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Abstract—The B-mode ultrasound based computer-
aided diagnosis (CAD) has demonstrated its effectiveness
for diagnosis of Developmental Dysplasia of the Hip (DDH)
in infants, which can conduct the Graf’s method by de-
tecting landmarks in hip ultrasound images. However, it
is still necessary to explore more valuable information
around these landmarks to enhance feature representa-
tion for improving detection performance in the detection
model. To this end, a novel Involution Transformer based
U-Net (IT-UNet) network is proposed for hip landmark de-
tection. The IT-UNet integrates the efficient involution oper-
ation into Transformer to develop an Involution Transformer
module (ITM), which consists of an involution attention
block and a squeeze-and-excitation involution block. The
ITM can capture both the spatial-related information and
long-range dependencies from hip ultrasound images to ef-
fectively improve feature representation. Moreover, an Invo-
lution Downsampling block (IDB) is developed to alleviate
the issue of feature loss in the encoder modules, which
combines involution and convolution for the purpose of
downsampling. The experimental results on two DDH ultra-
sound datasets indicate that the proposed IT-UNet achieves
the best landmark detection performance, indicating its po-
tential applications.
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I. INTRODUCTION

D EVELOPMENTAL Dysplasia of the Hip (DDH) is a
prevalent yet critical joint disease in infants, resulting

in instability and the potential for hip joint dislocation [1],
[2]. Accurate diagnosis of DDH is important for the following
treatment. Ultrasound imaging is a routine tool for diagnosis of
DDH especially for the infants within 6 months [3].

The Graf’s method is one of the most commonly used ultra-
sound examination techniques for DDH, which diagnoses DDH
based on the manually measuredα and β angles, as illustrated in
Fig. 1(a) [4]. However, this determination is highly subjective,
depending on sonologists’ expertise. Thus, the computer-aided
diagnosis (CAD) for DDH has gained its reputation in re-
cent years. Several deep learning (DL) based algorithms have
been proposed for this ultrasound-based CAD [5], [6], [7], [8].
These algorithms mainly aim to measure the α and β angles,
which can be divided into two categories [5], [6], [7], [8]: the
segmentation- and landmark detection-based DL approaches.
The former mainly segments the critical anatomical structures
for further angle measurement [5], [6], [7], while the latter
directly detects the key points in ultrasound images (Fig. 1(b))
[8]. Consequently, as shown in Fig. 1(c), the detected landmarks
can form the three corresponding lines that are then used to
calculate the α and β angles.

From the viewpoint of data annotation, the landmark
detection-based method is more annotation-friendly for the so-
nologists than the segmentation-based approach, which then
has attracted considerable attention for developing the CAD of
DDH. However, the quality of ultrasound images is prone to
speckle noise [9], which then increases difficulty for detecting
the critical landmarks. To address this issue, it is feasible to
explore more valuable information around these landmarks,
such as the long-range and spatial-related information hidden
in the ultrasound images, to enhance feature representation
for improving detection performance. For example, Xu et al.
[8] indicated the effectiveness of capturing the long-range in-
formation to overcome the noise interference for landmark
detection in hip ultrasound images. On the other hand, some
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Fig. 1. Illustration of hip ultrasound images for the graf’s method. (a)
Definition of α and β angles. α is formed by the angle between the base
line (LB) and the bone roof line (L1), β is created by the intersection
of the base line (LB) and the cartilage roof line (L2). (b) Six landmarks
[8]. 1) Apex point (APP), 2) ilium edge point (IEP), 3) lower limb point
(LIP), 4) bony roof incision point (BRIP), 5) acetabular rim junction point
(ARJP), 6) glenoid labrum point (GLP). (c) Three critical lines. The red
base line (LB) formed by APP and IEP, the green bone roof line (L1)
formed by LIP and BRIP, the yellow cartilage roof line (L2) formed by
ARJP and GLP.

landmarks are close to each other (e.g., APP, IER, ARJP, and
BRIP landmarks as shown in the Fig. 1(b)), which increases
difficulties for detection algorithms to accurately detect these
landmarks. Thus, the spatial information (i.e., the position of
each landmark) is also essential for locating the key points in hip
ultrasound images. However, existing algorithms rarely consider
the important spatial information. It is still a challenging task to
accurately detect the critical anatomical landmarks from the hip
ultrasound images.

The convolutional neural network (CNN) with encoder-
decoder architecture is commonly applied to the landmark de-
tection task [10]. The U-Net architecture stands out as a repre-
sentative encoder-decoder architecture, offering numerous ad-
vantages [11]. In U-Net, the shallow convolution layers mainly
extract texture and edge features, while the deeper convolution
layers explore semantic information within the images [12].
A number of works have indicated the superiority of U-Net
for image segmentation, reconstruction and landmark detection
tasks [13], [14], [15], [16]. However, it still exhibits some limi-
tations for our particular landmark detection task. For example,
the pure U-Net architecture based on convolutional layers may
not effectively capture global dependencies [12]. Moreover,
the translation invariance of convolution operation also makes
convolutional layers lacking spatial awareness [17]. In fact, both
the long-range interaction and spatial knowledge are essential
for accurately localizing key points. On the other hand, U-Net
generally adopts maxpooling as the downsampling operation
to continually expand the receptive field [12]. However, this
maxpooling operation only chooses the maximum value within
a local region, thereby sacrificing other valuable information
[18]. This may potentially result in the loss of fine-grained
details.

Although Xu et al. [8] proposed a relation matrix to capture
the long-range information in hip ultrasound images, it may
introduce some redundant information that then affects the
learning of contextual information. Since Transformer achieves
superior performance in capturing long-range dependencies
and contextual relationships [19], it can be integrated into the

convolution-based U-Net to improve the detection accuracy. In
fact, recent studies have tried to build hybrid networks by com-
bining the strengths of CNN and Transformer [14], [15], [20].
These hybrid networks can effectively model global context
and capture local features [21]. However, the hybrid models
with conventional Transformer architectures generally ignore
the modeling of spatial relationships [22]. Thus, it is highly
necessary to develop a hybrid U-Net with a spatial-awareness
Transformer architecture that specifically for accurate landmark
detection.

Furthermore, as a novel atomic operation, involution has a
spatial-specific property [23]. Many works have demonstrated
that this specifical characteristic can provide the capability to
learn spatial information [24], [25], [26], [27]. Different from
the traditional convolution operation, the involution generates
specific perceptual field weights and adaptively allocates over
different positions [24]. Consequently, it has the feasibility to
capture the positional information of different landmarks in hip
ultrasound images, so as to provide more spatial information for
the detection model. Therefore, it is considered that incorporat-
ing involution into the Transformer architecture can effectively
merge long-range dependency and spatial awareness, so as to
enhance the accuracy of landmark detection in hip ultrasound
images.

