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Abstract: Single image super-resolution (SISR) has gained great attraction and progress in recent years. Since the SISR is an
ill-posed inverse problem, most researchers are concentrated on making efforts to learn effective and reasonable mapping
functions from low-resolution observation to its potential high-resolution (HR) counterpart. In this study, the authors have
proposed a deep residual refining based pseudo-multi-frame network for efficient SISR. A channel-wise attention mechanism is
employed for residual refinement. It can ease residual learning process through explicitly modelling non-linear dependencies
between channels by using global information embedding. Multiple potential HRs from different deconvolutional layers are
further artificially learned, and then adaptively fused into final desired HR image. The authors call this strategy as pseudo-multi-
frame SR. It could make full use of available redundant information possessed in hierarchical layers. They have evaluated the
proposed network on several popular benchmark datasets. The experimental results have shown that the two highlights
proposed can consistently boost final performance. The proposed network can outperform most of the state-of-the-art methods
with acceptable less parameters.

1 Introduction
Super-resolution (SR) is to estimate visual pleasing high-resolution
(HR) image/video from its low resolution (LR) observations. It is
widely used in many practical applications where high-frequency
details are desired, such as video surveillance, medical imaging,
remote imaging, HDTV and so on. Since a low-resolution image
could be degraded from more than one high-resolution case, the SR
is, therefore, a typical ill-posed inverse problem. Researchers on
SR in these years were to make efforts on learning effective and
reasonable mapping functions from LR to potential HR images.
Due to the powerful learning ability of deep neural networks, deep
learning (DL) based methods have recently gained much
attractions and achieved great progress compared with
conventional none-DL methods [1, 2] on SR.

In this paper, we considered the construction of SR networks
from three main aspects: the computational efficiencies of network,
the strategies of residual learning and the information available for
fusion.

The computational efficiencies of network: SRCNN [3] was the
first DL-based work on image SR. It employed a lightweight
structure with three convolution layers to learn an end-to-end
mapping between LR and HR. FSRCNN [4] was an accelerating
version of SRCNN. One of its highlights was that it directly
applied network on original LR image, instead of bicubic
interpolating original LR before network input. At the end of
network, it introduced a deconvolution layer for HR mapping.
SRCNN and FSRCNN represented two general strategies on how
to deal with input LR images before applying them into network.
The pre-processing step of bicubic interpolation inevitably
increased the computation burden, over-smoothed and blurred
original LR image, which might result important details lost.
Similarly, ESPCN [5] introduced an efficient sub-pixel convolution
layer to effectively replace the handcrafted bicubic filter. Feature
mappings are directly extracted from original LR image. As a
result, the computational complexity was reduced. Therefore, from
the experience of previous work, applying network directly on

original LR before sub-pixel convolutional layer to desired HR is
more computational efficient.
The strategies of residual learning: VDSR [6] was one of the
pioneers that proposed residual learning-based strategies for the
single image super-resolution (SISR) problem. Its core idea was
based on the observation that LR and HR images shared similar
low-frequency information. Therefore, it was reasonable to
explicitly modelling the differences, which were also referred to
high-frequency details. Residual-based strategies were proved to be
more suitable for solving SR problems and have now become the
commonly accepted network's configurations.
Explicitly modelling dynamic, non-linear dependencies between
channels by using global information could ease learning process
[7]. Therefore, we considered introducing a channel-wise attention
mechanism into local residual learning block. The introduced
mechanism could simplify the designation of residual-based
learning strategy while improving final performance. We would
demonstrate the effectiveness in our ablation experiments.
The information available for fusion: Most of methods on SR can
be categorised into two main streams: SISR and multiple image SR
(MISR). The SISR concerns on estimating HR from a single LR
image of the same scene, under the assumption that the original
imaging setup is not available. In MISR, the input usually consists
of more than one LR image, under the assumption that each one is
a degraded version of an underlying HR scene. In terms of
available redundant information possessed, recovering a HR image
from multiple LR images is to some extent easier than from only
single LR image.

It is not difficult to find that most of SISR methods are limited
that HR could only be restored from only one input, either in the
case of function learning from the interpolated LR to HR, or in the
case of deconvolutoinal learning from original LR to final HR at
the end part of network. They were concentrated on an
deterministic learning in one-to-one mode.

