neural networks to learn the
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Figure 1: Visualization of each channel in the RAW image
and its corresponding RGB results reconstructed by HERN.

mapping between the degraded RGB image with the de-
sired RGB target. Theses methods greatly improved the per-
formance in metrics like peak signal-to-noise (PSNR) and
structural similarity (SSIM).

To further improve the performance and visual quality,
recently works [1, 17] tend to train networks on unpro-
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cessed images. More specifically, the proposed networks
are learning the mapping between the degraded RAW im-
age with the desired RGB image. This is because unpro-
cessed RAW images could provide more information than
processed RGB images, thus more additional information
could be used to reconstruct more accurately enhanced im-
ages. However, the RAW images outputted from the image
sensors with Bayer filters consist of four different channels
which increases the difficulty of mapping learning. Differ-
ent from RGB channels, the four channels in RAW (RGBG)
is red (R), green (G), blue (B), and alternating green (G).
We provide an example of RAW image and its correspond-
ing restoration results of our HERN in Figure 1. It should
be noticed that each channel in the RAW image is not the
same as the [R, G, B] channel in the RGB image. Therefore,
it is important to perform image processing operations like
color correction and tone mapping before learning the map-
ping function. To fully utilize the additional information
from RAW images, using global information [6] is as cru-
cial as using local information. The simplest way is using
higher-resolution image patches instead of widely used low-
resolution image patches during training. However, cur-
rent state-of-the-art methods are limited to using the low-
resolution image patches due to the huge GPU memory us-
age. The Figure 2 shows that the GPU memory usage will
increases when the resolution of image patches increase.
Therefore, it is unrealistic to train state-of-the-art methods
on one GPU card with image patches of 224 * 224 pixels
(the maximum resolutions of image patches in the datasets).

To solve aforementioned problems, we propose a
HighEr-Resolution Network (HERN), which consists of a
dual-path network and a pyramid full-image encoder. Es-
pecially, The dual-path network consists of a multi-scale
module for local feature extraction and a modified residual
in residual module for global information learning. In the
local information path, we use Multi-Scale Residual Blocks
(MSRBs [13]) to full exploit local information on different
scales. In the global information path, we use the mod-
ified residual in residual (RIR) module as our backbone.
The residual in residual (RIR) module was inspired by the
Residual Channel Attention Network (RCAN[18]). How-
ever, the introduced channel attention mechanism in RCAN
will cost huge GPU memory. Therefore, we remove all
channel attention layers to reduce the GPU memory usage
and speed up training process. Furthermore, we add two ad-
ditional convolutional layers and two deconvolutional lay-
ers before and after the residual in residual (RIR) module
like the PFFNet [15], respectively. These layers downsam-
ple the full-resolution image features into quarter size be-
fore learning and upsampling these features into the original
size after learning. Thus, we can train the model in higher
resolution input image patches to extract more global infor-
mation while with less GPU memory usage. In addition,

Figure 2: In this experience, we only use one NVIDIA Ti-
tanX GPU and set the batch size to 1. Obviously, during
training, GPU memory will increase as the resolution of the
input image increases. The maximum input patch size that
RCAN can handle is 144 * 144 while our proposed HERN
can suitable for 312 * 312.

we add a pyramid full-image encoder to extract full-image
information on a fixed resolution. This additional encoder
enable the network to process results with arbitrary resolu-
tions. Finally, the extracted local and global image features
are concentrated together for the final RGB image recon-
struction. In summary, our contributions are:

(i). We propose a HighEr-Resolution Network (HERN),
which can fully learning local and global information in
high-resolution image patches.

(ii). We propose a progressive training method to solve
the instability issue and accelerate model convergence.

(iii). Our HERN won second place on track 1 (Fidelity)
and won first place on track 2 (Perceptual) in the AIM2019
RAW to RGB Mapping Challenge.