On the other hand, given that the maxpooling results in the
loss of important information, it is also important to develop
an effective approach for downsampling operation in U-Net.
Several previous works have indicated that a convolutional layer
with increased stride can effectively replace maxpooling [18].
Due to the superior performance of involution, a novel down-
sampling module that combines the advantages of the involution
and inception is developed in [28]. Inspired by this approach,
we believe that it is feasible to develop a new involution-based
downsampling method to retain the valuable details around the
anatomical landmarks, so as to further improve the detection
accuracy.

In this work, a novel Involution Transformer based U-Net
network (IT-UNet) is proposed for detecting landmarks from
infantile hip ultrasound images. In the encoder-decoder architec-
ture of IT-UNet, a novel Involution-based Transformer Module
(ITM) is developed to be embedded in the bottom of U-Net,
which can improve the semantic feature representation for land-
mark detection. Moreover, a new Involution-based Downsam-
pling Block (IDB) is designed in the encoder to perform the
downsampling process instead of the traditional maxpooing,
which can preserve more detailed information around land-
marks. The experimental results indicate the effectiveness of
the proposed IT-UNet.

The main contributions of this work are as follows:
1) A novel IT-UNet is proposed to detect landmarks from

hip ultrasound images, which can capture and learn
more effective feature representation, including both the
spatial-related knowledge and long-range dependencies,
for improving detection performance.

2) A new ITM is developed by integrating involution into
Transformer, which consists of an involution attention
block and a squeeze-and-excitation involution block. The
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ITM can effectively capture not only the long-range in-
formation but also positional information to improve the
feature representation.

3) A new IDB is proposed to alleviate the issue of detailed
information loss in the encoder module. The IDB in-
novatively combines involution and convolution for the
purpose of downsampling, which can extract more useful
features simultaneously.

II. RELATED WORK

A. DL-Based Methods for DDH Diagnosis

In recent years, DL has gained its reputation in the field of
ultrasound-based CAD for DDH. Most of these methods focus
on developing special segmentation algorithms for the critical
anatomical structures to perform the followed angle measure-
ment. For example, Golan et al. [5] implemented a convolutional
network with an adversarial component to segment the ilium
and acetabular roof, which were subsequently employed to
draw lines for calculating the α angle; Hu et al. [7] proposed
a multi-task network with Mask R-CNN as backbone, which
included a detection and a segmentation branch to mark the four
anatomical structures and a landmark detection branch to further
measure the two angles from hip ultrasound images; Stamper
et al. [29] proposed a lightweight multi-class U-Net network to
segment key anatomical structures for DDH screening. All these
works have suggested the feasibility of the segmentation-based
approaches.

However, the accuracy of angle measurement extremely de-
pends on the performance of segmentation algorithms in these
works [30]. Moreover, the segmentation-based methods require
professional but laborious annotation, which generally results
in the problem of small size samples [31]. The limited training
samples then affect the training of DL model. On the contrary, the
landmark detection-based DL approaches are simpler and more
convenient for annotation. Xu et al. [8] proposed a novel network
named Dependency Mining ResNet (DM-ResNet) by a relation
matrix, which aimed to combine both short-range and long-range
dependencies for landmark detection in hip ultrasound images.
This pioneering work indicates the feasibility of landmark de-
tection for calculating α and β angles. However, the global
relation matrix inevitably introduces redundant information to
the model. Moreover, this model also ignored the valuable spatial
information of hip landmarks. Therefore, there is still room for
improving the detection performance of hip landmarks.

In this work, we aim to explore both the long-rang depen-
dencies and spatial information to learn more effective feature
representation for accurately landmark detection in hip ultra-
sound images.

B. Involution Network

Involution has the characteristic of spatial-specific, which can
be used to explore diverse interactions among spatial locations
[23]. Due to this valuable property, involution has been applied
to various DL models. For example, Shao et al. [24] proposed
a spatial-spectral Involution MLP network for hyperspectral

image classification, which utilized involution to extract spatial
contextual information in a stable windowed receptive field; Hou
et al. [25] developed an Attention-Involution model for visual
tracking, which adopted an attention mechanism to generate
involution kernels to capture both long-distance and local re-
lations of features. Additionally, involution has also received
widespread attention in the field of medical image analysis.
For instance, Jain et al. [26] designed a polyp segmentation
model by utilizing both the convolution and involution to ex-
tract long-range feature dependencies and spatial patterns; Asiri
et al. [27] proposed a novel Involution neural network for brain
tumor classification, which employed the spatial adaptability of
involution to capture intricate features within medical images.
All these works have indicated the effectiveness of involution,
particularly its spatial awareness.

In this work, we introduce a novel involution-based Trans-
former module, which seamlessly integrates involution into the
Transformer. This structure aims to capture long-range depen-
dencies as well as spatial information, so as to enhance the
accuracy of landmarks localization.

C. Downsampling in U-Net

As a commonly used backbone in image segmentation and
detection task, U-Net has shown its effectiveness in landmark
detection [32], [33], [34]. However, the maxpooling operation
in downsampling of U-Net generally suffers from the issue of
losing sensitive information, due to compression and aggrega-
tion of information [18].This intrinsic property makes U-Net
unable to extract detailed information effectively, which is in fact
detrimental to detect landmarks. Therefore, various efforts have
been made to address this issue. For instance, Stergiou et al. [35]
introduced a novel pooling method called SoftPool, which used
softmax within a kernel region to better preserve informative
features during downsampling process; Kwon et al. [36] used
two diagonal elements of downsampling operation instead of
maxpooling; Li et al. [37] designed a patch merging refiner
module to remove noise and retain the authentic information of
feature space. These previous works endeavor to design effec-
tive pooing methods to replace maxpooling operation, with the
aim of preserving valuable information during downsampling
process.

It is worth noting that Xiao et al. [28] combined the advantages
of the involution and inception structures by embedding involu-
tions into the maxpooling layer. The involution enables feature
extraction within a smaller receptive field, thereby capturing
finer-grained features and enhancing perception. However, due
to the continued use of maxpooling, the problem of losing infor-
mation has not been effectively resolved. Therefore, we develop
a novel involution-based downsampling block by combining
convolution and involution, with the specific aim of preserving
fine-grained features.

III. METHODOLOGY

As shown in Fig. 2, a novel IT-UNet model is proposed for
hip landmark detection from ultrasound images. The IT-UNet is
developed based on an encoder-decoder architecture to generate
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Fig. 2. Overall architecture of IT-UNet, which consists of an involu-
tion transformer module (ITM), involution downsampling block (IDB),
encoder blocks, decoder blocks, and skip connections. The L1 to L6
represent the predicted coordinates of the six landmarks.

the related heatmaps for further predicting the coordinates of
the hip landmarks. The pipeline of IT-UNet mainly includes the
following four steps:

1) A hip ultrasound image is first fed into the carefully
designed Encoder Block, which can learn valuable fea-
ture representation with less detail loss by the developed
Involution Downsampling Block (IDB).