However, SR is an ill-posed problem and the relationship
between LR and HR is in many-to-many mode. That means, one
LR could be degraded from different HRs, and one HR could also
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generate different LRs depending on different degradations.
Motivated by the fact, we proposed to artificially create multiple
potential HRs from different deconvolutional layers according to
different level LR information in network, and then adaptively fuse
these potential HRs into final desired HR output. As these
intermediate HRs are not restored from different real LRs,
respectively, we take this idea as a kind of pseudo-multiple-frame
SR strategy.

To verify our considerations on how to construct an effective
SISR network, we have proposed a compositional network that
contains our concerns in this paper. We have performed two
ablation experiments and comparisons with several state-of-the-art
methods on public benchmark datasets. As we are not completely
committed to performance excellence, in our experiments, we
avoid using highly tricky training strategies to enhance
performance. Nonetheless, the experiment results still demonstrate
that our proposed strategies are effective and the proposed
compositional network could achieve top performance with
reasonable parameters scale and depth.

The contributions of this paper are two-fold:

• A residual refine block via channel-wise attention mechanism is
proposed for SR. It explicitly models the dynamic, non-linear
dependencies between channels by using global information. As
a result, the residual learning is eased and the SR performance is
boosted as well. Moreover, the residual refine based strategy is
general, which can easily embedded into any residual learning
based SISR model.

• A pseudo-multiple-frame strategy is proposed to augment
redundant information for effectively solving SISR problem. It
is motivated by the many-to-many relationship between LRs and
HRs. Different from most of current SISR methods in which
residual blocks were stacked in a chain way, the pseudo-
multiple-frame SR strategy can adaptively make full use of
hierarchical information and has been demonstrated that it can
outperform most of state-of-the-art methods with reasonable
parameters size under the same experiment conditions.

2 Related work
Our proposed network falls into the category of deep learning
based SISR methods. Therefore, in this paper, we mainly discuss
the most related deep learning based work recently proposed on
SISR.

2.1 Residual-based SISR

Due to the proximity from original image to ill-posed recovered
image, such as LR to HR, most values of residual images are likely
to be small even zero. The learning process from input to output
can be speed up through residuals. Moreover, skip connections
between input and output have also been demonstrated to be able to
avoid gradient vanishing/exploding. Therefore, residual-based
learning has been playing great importance on ill-posed image
restoring problems.

SRGAN(SRResNet) [8] had proposed a generative adversarial
network for SR. The proposed perceptual loss consisted of an
adversarial loss and a content related loss. It benefited from
restoring more photo-realistic HR image. However, the original
architecture of ResNet [9] was directly employed without much
modification in SRResNet.

EDSR [10] was an improved version of SRResNet, and won the
NTIRE2017 Challenge on Single Image Super-Resolution [11]. As

the authors claimed, the significant performance improvement of
their model was due to optimisation by removing unnecessary
modules in conventional residual networks and their performance
was further improved by expanding the model size. Therefore, it
could be said that the high performance of EDSR was in cost of
training an extremely large scale and very wide network.

DRCN [12] was the first to employ recursive neural network on
SR solutions. Global residual learning and recursive supervision
was included in the training architecture of network.

Different from the chains structure of recursive layers in
DRCN, the recursive layers in DRRN [13] were in multi-path
mode, in which both global and local residuals were learned.

Similar recursive idea was also supported in MemNet [14]. It
introduced a memory block consisted of a recursive unit and a gate
unit. Dense skip connections between the current recursive unit and
outputs from previous memory blocks were employed. The
concatenations were input into gate unit to maintain persistent
‘memory’.

LapSRN [15] progressively reconstructed sub-band residuals of
HR images at multiple pyramid levels. Instead of the commonly
used L2 loss, Charbonnier loss was adopted to better handle
outliers and improve the performance.

SRDenseNet [16] employed densely connected convolutional
networks [17] as its basic block, and utilised dense skip
connections to combine features from different level blocks to
provide rich information for final SR reconstruction.

2.2 Squeeze-and-excitation networks

SENet [7] was the winner of image classification task in ILSVRC
2017. A ‘squeeze-and-excitation’ (SE) block was introduced to
improve the representational power of a network by explicitly
modelling the interdependencies between the channels of its
convolutional features. Feature recalibrate was applied to
selectively emphasise informative features and suppress less useful
ones.