2. Related Works
2.1. Image Enhancement

Image enhancement aims to reconstruct the desired im-
age from its degraded image. Dong et al. [5] first pro-
posed the CNN-based learning method (SRCNN) to di-
rectly learned the mapping between low-resolution images
with high-resolution images, which achieves significant im-
provement than traditional learning-based methods. Fol-
lowing this work, Cai et al. [3] and Ren et al. [16] use deeper
CNNs to learn the mapping directly from haze-images to
clear images. These works proved that deeper networks
with more parameters will achieve higher performance in
terms of PSNR and SSIM. Later work like EDSR [14] and
RCAN [18] further use deep residual network up to 800 lay-
ers and achieve state-of-the-art performance. Although the
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Figure 3: The architecture of our proposed HERN, which consists of a dual-path network and a pyramid full-image en-
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fidelity performance of these models is improved, the re-
sults tend to have indistinct details due [19] to the use of
Mean Square Error (MSE) loss only. To solve this problem,
Ignatov et al. [9] replaced the MSE loss with a composite
perceptual loss function, which got better perceptual results
on translating ordinary photos into DSLR-quality images.
Different from [9], Gharbi et al. [6] proposed the HDRNet
to extract features in two different resolutions and bilateral
slicing operations are used to reconstruct the low-resolution
images into full resolution. The HDRNet employs little pa-
rameters but can perform real-time enhancing and generate
results in arbitrary resolutions with the same enhancing ef-
fects. However, all the research mentioned above except
for HDRNet assume the enhancing pattern is local and only
low-resolution image patches are used for training. Inspired
the HDRNet [6], we aim to explore a more efficient model
that can suitable for high-resolution input image patches.

2.2. Image Demosaicing

Image demosaicing include a set of operations, which
are used to reconstruct color images from color filter ar-
rays from an image sensor. The unprocessed RAW images
contain the original information from the sensor and noise
information from the lens or sensors. So the demosaicing
operation aims to remove the color artifacts like chromatic
aberration, aliasing, and preserving the useful information

as much as possible.
Recent works utilize the unprocessed information from

RAW images to learn the mapping from RAW to RGB di-
rectly. For example, Cheng et al. [4] developed a network
operating on raw images directly without tradition image
processing pipeline. By employing the network on low-
light image enhancing, they achieve more promising results
than tradition image processing methods. Brooks et al. [2]
introduce a technique to generate unprocessed images by
inverting each step in demosaicing and then use the unpro-
cessed images to model noisy RAW images to RGB images
by a simple CNNs. The model achieves more accurate de-
noising results due to abundant information from the RAW
images. Following previous works, we aim to make full use
of the abundant information in the RAW images to recon-
struct high-quality RGB images in this work.

3. HighEr-Resolution Network (HERN)
In this section, we describe the proposed network ar-

chitecture and corresponding training method. We first
discuss the details of each component in the network and
then introduce the progressive training method, as well
as the strategies comparison between training using high-
resolution patches and low-resolution patches. The com-
plete architecture of the proposed HERN is visualized in
Figure 3.



3.1. Dual-path Network

The most important part of HERN is a dual-path net-
work, which consists of a global information path and a lo-
cal information path.

3.1.1 Global Information Path

Residual in Residual (RIR) [18] blocks have shown superior
performance in the task of image super-resolution. It con-
sists of G residual groups and each residual group consists
of B residual channel-attention blocks (RCABs). By em-
ploying this architecture, it can be stacked into very deep
networks without the vanishing gradient problem. How-
ever, the proposed channel attention [8] mechanism in each
RCAB increase the memory usage greatly, especially when
applied to high-resolution image features. To fully exploit
the global information, we remove all channel attention
units in each block and stack the rest together with a global
information path. In addition, we replace the ReLU layer in
each RIR block with the PReLU [7] layer since it provides
penalties for negative values during training. The difference
between the original RCAB in RCAN and our propose RIR
module are visualized in Figure 4.