2) The extracted feature maps are then fed into the proposed
Involution Transformer Module (ITM) to capture the
spatial information and long-range dependencies of the
ultrasound images.

3) The improved feature representations are subsequently
fed into the Decoder Block to restore the feature maps
and further generate heatmaps with the help of the skip
connection and the upsampling layers.

4) The heatmaps are final used to predict the coordinates
of each hip landmark via selecting the position with the
maximum heatmap value.

The details of the proposed ITM and IDB are introduced in
Sections III-A and III-B, respectively.

A. Involution Transformer Module

To better capture the global spatial dependencies of land-
marks, an ITM is proposed to leverage the long-range modeling
capabilities of Transformer and the spatial specificity of involu-
tion. In particular, the ITM develops a new Involution Attention
Block to learn long range semantic context with spatial knowl-
edge. Meanwhile, a Squeeze-and-Excitation Involution Block is
designed to fuse hierarchical spatial features with channel-wise
information [38].

1) Involution Attention Block: Inspired by the CvT [39], we
introduce involution into Transformer and propose the Involu-
tion Attention block. As show in Fig. 3(a), Involution Attention
contains an Involution Patch Embedding, an Involution Projec-
tion, and a Multi-Head Self-Attention (MHSA). The Involution
Patch Embedding splits the input images or feature maps into a
sequence of patches for information encoding. The Involution
Projection operation generates query, key, and value vectors
for information transportation. After that, MHSA calculates
query, key, and value vectors for modeling long-range feature
dependencies.

Before introducing involution, we first define the traditional
convolution in existing works. Denote X ∈ RH×W×CI as the
input feature map, where H , W , and CI represent the high,
width, and channels, respectively. Moreover, the convolution
kernel with the size ofK ×K is denoted asℱ ∈ RCO×CI×K×K ,
where CO is the output channels. Thus, output feature map Y ∈
RH×W×CO could be calculated by the following formulation:

Y i,j,o =

CI∑
c=0

∑
(u,v)∈ΔK

ℱo,c,u+�K/2�,v+�K/2�Xi+u,j+v,c (1)

where o ∈ [0, CO) and ΔK denotes the neighborhood of center
pixel:

ΔK = {−�K/2�, . . . , �K/2�} × {−�K/2�, . . . , �K/2�}
(2)

where × indicates Cartesian product here [40].
It is observed that convolution kernel only depends on the

numbles of channels and the size of kernel, which makes it
spatial-agnostic. However, spatial features show great impor-
tance of query (q) and value (v) vectors generation, since q
and v represent the queries and representations of positional
information. Therefore, we introduce a spatial-specific operator
named involution, which has the property of capturing positional
information in the spatial domain. Denote X ′ ∈ RH×W×C as
the input and CG = C/G as the channels contains in a group.
Involution kernel is ℋ ∈ RH×W×K×K×G, where H , W , K,
G represent high, width, kernel size, and group, respectively.
Specifically, an involution kernel that represents a pixel X ′

i,j ∈
RC , where i, j are the coordinates in feature map, is defined as
ℋi,j,·,·g ∈ RK×K , g = 1, 2, . . . , G. Thus, the output feature
map is defined as:

Y i,j,p =
∑

(u,v)∈ΔK

ℋi,j,u+�K/2�,v+�K/2�,�pG/C�X ′
i+u,j+v,k

(3)
The involution kernel generation function can be defined as

φ : RC �→ RK×K×G. Therefore:

ℋi,j = φ (Xi,j) = W 1 τ (W 0Xi,j) (4)

whereW 0 ∈ R
C
d ×C andW 1 ∈ R(K×K×G)C

d denote two linear
transformations with a reduction ratio d, and τ(·) represents the
nonlinear transformation that consists of batch normalization
and nonlinear activation function.

Noting that involution kernel is sensitive to spatial positions.
Therefore, the Involution Projection can generate the q, k and v
vectors with spatial awareness:

Zq/k/v = FLR(σR (finv (Reshape (x) ,K)) (5)

where x is the tokens extracted by Involution Patch Embedding,
finv(·) denotes Involution Projection, K is the kernel size of
involution, σR(·) represents the non-linear activation function
ReLu, and FLR(·) is followed by Reshape, Layer Normaliza-
tion and Flatten.
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Fig. 3. Structure of involution transformer. (a) Involution attention block. (b) SE involution block.

The generated q, k and v vectors are then fed into MHSA.
The total computation of MHSA can be formulated as:

MHSA
(
Zq/k/v

)
= softmax

(
ZqZkT

√
dk

)
Zv (6)

Therefore, the output of the Involution Attention block is
given as:

x′ = Zq/k/v +MHSA
(
Zq/k/v

)
(7)

2) Squeeze-and-Excitation Involution Block: According to
(7), we get features by Involution Attention block. In traditional
Vision Transformer, these features will be fed into a Feed
Forward Network (FFN) with the residual structure to further
perform feature transformation and enhance the nonlinearity.
FFN commonly comprises Batch Normalization and Multi-layer
Perceptron (MLP). However, the MLP globally operates on all
token maps but ignores hierarchical learning of vision represen-
tations [41]. Thus, as shown in Fig. 3(b), we design a Squeeze-
and-Excitation (SE) Involution block to fuse hierarchical spatial
features and channel-wise information.

We first generate hierarchical feature representations by dif-
ferent kernel sizes of involutions. This process could be formu-
lated as:

x′
i = D (σG (finv (x

′) , ki)) , i = 1, 2, 3 (8)

where σG(·) denotes the non-linear activation function GeLu,
and D(·) is dropout operation that helps enhance robustness to
different features. We set three sizes of involution kernel k1 =
3, k2 = 5, and k3 = 7 to extract hierarchical spatial features.
The output of this branch could be formulated as :

xinv = σG

(
finv

(
3∑

i=1

x′
i

)
, k1

)
(9)

Besides, we further propose a SE branch to supplementary
the channel information:

SE (x′) = Sigmoid (W f1σR (W f2GAP (x′))) (10)

where GAP (·) denotes the global average pooling, σR(·) repre-
sents ReLu activation function, Sigmoid(·) represents sigmoid
function, and W f1 ∈ R

c
r×c and W f2 ∈ Rc× c

r refer to the two

Fig. 4. Structure of involution downsampling. The PW conv is the
point-wise convolution and the three invs represent the involutions with
three different kernel sizes.

full-connected (FC) layers with the dimensionality reduction
ratio r. Therefore, the output of SE Involution is given as:

Y = SE (x′) ∗ xinv (11)

where ∗ refers to channel-wise multiplication.
By the carefully designed Involution Attention block and SE

Involution block, ITM can effectually capture global semantic
information with spatial awareness, which then could help pre-
cisely detect the landmarks within critical anatomical structures.