The basic structure of SE building block is illustrated in Fig. 1. 
The SE block embeds global information into each descriptor

through squeeze operation. A gating mechanism is parameterised in
excitation stage to learn non-linear interaction between each
channels. It contains two fully connected (FC) layers. One FC is
for dimensionality reduction with ratio r and capturing channel-
wise dependencies of features. The other performs sample-specific
activations to govern the excitation of each channel based on the
learned channel dependence. The advantage of SE block is that it
introduces an effective channel-wise attention mechanism and can
be stacked at any place needed in network architecture.

2.3 Dense connection block

Different from ResNets [9], the feature maps in DenseNet [17]
were concatenated rather than directly summed. DenseNet adopted
a simple connectivity pattern that each layer in the network took in
additional inputs from all preceding layers and passed on its output
feature maps to all subsequent layers. The authors claimed that this
connectivity pattern could ensure maximum information flow
between layers in feed-forward nature.

The basic structure of dense connection block consists of a
composite sub-block followed by a transition layer, as shown in
Fig. 2. The composite sub-block consists of three consecutive
operations: batch normalisation (BN), a rectified linear unit
(ReLU) and a 3 × 3 convolution (Conv). The transition layer
consists of a 1 × 1 convolutional layer followed by a 2 × 2 average
pooling layer. Due to the compelling experimental advantages of
DenseNet, SRDenseNet [16] had introduced the dense block for
SR, and achieved state-of-the-art performance. 

3 Residual refine based pseudo-multiple-frame
network for effective SISR
In this section, we will describe our proposed residual refine based
pseudo-multi-frame network in detail.

Fig. 1  Basic structure of SE building block
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The architecture of our proposed network is as shown in Fig. 3.
It mainly consists of two parts: residual refine based dense blocks
(RRDs) and pseudo-multi-frame information fusion networks. ILR
and IHR are the input and the output of the network. 

As suggested in VDSR [6], when dealing with SR problem,
surrounding pixels were useful to correctly infer central pixel. With
larger receptive field, a SR model could utilise more contextual
information to better learn correspondences from LR to HR.
Therefore, in our proposed network, a convolutional layer ConvLR
is first applied on original LR image for aggregating informative
features. The size of the convolution filters is 3 × 3 × 32, and the
step size is 1. As a result, a feature map FLR is extracted with the
same spatial dimensions as the input ILR.

For the convenience of description, we denote the mapping
function of the kth residual refine based dense block (RRD) as
y = gk x . Supposing we have N residual refine dense blocks, then
the output of each RRD is formulated in recursive as follows:

r0 = 0, r1 = g1 FLR + r0 , r2 = g2 FLR + r1 ,
. . .
rN = gN FLR + rN − 1

(1)

where rk k = 1, …, N represents the output of refined residuals from
the kth RRD. r0 is the pre-defined initial residual. Since the
residuals at each level rk = gk FLR + rk − 1 , k = {1, …, N} are
hierarchically learned from its previous residuals, we call them as
refined residuals.

We take the signals F
~

LR
k = FLR + rk, k = {0, 1, …, N} as a kind

of intermediate ‘degraded’ LRs. Then we learn respective
deconvolution layer DeConvk() for it to HR image. As a result, we
artificially create multiple recovered potential ‘HR’ images by
I
~

HR
k = DeConvk F

~
LR
k . These intermediate ‘HR’ images possess

redundant information from hierarchical level features. In the final,
we adaptively fuse them to obtain the desired HR output, by using
a learned fusion function f Pseudo as formulated in the following
equation:

IHR = f Pseudo I
~

HR
1 , I

~
HR
2 , …, I

~
HR
k , …, I

~
HR
N (2)

3.1 Residual refine based dense block

In this section, we present the details about our proposed residual
refine block. It consists of a dense block followed by a SE block.
The structure is as shown in Fig. 4. 

As BN layers would increase computational complexity and
pooling operations potentially discard pixel-level information, in
this paper, following the experiences of previous SR work [16], we
remove both the BN layer and the pooling layer out of the dense
sub-block in our residual refine block.

Dense skip connections are implemented among Conv + ReLU
layers. All outputs Fd d = 1

D  of Conv + ReLU layers together with
the block's input are concatenated on channel dimension, and then
transferred into a 1 × 1 convolutional transition layer. We formulate
the process as U = σ Wtrans, FLR, F1, …, FD , where the Wtrans is
the convolutional weights for transition layer.