Besides, to further reduce the GPU memory usage, we
introduce the Autoencoder mechanism into the global infor-
mation path. In other words, two convolutional layers with
stride = 2 (encoder) are applied before the RIRs module.
Therefore, the resolution of input image features are down-
sampled into a quarter of the original and the GPU memory
usage is also reduced into a quarter of the original. After
sufficient feature extraction by the RIRs, two deconvolu-
tional layers with stride = 2 (decoder) are applied in the
tail of the path to upsampling these image features into the
original size. This method can extract abundant global in-
formation, thus benefits for the final image reconstruction.

3.1.2 Local Information Path

Although the introduced global information path has a large
receptive field, it destroys local information such as tex-
tures and edges. However, plenty of studies have shown
that, image textures and edges are crucial in visual qual-
ity measurement. Therefore, we introduce a parallel local
information path to recover the local information, which
directly processes the feature without downsampling. As
shown in the Figure 3(middle), the local information path
consists of M Multi-scale Residual Blocks (MSRBs [13]).
The MSRB use two convolutional layers with different ker-
nel sizes (3x3 and 5x5) to allows the network to extract
image features in different scales and combines different
image features through the feature exchange mechanism.
Moreover, to fully utilize image features at difference scale,
we add one bottleneck layer with 1x1 kernel in the tail of
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Figure 4: Architecture comparison between our modified
RIR, the original RCAB in RCAN and the RB in EDSR.

the block to fuse theses feature and reduce the GPU mem-
ory usage. We visualize the architecture of the MSRB in
Figure 5, where Ih is the full-resolution image features and
Ĩh is the processed full-resolution image features.

3.2. Pyramid Full-Image Encoder

Different from the global information path proposed
above, the pyramid full-image encoder produces a n-
dimensional vector, which is then added to the fused fea-
tures produced by the global information path and the lo-
cal information path. In this module, the input full-images
are firstly processed by P stacked convolutional layers with
stride = 2 and then one adaptive average pooling is
adopted to reduce the dimension of features into 1*1. By
doing this, the encoder encodes the whole images into high-
level characteristics. Due to the awareness of the global
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Figure 5: The architecture of MSRB in the local informa-
tion path. We use PReLU layer in each MSRB instead of
ReLU layer.

receptive field, it performs regularization on the output im-
ages, which improves the reconstruction performance, espe-
cially in the high-resolution testing. We show one example
of the local artifacts in the flat area generated by the net-
works in Figure 6. Obviously, the model with the Pyramid
Full-Image Encoder can reconstruct more accurate results.
This because the introduced Pyramid Full-Image Encoder
can extracts high-level characteristics of the input image
and the extracted high-level characteristics can regularize
local artifacts, especially in the flat area.

3.3. Progressive Training

Training with high-resolution images is not the same as
training with low-resolution images, due to the huge GPU
memory usage and the slow convergence speed. Recently,
many studies have been proposed to solve this problem. For
example, Karras et al. [11] processed a Progressive Grow-
ing GAN (ProGAN) to generate high-resolution images.
ProGAN grows the layers of generator and discriminator
progressively, as well as growing the resolution of input
images. The results show that this training technology can
speed up and stabilize the training process. However, this
techniques is not suitable for supervised image enhance-
ment tasks because these model require many parameters
at the initial training stage. Directly using the training tech-
niques of ProGAN, the model with fewer layers get bad pa-
rameters due to overfitting or mode collapse.

In this work, instead of growing layers and resolution of
inputs progressively, we keep the same architecture of net-
works all the time and only the resolution of the input im-
age is gradually increased. Furthermore, without new pa-
rameters added during changing resolutions, the proposed
network quickly adaptive to the new resolution inputs. By
training the network with low-resolution images, the net-
work converges more quickly than directly training with
high-resolution images. The convergent network can then
be adapted to the new network that training with higher-
resolution images. In this way, we can reduce the whole
training time since most of the training process is in the

(a) artifacts otuput (b) clear output

Figure 6: (a) shows the local artifacts in the wall area, which
is generated by the model without the Pyramid Full-Image
Encoder. (b) shows clear results in the wall area, which is
generated by the model with the Pyramid Full-Image En-
coder.

lower-resolution level.