B. Involution Downsampling Block

The encoder-decoder architecture is effective for extracting
the high-level features (i.e., semantic information) from images.
To reduce computation and improve efficiency, dimensionality
reduction is the key to this architecture. However, this process
inevitably suffers from losing features that can interfere with
the downstream task. Different from the traditional maxpooling
operation [42], we designed a new Encoder Block in the encoder.
The Encoder Block consists of two convolutional layers and an
IDB (Fig. 4), which is designed for learning powerful feature
representation with less information loss.

In the encoder block, the IDB reduces the dimensionality via
a feature extraction process by involutions and convolutions.
Denote xf ∈ Rh×w×c as the input feature map, where h, w, c
are the high, width and channels. We first utilize a Point-Wise
convolution to reduce the dimensionality of the input. Then, the
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obtained feature map xf0 ∈ Rh×w× c
s is reduced by half by the

involutions with stride of 2. Besides, we introduce three different
kernel sizes in involution layers to extract rich information and
then obtain three feature maps xf1, 2, 3

∈ R
h
2 ×w

2 × c
s . The subse-

quent Point-Wise convolutions are used to restore the number
of channels. Finally, the output of IDB is formulated as:

yf =
3∑

j=1

(
σG

(
xf ′

j

))
(12)

where xf
′
j
∈ R

h
2 ×w

2 ×c, j = 1, 2, 3 are the restored feature
maps.

In this way, we redefine downsampling process as feature
extraction by involutions and convolutions. Compared to sim-
ply selecting the maximum value from a local region, feature
mapping operation projects valuable information across overlap-
ping areas. Thus, valuable information in the ultrasound images
can be preserved. That is, our proposed IDB can significantly
alleviate the problem of losing sensitive features and allow
the model to retain detailed information around the landmarks
during downsampling process.

IV. EXPERIMENTS

A. Dataset and Preprocessing

Two DDH ultrasound datasets were used to evaluate the
proposed IT-UNet algorithm in this work. The first dataset
was collected from the Shanghai Children’s Medical Center
(SCMC), including 700 hip ultrasound images from 413 infants.
Specifically, 500 images of them (named SCMC DDH Dataset
A) were scanned by the LOGIQ E9 ultrasound scanner (GE
HealthCare, Milwaukee, WI) with an 8.4 MHz linear-array
probe between June 2022 and August 2022. Moreover, the
images in SCMC DDH Dataset A were scanned with the same
dynamic range of 69dB, and the gain values were set within
the range of 4.0dB to 6.0dB. The other 200 images (named
SCMC DDH Dataset B) were scanned by another ultrasound
device (SIEMENS OXANA 2, Inc., Chicago, IL, USA) with an
9MHz liner-array probe between January 2023 to October 2023.
In SCMC DDH Dataset B, the images were scanned with the
dynamic range of 50dB, and the gain values were ranging from
0dB to 10.0dB. This study was approved by the Research Ethics
Board of Shanghai Children’s Medical Center, and informed
consent was signed by all guardians of the infants. All landmarks
were marked by experienced sonologists.

The second APCH DDH Dataset in [8] comprised 1769 hip
ultrasound images, which were collected from the Anhui Provin-
cial Children’s Hospital between December 2018 to November
2019. These images were scanned by a Philips EPIQ 5 ultra-
sound system. The landmarks were labeled and cross-validated
by four professional doctors who have engaged in DDH diag-
nosis for more than five years.

There were three sizes of image resolution in the SMMC DDH
Dataset, including 368×390, 440×480, and 480×480 pixels.
Moreover, all of images in the APCH DDH Dataset had the
resolution of 445×715 pixels.

B. Experimental Settings

To evaluate the performance of our proposed IT-UNet, we
selected the following eight representative algorithms for com-
paration, including U-Net [12], DM-ResNet [8], HRNet [43],
UNet++ [13], TransUNet [14], FARNet [16], DA-TransUNet
[44], and SCUNet++ [45]:

1) U-Net [12]: The classical encoder-decoder architecture
U-Net was adopted for landmark detection, which was
the baseline network in our experiment.

2) DM-ResNet [8]: This model was specially proposed for
hip landmark detection task, which adopted a simple
ResNet as the backbone and presented a novel depen-
dency mining module to enhance features.

3) HRNet [43]: This model was a deep convolutional neu-
ral network for key point detection, which repeatedly
exchanged the information by parallel connecting the
high-to-low resolution convolutions.

4) UNet++ [13]: It was a deeply-supervised encoder-
decoder architecture, which connected sub-networks
through a series of nested, dense skip pathways.

5) TransUNet [14]: It served Transformers as strong en-
coders and used U-Net to recover localized spatial in-
formation that enhanced finer details.

6) FARNet [16]: FARNet was a novel encoder-decoder ar-
chitecture for anatomic landmark detection, which fused
multi-scale features from the encoder and achieved high-
resolution heatmap regression.

7) DA-TransUNet [44]: It was a state-of-the-art (SOTA) U-
shape architecture, which utilized the Transformers and
dual attention blocks to combine not only global and local
features but also image-specific positional and channel
features.

8) SCUNet++ [45]: It was another SOTA network with
multiple fused dense skip connections between the en-
coder and decoder, which aimed to fuse features of dif-
ferent scales and compensate for the spatial information
loss caused by downsampling.

We also conduct the following ablation experiment on the
SCMC DDH Dataset to further verify the effectiveness of the
ITM and IDB:

1) U-Net [12]: The original U-Net was adopted for landmark
detection, without any proposed modules.

2) CvT-UNet: This variant integrated the Convolution Trans-
former (CvT) into U-Net, which aimed to compare the
effectiveness of the developed Involution Transformer.

3) CvD-UNet: This variant utilized convolutions with stride
2 for downsampling (CvD) in U-Net. It aimed to verify
the effectiveness of our proposed IDB.

4) IvID-UNet: This variant employed Involution with Incep-
tion Downsampling (IvID) block to replace maxpooling
in U-Net, which aimed to evaluate the effectiveness of the
proposed IDB again.

5) IT-UNet w/o IDB: This variant only applied the proposed
ITM in U-Net architecture, which captured both long-
range dependencies and spatial knowledge to locate the
anatomical landmarks in the hip ultrasound images.
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6) IT-UNet w/o ITM: This variant only replaced the tradi-
tional maxpooling with IDB in U-Net. It aimed to main-
tain fine-grained features during downsampling process.

C. Evaluation Metrics

We conducted the five-fold cross-validation strategy to evalu-
ate all the algorithms. All the results were presented in the format
of mean ± SD (standard deviation).

Both mean radial error (MRE) and successful detection rate
(SDR) were used as the evaluation metrics to verify the perfor-
mance of landmark detection. The MRE is defined as:

MREn =
∣∣Lpred

n − Lgt
n

∣∣2 (13)

whereLpred
n ∈ (xpred

n , ypredn ) andLgt
n ∈ (xgt

n , ygtn ) represent the
n− th prediction and ground truth landmarks. Thus, (13) could
further convert into:

MREn =
(
xpred
n − xgt

n

)2
+
(
ypredn − ygtn

)2
(14)

Notably, MRE stands for radial error between the predicted
landmark and the ground truth landmark. A smaller MRE value
denotes a more precise detection. We also used the SDR as
formulated:

SDRdist = # {m : MREn ≤ dist} /M × 100% (15)

where # is used as the count symbol, m denotes the number of
landmarks that MREn ≤ dist, M represents the total number
of landmarks in images, and dist is the scope of successful
detection.