As we know, increasing the depth of dense block could
potentially achieve better performance, such as the dense block
used in SRDenseNet has eight Conv + ReLU layers. However, by
considering the efficiency and memory usage, in this paper, we set
the number of Conv + ReLU layers in our dense sub-block part as
D = 4, and the growth rate G of the dense block as G = 32. That
means the convolutional kernel at dth level is in size of
3 × 3 × 32 ∗ d × 32, d = {1, 2, …, D}.

Our residual refine blocks take role of learning different level
residuals in the proposed network. In order to further boost the
discriminative ability of learned residuals, a SE block is applied
after dense block U. The SE block intrinsically introduces
dynamical channel-wise attentions on its input. The resulted
recalibrate mappings are hierarchically learned as refined residuals
for level k.

Specifically, at squeeze stage, a statistic z ∈ ℜC is generated by
shrinking feature map U ∈ ℜW × H × C on spatial dimensions W × H.
The cth element of z is calculated by (3). The z could be interpreted
as a collection of local descriptors, whose statistics are expressive
for the whole image

zc = Fsqueeze(uc) = 1
H × W ∑

i = 1

H

∑
j = 1

W
uc(i, j) (3)

Then, at excitation stage, two succeed FC layers are employed to
learn the channel-wise attention coefficients s ∈ ℜ1 × C, just as (4)
does

s = Fex z, Wex = sigmod W2 ∗ ReLU W1 ∗ z (4)

The final output of the SE block is obtained by scaling feature map
U with the activations s, as shown in the following equation:

x~c = sc ∗ uc (5)

3.2 Pseudo-multi-frame information fusion network

In this section, we present the details of pseudo-multiple-frame
fusion strategy for restoring HR. The information fusion network
consists of several parallel deconvolution layers followed by one
concatenation layer and one 1 × 1 convolutional bottle layer, as
shown in Fig. 3.

Sub-pixel convolution network is employed as the
deconvolution layer DeConvk. The sub-pixel convolutional
network consists of 1 × 1 convolutional layer followed by a
periodic shuffling layer. We formulate the process as
I
~

HR
k = Ω Wbk ∗ F

~
LR
k , where Wbk represents the deconvolutional

weights for the potential HR image at the kth level. Ω is a periodic
shuffling operator that rearranges the elements of a H × W × C ⋅ r2

input tensor to an output tensor of rH × rW × C size. r is the scale

Fig. 2  Basic structure of dense block in DenseNet
 

Fig. 3  Architecture of our proposed residual refine based pseudo-multi-
frame network

 

Fig. 4  Structure details of residual refine block
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factor of HR compared to the size of LR. The architecture of the
deconvolution network is illustrated in Fig. 5.

After N intermediate HR mappings are artificially generated in
parallel, they are adaptively fused into the final HR. The process is
formulated as IHR = f bottle WB, I

~
HR
1 , I

~
HR
2 , …, I

~
HR
N , where WB

represents network weights. Specifically, N pseudo-HRs are first
concatenated on channel dimension, followed by a bottle layer
f bottle. The bottle layer is a 1 × 1 convolution layer, transforming
mapping from rW × rH × NC to rW × rH × C.

As the these intermediate HRs are learned from pseudo-LRs of
different level degradations, they enrich much redundant
information for final HR. Through bottle layer, each pixel
information on the resulted HR becomes learnable, which can be
adaptively learned from pixel information from multiple
intermediate frames. Therefore, we name this strategy as pseudo-
multiple-frame based SISR.

Increasing the number of pseudo-frames would enhance final
performance, while increase depth of network. Therefore, in this
paper, to balance the effectiveness and efficiency, we set the
number of pseudo-frames N empirically to be N = 16. The
experiments show that network with these parameter settings can
sufficiently achieve satisfactory performance.

4 Experiments
In this section, we evaluate the effectiveness of our proposed
network on solving SISR problem. The related source code and
pre-trained models have been distributed on public at source-code
https://github.com/MKFMIKU/RPMNet.

4.1 Datasets

On SR issue, in the past, different learning-based methods were
trained on different training datasets. Typically, the 91 images from
Wright et al. [18] were first used in classic methods, such as A+
[2]. The 291 images consisting of 91 images from Wright et al.
[18] and 200 images from Berkeley Segmentation Dataset [19]
were widely used in some popular SR methods, such as DRCN
[12], DRRN [13], VDSR [6] and MemNet [14]. The large-scale
ImageNet dataset was also often used for training deep SR models.
For example, in SRResNet [8], 350 thousand images were
randomly selected for training. Similarly, in ESPCN [5] and
SRDenseNet [16], 5000 images were randomly selected from
ImageNet for training.