4. Experiments and Results

In this section, we describes the datasets used for training
and validation, the training details, and the ensemble strat-
egy. Furthermore, fidelity comparison on image patches and
visual quality comparison on full-resolution images are also
presented.

In the global information path, we set G=16, B=10, and
each layer have 128 filters. In the local information path, we
use 8 MSRBs for multi-scale image features extraction and
each layer 64 filters. Meanwhile, the Pyramid Full-Image
Encoder contains one bilinear interpolation layer and 6 con-
volutional layers.

4.1. Datasets

Zurich RAW2RGB Dataset [10] (ZRR) is a novel
datasets for the task of phone camera images enhancement.
It provides over 90K aligned image patch pairs include
RAW images from a phone camera and RGB images from
a DSLR correspondingly. We divide the first 90000 image
patch pairs used for training, and the rest 2139 image patch
pairs used for fidelity validation. Besides, 10 full-resolution
RAW images without corresponding RGB images are used
for perceptual validation.

4.2. Training Details

For training, we directly use RAW images as input and
corresponding RGB images as ground truth. Meanwhile,
random horizontal and vertical flips are used for data aug-
mentation. According to [19], we use L1 loss instead of L2
loss to avoid getting stuck in a local minimum. L1 loss is
denoted as follows:

L1(θ) =
1

N

N∑
n=1

|Φ(xi; θ)− yi| ,



PSNR / SSIM 19.509 / 0.856 21.798 / 0.867 24.550 / 0.874 24.857 / 0.874

PSNR / SSIM 21.166 / 0.857 24.560 / 0.875 25.374 / 0.878 25.577 / 0.879
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patch size = 72*72
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28.974 / 0.897
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30.349 / 0.901
patch size = 224*224

Figure 7: PSNR/SSIm and visual comparison of reconstructed images of models trained using different input patch sizes.

where Φ is the network function and θ represents the learn-
able parameters, N is the batch size, and xi, yi are the patch
pairs of RAW image and RGB image. As addressed in Sec-
tion 3.3, we grow the resolution of inputs and ground truth
progressively. For the first 48 epoch, we use 72*72 pixels
image patches and the learning rate is set to 1e-4. For the
later 36 epoch, we use 144*144 pixels image patches and
the learning rate is set to 1e-5. For the later 24 epoch, we use
192*192 pixels image patches and the same learning-rate.
For the final 8 epoch, we use 224*224 pixels image patches
with constant learning-rate. To fully utilize the GPU mem-
ory, the batch size is also decreasing as [16, 4, 2, 2] on a
single NVIDIA TitanX GPU. We use the random crop on
full-resolution image patches instead of interpolation when
changing resolution. In addition, the Adam [12] optimizer
with setting β1 = 0.9, β2 = 0.999 are used for all epochs.

4.3. Ensemble Strategy

Different from the data augmentation strategy used for
training, ensemble strategy is used for testing. Recently,
plenty of studies have shown that the introduced ensemble
strategy can further improve the model performance and ro-

bustness. Therefore, we introduce the self-ensemble strat-
egy and the epoch-ensemble strategy for the fidelity valida-
tion, and the perceptual validation only uses self-ensemble.

Epoch Self-Ensemble Epoch-Ensemble PSNR (dB) / SSIM

#113 23.105 / 0.810
#113 X 23.201 / 0.818
#115 23.162 / 0.811
#115 X 23.254 / 0.818
#113 & #115 X X 23.304 / 0.818

Table 1: Ablation study on using different ensemble strat-
egy during testing. The self-ensemble strategies increases
performance in PSNR and SSIM greatly. The epoch-
ensemble increases performance in PSNR only.

The self-ensemble operation generates 3 different im-
ages by using the horizontal flip, the vertical flip, and the
horizontal-vertical flip. 4 different images including the
original image are input into the same network and 4 differ-
ent outputs are flipped by inverse operations. For the final
reconstructed image is the average results of these 4 outputs.
The epoch-ensemble averages output from the same net-



work with different training epochs, especially some epochs
that achieve the highest performance in the validation set.
We also found this strategy is useful when the network is
overfitting in some patterns. In Table 1, we show the re-
sults of the validation dataset with or without these strate-
gies. Obviously, the introduced self-ensemble and epoch-
ensemble strategies show superior performance.