SDR is employed to evaluate the distribution of MRE, with the
value indicating the reliability of the landmark detection. In this
work, we set dist into 0.5 mm, 1.0 mm, 1.5 mm, respectively.

D. Implementation Details

During the training stage, the input hip ultrasound image was
resized to 256 × 256. Meanwhile, the size of mini-batch was set
to 2. We set the hyperparameter σ to 10, which determined the
Gaussian distribution while generating ground truth heatmaps.
The Adam optimizer was utilized for network optimization with
a learning rate of 0.0001, and the model was trained for 300
epochs. In addition, the training loss of IT-UNet converged at
approximately 250 epochs. All algorithms were implemented
by PyTorch with a GTX 2080TI GPU.

V. EXPERIMENTAL RESULTS

A. Results of Comparation Experiments

Fig. 5 shows the visualization results of different landmark
detection algorithms on the SCMC DDH Dataset and the APCH
DDH Dataset. The red dots represent the ground truth landmarks,
the green dots show the detected results by different algorithms,
and the yellow lines between the red dots and green dots denote
the detected errors. It can be found that the proposed IT-UNet
achieves the best detection accuracy, since the predicted land-
marks are more closely match the ground truth locations. It is
worth noting that despite the differences of the hip ultrasound
images, the IT-UNet also achieves the best detection accuracy.

Table I gives the quantitative MRE results of different algo-
rithms on the SCMC DDH Dataset, with the L1 to L6 as the
six anatomical landmarks (e.g., APP to GLP in Fig. 1(b)) of
hip images. The proposed IT-UNet achieves the best detection
results for almost all landmarks except the LIP and BRLP, and
gets the best average MRE of 0.4494±0.0155 mm. Compared
to other comparison algorithms, it decreases at least 0.0188 mm
(about 4.02%). Moreover, compared with the DM-ResNet that
is specially designed for the same hip landmark detection task in
Reference [8], the average MRE of IT-UNet reduces 0.0367 mm
(approximately 7.55%). All these superior results demonstrate
the effectiveness of our proposed IT-UNet in accurately localiz-
ing landmarks from hip ultrasound images.

Table II further gives the comparison results of SDR on the
SCMC DDH Dataset. It can be observed that the proposed
IT-UNet again outperforms all the compared algorithms with
three best SDR values of 71.19±1.76%, 93.45±1.07%, and
97.31±0.56%, respectively. Moreover, compared to the typical
DM-ResNet algorithm, our model improves 2.55%, 2.31%, and
1.02%, respectively, on the corresponding 0.5 mm, 1.0 mm and
1.5 mm. These results demonstrate that the majority of predicted
landmarks by IT-UNet are in close to the ground truth landmarks,
thereby indicating the effectiveness of the proposed IT-UNet.

Table III shows the quantitative MRE results of different
algorithms on the APCH DDH Dataset. Our IT-UNet again
outperforms all the compared algorithms for detecting the hip
landmarks. The IT-UNet achieves the best average MRE of
0.4282±0.0206 mm, which decreases at least 0.0124 mm (about
2.81%) over all other algorithms. Furthermore, when compared
to the SOTA algorithms, such as FARNet, DA-TransUNet,
and SCUNet++, the proposed IT-UNet still demonstrates su-
perior performance with a reduction of the average MRE by
0.1888 mm, 0.0144 mm, and 0.0124 mm, respectively.

Table IV presents the three SDR results on the APCH DDH
Dataset. It can be found that the proposed IT-UNet achieves
the highest scores on the SDR at 0.5 mm and 1.0 mm with
values of 72.19±1.60% and 94.25±0.43%, respectively, and
improves at least 1.06% and 0.40%, respectively, compared to
other algorithms. Moreover, the IT-UNet gets the second-highest
score on the SDR at 1.5 mm, and is only surpassed by the FARNet
with a decrease of 0.15%.

B. Results of Ablation Experiments

Fig. 6 presents the visual comparison of ablation study. No-
tably, the IT-UNet exhibits the most superior visual detection
performance. Moreover, it is observed that some landmarks
(green dots) predicted by IT-UNet w/o ITM or IT-UNet w/o
IDB deviate from the ground truth landmarks (red dots). Visual
results indicate that both the ITM and IDB are essential for our
IT-UNet.

Table V shows the quantitative MRE results of ablation study
on the SCMC DDH Dataset. In comparison to the IT-UNet,
the IT-UNet w/o ITM shows a decline in performance with
an increase of 0.0198 mm (about 4.22%) on the average MRE,
while the IT-UNet w/o IDB exhibits a growth of 0.0121 mm
(about 2.62%). These results indicate the importance of both the
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Fig. 5. Visualization results of landmark detection by IT-UNet and other comparison algorithms. The red box in the original hip image represents
the area including critical anatomical structures. The red dot represents ground truth landmark while the green dot is the predicted landmark by DL
models. The yellow line between the red dot and green dot denotes the detecting errors of DL models.

TABLE I
QUANTITATIVE RESULTS OF DIFFERENT ALGORITHMS ON THE SCMC DDH DATASET WITH MRE (UNIT: MM)

proposed ITM and the IDB. Specifically, the removal of ITM in
IT-UNet results in an obvious decline in the MRE metric com-
pared with the IT-UNet, because the IT-UNet w/o ITM cannot
effectively capture and learn spatial and global information in the
hip ultrasound images without the ITM. Similarly, the decreased
performance of IT-UNet w/o IDB also demonstrates that this
variant suffers from the issue of feature loss during the down-
sampling process in U-Net. Besides, compared to the CvT-UNet

that only integrates the Convolution Transformer (CvT) into
U-Net, the IT-UNet w/o IDB that still has ITM shows a reduction
of 0.0154 mm on the average MRE (approximately 3.23%).
It indicates that although the CvT can capture the long-range
information from hip ultrasound images, the proposed ITM
can learn additional spatial information besides the long-range
dependencies, so as to further enhance feature representation.
On the other hand, the CvD-UNet utilizes convolutions with
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Fig. 6. Visualization results of landmark detection by IT-UNet and the ablation variants. The red box in the original hip image represents the area
including critical anatomical structures. The red dot represents ground truth landmark while the green dot represents predicted landmark by DL
models. The yellow line between the red dot and green dot denotes the detection errors of DL models.

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT ALGORITHMS ON THE SCMC DDH

DATASET WITH SDR (UNIT: %)

stride 2 for downsampling in U-Net, and the IvID-UNet adopts
the Involution with Inception Downsampling block to replace
maxpooling in U-Net. It can be found the IT-UNet w/o ITM that
still has IDB decreases at least 0.0126 mm on the average MRE
compared to both IvID-UNet and CvD-UNet, which demon-
strates the effectiveness of the developed IDB in preserving
valuable details during the downsampling process.