DIV2K [11] dataset is a newly distributed image set for SR
challenge. It consists of 800 high-definition high-resolution images
for training model. The concurrent state-of-the-art methods like
EDSR [10] and our RPMNet were all trained on the DIV2K
training set.

Data augmentation were applied on all available training
images, no matter whatever dataset the above-mentioned methods
used. The main differences among them were the different
augmentation tricks they used. From our experience, the final
performance is in some extent affected by the quality of data
augmentation.

During test, five popular benchmark datasets: Set5 [20], Set14
[21], BSDS100 [19], Urban100 [22], Manga109 [23] are
commonly used. The Set5 and Set14, respectively, contain 5 and 14
images with rich textures. The BSDS100 consists of 100 natural
images from test set of the Berkeley segmentation dataset. The
Urban100 contains 100 challenge urban images with details in

different frequency bands. The Manga109 contains 109 images of
Japanese manga. For the wide varieties in visual content, these
dataset are widely used for SR evaluation.

4.2 Experiment details

Data augmentation: We convert images into YCbCr colour space.
Then all operations in our experiment are performed on the
luminance component Y.

In order to set up training pairs and testing pairs, following [15],
we augment the training data in three ways: (i) scaling: downscale
images on three scales {1, 0.7, 0.5}; (ii) rotation: randomly rotate
image by 0, (π /2), π, (3π /2) ; (iii) flipping: flip images in three
mirror cases original, horizontal, vertical . As a result, 36 variants
are generated from original image.

After data argumentation, we use sliding window to extract
image patches in size of 32 ∗ r × 32 ∗ r . The stride step is set
32 ∗ r /2 pixels. r is the scaling factor. We apply bicubic
downsampling to simulate LR patches by using the Matlab
function imresize with the option ‘bicubic’ on original patches. In
our experiment, for each scaling case, the LR training patches is
constantly set in size of 32 × 32 pixels. The corresponding original
patches are taken as HR ground-truths during training.

Training details: The network in our proposed RPMNet model
is very straightforward. Four structure parameters were used to
measure our network. They are the channels C of the initial
convolutional layer, the number of convolution layers D in the
dense part of the RRD, the growth rate G of the RRD and the
number of pseudo-frames N for fusion. In this experiment, as
previously described, these parameters are empirically set to be
C = 32, D = 4, G = 32, N = 16. We denote the resulted network
structure as C32_D4_G32_N16.

The proposed model is trained through minimising the loss
between the reconstructed images and the corresponding HR
ground-truths. Given a set of restored HR images Im  and their
corresponding ground truth Ym , we use mean squared error as the
loss function, as shown in the following equation:

Loss = 1
M ∑

m = 1

M
∥ Im − Ym ∥2 (6)

where M is the number of training samples. The loss is minimised
by using stochastic gradient descent with the standard back-
propagation.

ADAM [24] with learning rate lr = 0.0001 is employed as the
optimiser. The batch size is M = 64. To avoid different tricks for
the learning rate decay, the learning rate in our experiment is kept
constant during training process. We implement the network in
PyTorch without special weight initialisation method or other
training tricks.

Three scaling factors r = × 2, × 4, × 8  are experimented,
respectively. We train a specific model for each scaling case. It
roughly took one day to train a model to converge by using a
NVIDIA Titan Xp GPU.

Evaluation: Two commonly-used image quality metrics: PSNR
(peak-signal-to-noise ratio) and SSIM (structural similarity index
measurement) [25] are employed to evaluate the performance, as
defined in the following equation:

PSNR x, y = 10log 2552

MSE x, y

SSIM x, y = 2μxμy + C1 2σxy + C2

μx
2 + μy

2 + C1 σx
2 + σy

2 + C2

(7)

where MSE x, y = 1/MN − 1 ∑i = 1
M ∑ j = 1

N xi j − yi j
2 is the mean-

squared error. x and y are two images in size of M × N, μ is mean
of image's pixel values and σ is the standard variance. C1 and C2 are
commonly set as C1 = 0.01 ∗ 255 2 and C2 = 0.03 ∗ 255 2.

Fig. 5  Sub-pixel network for learning HR mapping
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4.3 Results and analysis

4.3.1 Three ablation experiments: One of the ablation
experiments is to analyse the impact of the residual refine based
strategy on SR. We remove the SE block out of RRD, and the
resulted network is denoted as ‘RPMNet/SE’.