4.4. Quantitative and Qualitative Evaluation

We use the ensembled results from the epoch #114 and
#115 in the quantitative validation, and epoch #115 only for
the qualitative evaluation. Besides, the ensembled results
are trained with 224*224 pixels image patches. We com-
pared the results from our final model with the results from
the same model but using input patches of different reso-
lution for training. The comparison results are shown in
Figure 7. We can see clearly that using higher-resolution
patches for training can achieve more accurate reconstruc-
tion results than low-resolution patches, especially in global
exposure adjusting and color reconstruction.

4.5. AIM2019 RAW to RGB Mapping Challenge

This work was proposed for participating the AIM2019
RAW to RGB Mapping Challenge [10]. The challenge con-
sists of two tracks: track 1 focus on obtaining the highest
pixel fidelity to the ground truth, which measured by PSNR
and SSIM. The track 2 focus on achieving the best percep-
tual quality similar to the ground truth, which measured by
Mean Opinion Score (MOS). It should be noted that the rat-
ing of perceptual quality is scaled from 0 to 4 and 0 is the
best.

During this competition, we use the same model for both
track 1 and track 2. Furthermore, our model achieves sec-
ond place in track 1 and first place in track 2, the results are
shown in Table 2. This fully demonstrates that our model
achieves superior performance on images of arbitrary reso-
lution and can improve the visual quality of full-resolution
images.

4.6. Limitations

In Figure 8 we show two examples of enhancing results
in full-resolution. There are some colorful bands around
the center of the images. These artifacts are similar to the
vignetting of the camera lens and occur in both croped im-
age patches and full-resolution images. Since the provided
RAW image is converted from 16-bit into 8-bit, it cannot
contain such abundant colors, and faulty colors occur. Our
method cannot distinguish these color faults from enhanc-
ing effects, and these artifacts are unfortunately learned.
Thus, combining more accurate photography priors will be
the focus of our future work.

Track Rank Team Metrics Performance

Track 1 1 1st PSNR / SSIM 22.59 / 0.81
2 HERN PSNR / SSIM 22.24 / 0.80
3 3st PSNR / SSIM 21.94 / 0.79
4 4st PSNR / SSIM 21.91 / 0.79
5 5st PSNR / SSIM 20.85 / 0.77

Track 2 1 HERN MOS 1.24
2 2st MOS 1.28
3 3st MOS 1.46
4 4st MOS 1.56
5 5st MOS 1.92

Table 2: AIM2019 RAW to RGB Mapping Challenge re-
sults for two tracks. We use red text to indicate the best
performance and blue text to indicate the second best per-
formance.

(a) results of 4.png (b) results of 5.png

Figure 8: Our HERN fails to generate correct results on
these examples. In figure (a), the colorful circles occur in
the bottom-right corner. In figure (b), the colorful circles
occur in the bottom-left corner.

5. Conclusion

State-of-the-art methods tend to modify network archi-
tectures for performance improvement. Different from
them, this paper revises the main backbone from enhance-
ment networks to adapt to training on high-resolution im-
age patches. For further utilizing benefits from using high-
resolution patches, we propose a global information path,
a local information path, and a pyramid full-image encoder
in parallel. By fusing three different outputs, the proposed
HERN achieves the state-of-the-art performance on bench-
mark datasets. Furthermore, it can process inputs of arbi-
trary resolution and generate similar effects on the same im-
ages without modifying networks architectures. To stabilize
the training process on high-resolution image patches, pro-
gressive training technology is proposed as well. By pro-
gressively growing the resolution of inputs, it can get sta-
bility performance, as well as shortened training time. The
final implementation of this paper achieves second place in
track 1 and first place in track 2 in the AIM2019 RAW to
RGB Mapping Challenge.
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