Table VI further presents the results of ablation study on
the SDR values. It is notable that after removing the ITM
or IDB from the IT-UNet, all the three SDR values of the
IT-UNet w/o ITM and the IT-UNet w/o IDB decline compared
with the IT-UNet, suggesting the importance of both ITM and

IDB. In particular, after removing the proposed ITM, there is
a significant decrease in the value of SDR at 0.5 mm, with a
reduction of 1.74%. It again indicates the effectiveness of the
ITM in capturing both the spatial and long-range information.
While compared with the CvT-UNet, the IT-UNet w/o IDB still
achieves superior performance on all three SDR values. More-
over, the IT-UNet w/o ITM also outperforms both CvD-UNet
and IvID-UNet. These results indicate the same conclusions as
mentioned above.

C. Generalization Analysis

To further evaluate the generalization of the proposed IT-
UNet, we used the 500 ultrasound images in the SCMC DDH
Dataset A as the training set, which were scanned by the LOGIQ
E9 ultrasound device, and the other 200 images in the SCMC
DDH Dataset B were utilized as the testing set, which were
scanned by another ultrasound device (SIEMENS OXANA 2).

Table VII shows the quantitative results on the two metrics. It
can be found that the IT-UNet again achieves the best detection
results for almost all landmarks except the LIP, and gets the best
average MRE of 0.6479 mm. For the three SDR metrics, the
IT-UNet again outperforms all compared algorithms, achieving
the values of 55.92%, 84.25%, and 91.58%, on the correspond-
ing 0.5 mm, 1.0 mm, and 1.5 mm. It improves at least 2.92%,
2.25%, and 0.36%, respectively, on the corresponding metrics.
All these experimental results demonstrate the effectiveness of
the proposed IT-UNet, which has superior generalization to all
the comparison algorithms.
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TABLE III
QUANTITATIVE RESULTS OF DIFFERENT ALGORITHMS ON THE APCH DDH DATASET WITH MRE (UNIT: MM)

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT ALGORITHMS ON THE APCH DDH

DATASET WITH SDR (UNIT: %)

Fig. 7. Average running time of different algorithms to detect the hip
landmarks from one ultrasound image.

D. Computational Complexity and Running Time

Fig. 7 shows the average running time of different algorithms
to predict one ultrasound image during the testing stage. It can be
found that the proposed IT-UNet costs only 59.5ms to detect the
hip landmarks from a signal ultrasound image, which is located
at the middle level among all algorithms.

Table VIII further gives the model parameters (Params) and
floating point operations (FLOPs) of different algorithms for hip
landmark detection. It is observed that the IT-UNet has a slightly

Fig. 8. CAMs of tracking the GLP hip landmark from each layer in the
proposed IT-UNet.

higher computational cost, with the values of 181.999M Params
and 94.411G FLOPs. However, as shown in Fig. 7, it still has an
acceptable running time during the testing stage.

E. Visualization of CAMs in IT-UNet

Fig. 8 further illustrates a series of class activation maps
(CAMs) [46], which are obtained by tracking one hip landmark
(GLP is chosen in Fig. 8) from each layer in the proposed
IT-UNet. The CAMs can allow us to understand which parts
of the input image the model focuses on when making predic-
tions. It is worth noting that the IT-UNet emphasizes texture
information in the shallow down layers, such as Down Layer 1
and Down Layer 2. As the network progresses, the highlighted
areas in the CAMs gradually narrow down, indicating a shift
in focus towards more localized information. Notably, follow-
ing the integration of the developed Involution Transformer
layer, our IT-UNet exhibits a broader focus, capturing additional
positional and global information within the hip image. This
intriguing observation underscores the effectiveness of the In-
volution Transformer module in capturing both positional and
global context. During the upsampling process, the IT-UNet
progressively shifts its attention towards the neighborhood of
the GLP landmark. The final CAM vividly illustrates our IT-
UNet’s concentration on the neighborhood of the GLP landmark,
which serves as a crucial cue for predicting the coordinates
of the hip landmark. This comprehensive visualization of the
CAMs offers a clear window into the decision-making process
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TABLE V
QUANTITATIVE RESULTS OF ABLATION STUDY ON THE SCMC DDH DATASET WITH MRE (UNIT: MM)

TABLE VI
QUANTITATIVE RESULTS OF ABLATION STUDY ON THE SCMC DDH DATASET

WITH SDR (UNIT: %)

of our hip landmark detection model, reaffirming its robust
interpretability.

VI. DISCUSSION

In this work, we propose an IT-UNet model to detect six
critical anatomical landmarks in hip ultrasound images for sub-
sequent DDH diagnosis. The experimental results on two DDH
datasets demonstrate the effectiveness of the proposed IT-UNet.

It is well known that ultrasound images are prone to various
factors of variability during image acquisition, such as operator
experience, type of device and transducer, probe orientation,
different parameters, patient condition, which make the images
significant different [47]. Therefore, it is important for the
ultrasound-based CAD to have good generalization. To this end,
we evaluate the performance of the proposed IT-UNet on two
DDH datasets from different hospitals. As shown in Fig. 5, there
ultrasound images have obvious visual difference. Although the
diversity of ultrasound images increases the difficulties to accu-
rately detect six landmarks, the proposed IT-UNet consistently
outperforms all the comparison algorithms on both datasets.
Moreover, the results of generalization study in Table VII in-
dicate that the IT-UNet has superior generalization to other
algorithms, mainly due to the proposed ITM and IDB.

In this work, a novel ITM is proposed to combine the
long-range modeling capability of Transformer and the posi-
tional awareness of involution. The ITM specially generates
the query, key, and value vectors by the involution projection,
which can incorporate the spatial information into each token.
Meanwhile, the FFN is further improved by involution layers

with the SE-Network [38], which aims to fuse the hierarchical
spatial features and channel-wise information. By introducing
the ITM into the U-Net network, the model can well learn
both the spatial-related and long-range feature representations
to further improve the detection performance. Specifically, the
proposed IT-UNet outperforms the previous hip landmark de-
tection algorithm for DDH with ultrasound images in [8], which
is also an encoder-decoder architecture with a specially de-
signed dependency mining module for capturing long-range
information within hip images. We think that the proposed
ITM can capture more long-range information than the depen-
dency mining module in [8]. Moreover, compared to other U-
Net-based algorithms, including the original U-Net, UNet++,
TransUNet, DA-TransUNet, and SCUNet++, the proposed
IT-UNet also achieves the best detection performance, mainly
because it integrates the ITM into U-Net for enhancing feature
representations.