As shown in Fig. 6, the introduced dynamical channel-wise
attentions in residual refine block can consistently improve image
restoration performance. Under the same conditions, without
applying SE block onto the dense block U, the resulted
performance decreased averagely about 0.2 dB when tested at × 4
scale rate on benchmark dataset Set5 [20] and at × 2 scale rate on
benchmark dataset Set14 [21]. On the other tested datasets, the
conclusion is similar. 

We further design an ablation experiment to verify the
effectiveness of pseudo-multi-frame based strategy. We construct
an ablation network as shown in Fig. 7. It shares similar structure
with most of popular published SISR models, which only employ
one deconvolution layer at the end part. We take this strategy as
single frame case. 

Compared with our full model RPMNet, the network in Fig. 7
has differences on information fusion part. It employs skip
connections and direct concatenations for deconvolution layer. The
deconvolution layer is also a sub-pixel convolution network. The
convolutional kernel is 1 × 1 × (C ∗ N) × r2 , where
C = 32, N = 16 and r is the scaling factors.

We argue that single frame case cannot take full advantage of
hierarchical information that intermediate levels possess. The
performance comparisons between pseudo-multi-frame case and
the single frame case are shown in Fig. 8. They are both trained
and tested under the same experiment conditions. 

From the experimental comparisons in Fig. 8, the pseudo-multi-
frame strategy consistently improves the SISR performance over
the single frame case on public benchmark datasets. It should be
emphasised that the improvements are obtained under the same
experiment settings, which can consolidate the advantage of the
pseudo-multi-frame strategy. More important is that the pseudo-
multi-frame strategy can be easily borrowed for reference by any
SISR network with hierarchical information learning based blocks.

In addition to verify RPMNet can suit different components, we
further perform an ablation experiment, in which we compare
models in the same RMPNet architecture but with different block
types. We name our default RPMNet with Denseblock as
RPMNetDenseblock. If replace Denseblock in Fig. 3 by Resblock
from ResNet [9], we call this varied version as RPMNetResblock. 
The performance comparisons tested on different datasets are
shown in Table 1. The tested performance curve on dataset
Urban100 is shown in Fig. 9. 

The experiment results in Table 1 and Fig. 9 demonstrate that
using Denseblock in RPMNet is consistently better than using
Resblock. Therefore, in the later experiments, we use
RPMNetDenseblock in default.

4.3.2 Comparisons with state-of-the-art methods: We compare
our method with several popular state-of-the-art methods including
the A+ [2], SelfExSR [26], SRCNN [3], ESPCN [5], VDSR [6],
DRCN [12], MemNet [14], LapSRN [15], DRRN [13],
SRDenseNet [16] and EDSR [10].

Since most of the state-of-the-art SR models are very sensitive
to the subtle network architectural changes, some models are
difficult to reach the level of the original paper for the lack of the
network configurations. Even the same model could achieve
different levels of performance by using different training tricks.

Fig. 6  Ablation experiment 1: testing curves of RPMNet on PSNR
performance with/without SE in RRD. ‘RPMNet/SE’ represents network
without SE block in RRD

 

Fig. 7  Ablation experiment 2: network in single frame case
 

Fig. 8  Ablation experiment 2: testing curves of RPMNet on PSNR
performance with pseudo-multiple frame or not. The ‘RPMNet-Single’
represents the network as shown in Fig. 7
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Experimenting with different settings makes the results
incomparable and unfair if compared. Therefore, to verify the
reproduction of published models, and for fair comparisons as well,
we retrain most of the compared models by using our augmented
training data and experiment settings, except the MemNet [14],
EDSR [10] and SRDenseNet [16]. We adopt early-stop strategy. If
the retrained model reaches its reported test performance on
benchmark datasets and model tends to converge, we stop training
and use the resulted model as reference for comparison. The
experiment results are shown in Table 2.

It should be pointed out that, the EDSR [10] is the winner of
2017 NTIRE Challenge on Single Image Super-Resolution.
Though EDSR is also originally trained on the same DIV2K
dataset, we cannot reproduce its reported results by using our
training settings. Therefore, we directly cite their originally
reported performance for reference. The training on MemNet and
SRDenseNet are in the similar case. We owe the performance gap
to different data augmentation strategies and training tricks that
they have used, such as weight initialisation, gradient truncation,
data normalisation and so on.