Although the embedded ITM in IT-UNet can effectively cap-
ture the long-range and spatial information in hip ultrasound
images, it inevitably increases the computational complexity.
The higher values of Params and FLOPs then lengthen the
training time. However, the proposed IT-UNet requires only
about 0.06s to predict six landmarks from one hip ultrasound
image during the testing stage. Moreover, it also achieves the
best detection accuracy compared to other algorithms. There-
fore, the proposed IT-UNet has a superior trade-off between the
accuracy of hip landmark detection and running time. Moreover,
the model can be further optimized for faster runtime through
deployment strategies, such as model pruning and quantization,
so as to be more suitable for the real-time applications in clinical
practice.

On the other hand, the encoder-decoder architecture generally
suffers from the issue of fine-grained information loss during
downsampling process. Existing methods demonstrate the effec-
tiveness of replacing traditional maxpooing with convolutions
[18]. Thus, considering the importance of positional information
of landmarks in hip ultrasound images, a new IDB is developed
by combining the involutions and convolutions. The Involutions
in the IDB are adopted to reduce the dimensionality of input
feature maps, which can preserve the valuable and detailed infor-
mation. The results in Tables V and VI indicate the effectiveness
of IDB. Moreover, both the ITM and IDB significantly contribute
the improvement of the proposed IT-UNet on the landmark
detection task.
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TABLE VII
QUANTITATIVE RESULTS OF GENERALIZATION STUDY ON MRE AND SDR

TABLE VIII
PARAMS AND FLOPS OF DIFFERENT ALGORITHMS FOR HIP LANDMARK

DETECTION

In fact, the spatial-specific characteristic of involution oper-
ation makes it have significant value in exploring the spatial
information in neural networks. Existing works have demon-
strated its effectiveness by introducing the involution operation
into the CNN, multilayer perception, and attention models for
various vision tasks [24], [25], [26], [27], [28]. We believe that
the involution has the feasibility to be integrated into other
effective networks, such as graph neural networks (GCN), dif-
fusion model, and recently proposed Mamba model [48], so as
to further improve their feature representations. In future works,
we will study the Involution-based GCN to explore more spatial
relations among landmarks to further improve the landmark
detection accuracy for hip ultrasound images.

Furthermore, the proposed IT-UNet also has promising fea-
sibility for other landmark detection tasks in different medical
imaging modalities, such as hip X-ray landmark detection [49],
cephalometric landmark detection [50], and spine posterior cor-
ner detection [51]. In fact, we think that the proposed IT-UNet
has the potential to replace the U-Net based landmark detection
models, or the developed ITM and IDB can be integrated into
other U-Net based models to further improve the detection
performance. In future work, we will apply the IT-UNet to more
landmark detection tasks to extend its application.

Despite the effectiveness of IT-UNet in this work, it still has
room for improvement. The IT-UNet only detects six landmarks
in this work, and its performance to detect more landmarks

should be further evaluated. For example, the nuclei detection
task in histopathological whole slide images with huge sizes is
very difficult, we should improve the efficiency and effectiveness
of IT-UNet on such a complex task. Moreover, since the IT-UNet
is developed for landmark detection in 2D ultrasound images, it
currently cannot be directly applied to 3D medical images. Thus,
we will improve the IT-UNet for more landmark detection tasks
in different imaging modalities in future work.

VII. CONCLUSION

In conclusion, we propose a novel Involution Transformer
based U-Net network (IT-UNet) to promote the performance of
landmark detection in the hip ultrasound images. Particularly,
an Involution Transformer module is developed to capture both
spatial-related information and long-range dependencies around
hip landmarks. Meanwhile, the Involution Downsampling block
is specifically designed to reduce the loss of valuable information
in ultrasound images. The experimental results demonstrate the
effectiveness of the proposed IT-UNet on two real-world datasets
of infantile DDH, indicating its potentially clinical application.

REFERENCES

[1] S. Sioutis et al., “Developmental dysplasia of the hip: A review,” J. Long-
Term Effects Med. Implants, vol. 32, no. 3, pp. 39–56, 2022.

[2] S. K. Storer and D. L. Skaggs, “Developmental dysplasia of the hip,” Amer.
Fam. Physician, vol. 74, pp. 1310–1316, 2006.

[3] A. Kitay et al., “Ultrasound is an alternative to X-ray for diagnosing
developmental dysplasia of the hips in 6-month-old children,” HSS J.,
vol. 15, no. 2, pp. 153–158, 2019.

[4] R. Graf, “Fundamentals of sonographic diagnosis of infant hip dysplasia,”
J. Pediatr. Orthop., vol. 4, no. 6, pp. 735–740, 1984.

[5] D. Golan et al., “Fully automating Graf’s method for DDH diagnosis using
deep convolutional neural networks,” in Proc. Int. Workshop Deep Learn.
Med. Image Anal., 2016, pp. 130–141.

[6] S. W. Lee et al., “Accuracy of new deep learning model-based segmentation
and key-point multi-detection method for ultrasonographic developmental
dysplasia of the hip (DDH) screening,” Diagnostics, vol. 11, no. 7, 2021,
Art. no. 1174.

[7] X. Hu et al., “Joint landmark and structure learning for automatic eval-
uation of developmental dysplasia of the hip,” IEEE J. Biomed. Health
Inform., vol. 26, no. 1, pp. 345–358, Jan. 2022.

[8] J. Xu et al., “Hip landmark detection with dependency mining in ultra-
sound image,” IEEE Trans. Med. Imag., vol. 40, no. 12, pp. 3762–3774,
Dec. 2021.

[9] J. Liu et al., “Speckle noise reduction for medical ultrasound images
based on cycle-consistent generative adversarial network,” Biomed. Signal
Process., vol. 86, 2023, Art. no. 105150.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 08,2024 at 13:41:08 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: INVOLUTION TRANSFORMER BASED U-NET FOR LANDMARK DETECTION IN ULTRASOUND IMAGES 4809

[10] M. Juneja et al., “A review on cephalometric landmark detection tech-
niques,” Biomed. Signal Process. Control, vol. 66, 2021, Art. no. 102486.

[11] S. S. Kshatri and D. Singh, “Convolutional neural network in medical
image analysis: A review,” Arch. Comput. Methods Eng., vol. 30, no. 4,
pp. 2793–2810, 2023.

[12] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Proc. Int. Conf.
Med. Image Comput. Comput.-Assist. Intervention, 2015, vol. 9351,
pp. 234–241.

[13] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++:
Redesigning skip connections to exploit multiscale features in image
segmentation,” IEEE Trans. Med. Imag., vol. 39, no. 6, pp. 1856–1867,
Jun. 2020.

[14] J. Chen et al., “TransUNet: Transformers make strong encoders for medical
image segmentation,” in Proc. Int. Conf. Mach. Learn. Workshop Inter-
pretable Mach. Learn. Healthcare, 2021, pp. 1–13.

[15] Z. Li, S. Ying, J. Wang, H. He, and J. Shi, “Reconstruction of quantitative
susceptibility mapping from total field maps with local field maps guided
UU-net,” IEEE J. Biomed. Health Inform., vol. 27, no. 4, pp. 2047–2058,
Apr. 2023.

[16] Y. Ao and H. Wu, “Feature aggregation and refinement network for
2D anatomical landmark detection,” J. Digit. Imag., vol. 36, no. 2,
pp. 547–561, 2023.

[17] R. Liu et al., “An intriguing failing of convolutional neural networks and
the coordconv solution,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
vol. 31, pp. 9605–9616.

[18] J. T. Springenberg et al., “Striving for simplicity: The all convolutional
net,” in Proc. Int. Conf. Learn. Representations, 2015, pp. 1–14.

[19] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. Int. Conf. Learn. Representations,
2021, pp. 1–22.

[20] B. Chen, Y. Liu, Z. Zhang, G. Lu, and A. W. K. Kong, “Transattunet:
Multi-level attention-guided u-net with transformer for medical image
segmentation,” IEEE Trans. Emerg. Topics Comput. Intell., vol. 8, no. 1,
pp. 55–68, Feb. 2024.

[21] F. Shamshad et al., “Transformers in medical imaging: A survey,” Med.
Image Anal., vol. 88, 2023, Art. no. 102802.

[22] Q. Li, R. Zhong, X. Du, and Y. Du, “TransUNetCD: A hybrid transformer
network for change detection in optical remote-sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5622519.

[23] D. Li et al., “Involution: Inverting the inherence of convolution for visual
recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 12316–12325.

[24] Y. Shao, J. Liu, J. Yang, and Z. Wu, “Spatial–spectral involution MLP
network for hyperspectral image classification,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 15, pp. 9293–9310, 2022.

[25] Y. Hou et al., “Attention meets involution in visual tracking,” J. Vis.
Commun. Image Representation, vol. 90, 2023, Art. no. 103746.

[26] S. Jain et al., “CoInNet: A convolution-involution network with a novel
statistical attention for automatic polyp segmentation,” IEEE Trans. Med.
Imag., vol. 42, no. 12, pp. 3987–4000, Dec. 2023.

[27] A. A. Asiri et al., “Enhancing brain tumor diagnosis: Transitioning from
convolutional neural network to involutional neural network,” IEEE Ac-
cess, vol. 11, pp. 123080–123095, 2023.

[28] H. Xiao, L. Peng, S. Peng, and Y. Zhang, “Lung image segmentation
based on Involution UNet model,” in Proc. Int. Conf. Adv. Electron. Mater.,
Comput. Softw. Eng., 2022, pp. 184–187.

[29] A. Stamper, A. Singh, J. McCouat, and I. Voiculescu, “Infant hip screening
using multi-class ultrasound scan segmentation,” in Proc. IEEE 20th Int.
Symp. Biomed. Imag., 2023, pp. 1–4.

[30] B. Gong et al., “Diagnosis of infantile hip dysplasia with B-mode ul-
trasound via two-stage meta-learning based deep exclusivity regularized
machine,” IEEE J. Biomed. Health Inform., vol. 26, no. 1, pp. 334–344,
Jan. 2022.

[31] R. Gong et al., “Hybrid-supervised bidirectional transfer networks
for computer-aided diagnosis,” Comput. Biol. Med., vol. 165, 2023,
Art. no. 107409.

[32] K. Oh, I.-S. Oh, V. N. T. Le, and D.-W. Lee, “Deep anatomical context
feature learning for cephalometric landmark detection,” IEEE J. Biomed.
Health Inform., vol. 25, no. 3, pp. 806–817, Mar. 2021.

[33] Q. Yao et al., “Miss the point: Targeted adversarial attack on multiple
landmark detection,” in Proc. Int. Conf. Med. Image Comput. Comput.-
Assist. Intervention, 2020, pp. 692–702.

[34] H. Zhu et al., “You only learn once: Universal anatomical landmark
detection,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. In-
tervention, 2021, pp. 85–95.

[35] A. Stergiou, R. Poppe, and G. Kalliatakis, “Refining activation downsam-
pling with SoftPool,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 10337–10346.

[36] Y. M. Kwon et al., “Semantic segmentation by using down-sampling and
subpixel convolution: DSSC-UNet,” Comput., Mater. Continua, vol. 75,
no. 1, pp. 683–696, 2023.

[37] J. Li and W. Guan, “Patch merging refiner embedding UNet for image
denoising,” Inf. Sci., vol. 641, 2023, Art. no. 119123.

[38] J. Hu, L. Shen, and G. Sun, “ Squeeze-and-excitation networks,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 7132–7141.

[39] H. Wu et al., “Cvt: Introducing convolutions to vision transformers,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 22–31.

[40] I. A. Usmani et al., “Cartesian product based transfer learning implemen-
tation for brain tumor classification,” Comput., Mater. Continua, vol. 73,
pp. 4369–4392, 2022.

[41] D. J. Zhang et al., “Morphmlp: A self-attention free, MLP-like backbone
for image and video,” in Proc. Eur. Conf. Comput. Vis., 2022, vol. 13695,
pp. 230–248.

[42] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[43] J. Wang et al., “Deep high-resolution representation learning for visual
recognition,” IEEE Trans. Pattern. Anal. Mach. Intell., vol. 43, no. 10,
pp. 3349–3364, Oct. 2021.

[44] G. Sun et al., “DA-TransUNet: Integrating spatial and channel dual at-
tention with transformer U-Net for medical image segmentation,” Front.
Bioeng. Biotechnol., vol. 12, 2024.

[45] Y. Chen et al., “SCUNet++: Swin-UNet and CNN bottleneck hybrid
architecture with multi-fusion dense skip connection for pulmonary em-
bolism CT image segmentation,” in Proc. IEEE/CVF Winter Conf. Appl.
Comput. Vis., 2024, pp. 7759–7767.

[46] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 618–626.

[47] L. Duron et al., “Can we use radiomics in ultrasound imaging? Impact
of preprocessing on feature repeatability,” Diagn. Interventional Imag.,
vol. 102, no. 11, pp. 659–667, 2021.

[48] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective
state spaces,” 2023, arXiv:2312.00752.

[49] C. Liu, H. Xie, S. Zhang, Z. Mao, J. Sun, and Y. Zhang, “Misshapen
pelvis landmark detection with local-global feature learning for diagnosing
developmental dysplasia of the hip,” IEEE Trans. Med. Imag., vol. 39,
no. 12, pp. 3944–3954, Dec. 2020.

[50] H. Zhu et al., “UOD: Universal one-shot detection of anatomical land-
marks,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Inter-
vention, 2023, pp. 24–34.

[51] J. Yi, P. Wu, Q. Huang, H. Qu, and D. N. Metaxas, “Vertebra-focused
landmark detection for scoliosis assessment,” in Proc. IEEE 17th Int. Symp.
Biomed. Imag., 2020, pp. 736–740.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 08,2024 at 13:41:08 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