Not surprisingly, by using DIV2K as training dataset, most of
the retrained performances are more or less improved than their
original reported results. This means that many reported
improvements on performance may not be due to the change of the
model architecture, but the use of different training data or some
unknown training tricks. Fortunately, we are not completely
committed to performance excellence in this paper. We mainly
want to verify the validity of our proposed residual refining based
strategy and pseudo-multi-frame based strategy.

The proposed RPMNet is a compositional network based on the
two highlighted strategies. It shares some simplified layers with
SRDenseNet [16]. With the aim to evaluate the effectiveness of the
two highlights, we do not pursue performance excellence.
Therefore, the depth and parameters’ size of network are balanced
with training efficiency. In Fig. 10, the comparisons on parameters’
size among some representative models show that our network
scale is in mainstream with acceptable parameter size. 

From Table 2 and Fig. 10, we can easily find that, on public
benchmark datasets, our model could achieve top performance and
outperform most of currently popular state-of-the-art methods with
approximately equal size of parameters. Most of these methods are
retrained under the same experiment settings as our RMPNets.
Therefore, factors such as training tricks and data augmentation are
excluded.

Though the EDSR [10] reported better results, it is worth noting
that EDSR [10] is a deep and wide network which contains a large
number of convolutional layers and a huge amount of parameters,
about 30 times larger than our model's. This means its training

requires more memory, more space and more training data. In
contrast, our model is much smaller than EDSR, which makes our
model easier to be reproduced and promoted. Compared with
EDSR, our model could achieve approaching performance with
much smaller parameter size.

In order to have more intuitive comparisons, we give some
visual examples in Figs. 11–13. From these results, we can also
easily find that our RPMNet could correctly restore texture details
better, especially when dealing with large scale such as × 4 and
× 8. We owe the advantages to hierarchical information learned in
our pseudo-multi-frame fusion process. 

4.3.3 Future work: Deep learning paradigm is often criticised for
their huge number of tunable parameters. Tensor-based strategy is
one of the promising alternatives. Some recent work on tensor
analysis such as [27] significantly reduces the number of weight
parameters required to be trained by utilising rank-1 canonical
decomposition property. This encourages us to extend it as a
potential work for our future model compressing in SR.

5 Conclusion
In this paper, we have proposed an effective residual refine based
pseudo-multi-frame strategy for SISR. The RRD consists of a
modified denseblock followed by a SE layer. Channel-wise
attention mechanism maintained by RRD could dynamically model
non-linear dependencies between channels, which could recalibrate
residual information and boost the restoring performance. The
pseudo-multi-frame based fusion strategy draws inspiration from
classic multi-frame SR. The ablation results demonstrate that it
could make better use of redundant information possessed by
hierarchical residual refine blocks. The experiments on public
benchmark datasets have shown that the proposed RPMNet
outperforms most of the state-of-the-art SR methods with
reasonably acceptable less parameters.
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Table 1 Performance comparisons between models in the same RPMNet architecture but with different blocks: Denseblock
and Resblock, at × 4 scale
Algorithm Set5 PSNR/SSIM Set14 PSNR/SSIM BSDS100 PSNR/SSIM Urban100 PSNR/SSIM Manga109 PSNR/SSIM
RPMNetResblock 31.23/0.8764 28.11/0.7645 27.24/0.7209 25.17/0.7602 28.90/0.8807
RPMNetDenseblock 31.70/0.8856 28.27/0.7702 27.40/0.7259 25.57/0.7761 29.64/0.8950
The performance is evaluated by using average PSNR/SSIM.
The bold values mean better performance.

 

Fig. 9  Ablation experiment 3: testing curves on PSNR performance for RPMNet variants with Resblock or Denseblock
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Table 2 Performance comparisons among different state-of-the-art methods
Algorithm Scale Set5 PSNR/SSIM Set14 PSNR/SSIM BSDS100 PSNR/

SSIM
Urban100 PSNR/

SSIM
Manga109 PSNR/

SSIM
BiCubic × 2 33.69/0.9284 30.34/0.8675 29.57/0.8434 26.88/0.8438 30.82/0.9332
A+ [2] × 2 36.60/0.9542 32.42/0.9059 31.24/0.8870 29.25/0.8955 35.37/0.9663
SelfExSR [26] × 2 36.60/0.9537 32.46/0.9051 31.20/0.8863 29.55/0.8983 35.82/0.9671
SRCNN [3] × 2 36.71/0.9536 32.32/0.9052 31.36/0.8880 29.54/0.8962 35.74/0.9661
ESPCN [5] × 2 37.00/0.9559 32.75/0.9098 31.51/0.8939 29.87/0.9065 36.21/0.9694
VDSR [6] × 2 37.53/0.9583 33.05/0.9107 31.92/0.8965 30.79/0.9157 37.22/0.9729
DRCN [12] × 2 37.63/0.9584 33.06/0.9108 31.85/0.8947 30.76/0.9147 37.63/0.9723
LapSRN [15] × 2 37.52/0.9581 33.08/0.9109 31.80/0.8949 30.41/0.9112 37.27/0.9855
DRRN_B1U25 [13] × 2 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 —
MemNet [14] × 2 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 —
EDSR [10] × 2 38.11/0.960 33.92/0.920 32.32/0.901 — —
RPMNet (ours) × 2 37.86/0.9603 33.78/0.9147 32.11/0.9018 31.70/0.9282 38.26/0.9754
BiCubic × 4 28.43/0.8022 26.10/0.6936 25.97/0.6517 23.14/0.6599 24.91/0.7826
A+ [2] × 4 30.33/0.8565 27.44/0.7450 26.83/0.6999 24.34/0.7211 27.03/0.8439
SelfExSR [26] × 4 30.34/0.8593 27.55/0.7511 26.84/0.7032 24.83/0.7403 27.83/0.8598
SRCNN [3] × 4 30.50/0.8573 27.62/0.7453 26.91/0.6994 24.53/0.7236 27.66/0.8505
ESPCN [5] × 4 30.66/0.8646 27.71/0.7562 26.98/0.7124 24.60/0.7360 27.70/0.8560
VDSR [6] × 4 31.36/0.8796 28.11/0.7624 27.29/0.7167 25.18/0.7543 28.83/0.8809
DRCN [12] × 4 31.56/0.8810 28.15/0.7627 27.24/0.7150 25.15/0.7530 28.98/0.8816
LapSRN [15] × 4 31.54/0.8811 28.19/0.7635 27.32/0.7162 25.21/0.7564 29.09/0.8845
DRRN_B1U25 [13] × 4 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 —
MemNet [14] × 4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 —
SRDenseNet [16] × 4 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819 —
EDSR [10] × 4 32.46/0.8968 28.80/0.7876 27.71/0.7420 — —
RPMNet (ours) × 4 31.70/0.8856 28.27/0.7702 27.40/0.7259 25.57/0.7761 29.64/0.8950
BiCubic × 8 24.40/0.6045 23.19/0.5110 23.67/0.4808 20.74/0.4841 21.46/0.6138
A+ [2] × 8 25.53/0.6548 23.99/0.5535 24.21/0.5156 21.37/0.5193 22.39/0.6454
SelfExSR [26] × 8 25.49/0.6733 24.02/0.5650 24.19/0.5146 21.81/0.5536 22.99/0.6907
SRCNN [3] × 8 25.34/0.6471 23.86/0.5443 24.14/0.5043 21.29/0.5133 22.46/0.6606
ESPCN [5] × 8 25.75/0.6738 24.21/0.5109 24.37/0.5277 21.59/0.5420 22.83/0.6715
VDSR [6] × 8 25.73/0.6743 23.20/0.5110 24.34/0.5169 21.48/0.5289 22.73/0.6688
DRCN [12] × 8 25.93/0.6743 24.25/0.5510 24.49/0.5168 21.71/0.5289 23.20/0.6686
LapSRN [15] × 8 26.15/0.7028 24.45/0.5792 24.54/0.5293 21.81/0.5555 23.39/0.7068
RPMNet (ours) × 8 26.24/0.7014 24.50/0.5883 24.64/0.5416 22.02/0.5762 23.75/0.7215
Average PSNR/SSIMs for different scale factors. In lack of network configurations and data augmentation details, the performance the MemNet [14], EDSR [10] and SRDenseNet
[16] are directly cited from their original papers for hard reproduction in our experiment settings, which are given in italics. All other methods are retrained and tested on our training
data. Under the same experiment conditions, the best performance is denoted in bold.

 

Fig. 10  Comparisons on parameters size of different models
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Fig. 11  Visual comparisons with several state-of-the-art methods on scale rate of × 2
 

Fig. 12  Visual comparisons with several state-of-the-art methods on scale rate of × 4
 

Fig. 13  Visual comparisons with several state-of-the-art methods on scale rate of × 8
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