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Abstract

In this paper, we summarize the 1st NTIRE challenge on
stereo image super-resolution (restoration of rich details in
a pair of low-resolution stereo images) with a focus on new
solutions and results. This challenge has 1 track aiming
at the stereo image super-resolution problem under a stan-
dard bicubic degradation. In total, 238 participants were
successfully registered, and 21 teams competed in the final
testing phase. Among those participants, 20 teams success-
fully submitted results with PSNR (RGB) scores better than
the baseline. This challenge establishes a new benchmark
for stereo image SR.

1. Introduction
Stereo image pairs can encode 3D scene cues into stereo

correspondences between the left and right images. With
the popularity of dual cameras in mobile phones, au-
tonomous vehicles and robots, stereo vision has attracted
increasingly attention in both academia and industry. In
many applications like AR/VR, and robot navigation, in-
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creasing the resolution of stereo images is highly demanded
to achieve higher perceptual quality and help to parse the
real world.

In recent years, remarkable progress of image super-
resolution (SR) have been witnessed with deep learning
techniques. Most existing approaches focus on super-
resolving single images. However, these methods cannot
make full use of the cross-view information in stereo im-
ages. Recent CNN-based video SR methods incorporate
optical flow estimation and SR in unified networks to ex-
ploit temporal information in multiple frames. Neverthe-
less, these methods usually suffer limited performance on
stereo image SR since the disparity can be much larger than
their receptive fields.

Stereo image SR aims to reconstruct a pair of high-
resolution (HR) stereo images from a pair of low-resolution
(LR) observations. Since disparities between stereo images
can vary significantly for different baselines, focal lengths,
depths and resolutions, it is highly challenging to incorpo-
rate stereo correspondence for stereo image SR.

The NTIRE 2022 stereo image SR challenge takes a step
forward to establish a benchmark for stereo image SR. It
uses the Flick1024 dataset [1] and employs standard bicubic
degradation.

This challenge is one of the NTIRE 2022 associ-
ated challenges: spectral recovery [2], spectral demo-
saicing [3], perceptual image quality assessment [4], in-
painting [5], night photography rendering [6], efficient
super-resolution [7], learning the super-resolution space [8],
super-resolution and quality enhancement of compressed
video [9], high dynamic range [10], stereo image super-
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resolution, and burst super-resolution [11].

2. Related Work
In this section, we briefly review several major works on

single image and stereo image SR.

2.1. Single Image SR

Single image SR is a long-standing problem and has
been investigated for decades. In the past 10 years, deep
learning-based single image SR methods have achieved
promising performance.

Dong et al. [12] proposed the first CNN-based SR net-
work called SRCNN to reconstruct HR images from LR
inputs. Kim et al. [13] proposed a deeper network with
20 layers (i.e., VDSR) to improve SR performance. Af-
terwards, SR networks became increasingly deep and com-
plex, and thus more powerful in intra-view information ex-
ploitation. Lim et al. [14] proposed an enhanced deep SR
network (i.e., EDSR) using both local and residual connec-
tions. Zhang et al. [15] combined residual connection [16]
with dense connection [17], and proposed residual dense
network (i.e., RDN) to fully use hierarchical feature rep-
resentations for image SR. Subsequently, Zhang et al. [18]
further improved SR performance by designing a residual-
in-residual network with channel attention. Li et al. [19]
suggested to make full use of image features with dif-
ferent scales and proposed a multi-scale residual network
(i.e., MSRN). Recently, Transformer has been widely used
in computer vision and achieved promising performance.
In the area of low-level vision, Liang et al. [20] applied
Swin Transformer [21] to image restoration, and designed
a SwinIR network to achieve state-of-the-art performance
on single image SR. Lu et al. [22] proposed an effective
super-resolution Transformer (i.e., ESRT) for SISR, which
reduces GPU memory consumption through a lightweight
Transformer and feature separation strategy. Readers can
refer to recent surveys [23–25] to learn more details about
single image SR.

2.2. Stereo Image SR

Compared to single image SR in which only context in-
formation within one view is available, stereo image SR can
use the additional information provided by the second view
(i.e., cross-view information) to improve SR performance.
However, since an object is projected onto different loca-
tions in a stereo image pair, the cross-view information is
hindered to be fully exploited.

To handle this disparity issue, Jeon et al. [26] proposed a
network (i.e., StereoSR) to learn a parallax prior by jointly
training two cascaded sub-networks. The cross-view infor-
mation is integrated by concatenating the left image and a
stack of right images with different pre-defined shifts. Wang
et al. [27, 28] proposed a parallax attention module (PAM)

to model stereo correspondence with a global receptive field
along the epipolar line. The proposed PASSRnet achieves
better performance than StereoSR and is more flexible with
disparity variation. Based on parallax attention mechanism,
Ying et al. [29] proposed a stereo attention module and em-
bedded it into pre-trained SISR networks for stereo image
SR. Song et al. [30] combined self-attention with parallax
attention and proposed a SPAMnet for stereo image SR. Yan
et al. [31] proposed a domain adaptive stereo SR network
(DASSR) in which the disparity was firstly estimated by
using a pretrained stereo matching network and the views
were warped to the other side to incorporate cross-view in-
formation. Xu et al. [32] incorporated the idea of bilateral
grid processing in a CNN framework and proposed a bilat-
eral stereo SR network.

More recently, Wang et al. [33] modified PAM [27] to
be bidirectional and symmetric, and developed an improved
version of PASSRnet (i.e., iPASSR) to handle a series of
practical issues (e.g., illuminance variation and occlusions)
in stereo image SR. Dai et al. [34] proposed a feedback
network to alternately solve disparity estimation and stereo
image SR in a recurrent manner. Ma et al. [35] proposed
a GAN-based perception-oriented stereo image SR method
that can generate visually pleasing and stereo consistent de-
tails. Xu et al. [36] tackled the stereo video SR problem
by simultaneously utilizing both cross-view and temporal
information.

3. NTIRE 2022 Challenge
The objectives of the NTIRE 2022 challenge on

example-based stereo image SR are: (i) to gauge and push
the state-of-the-art in SR; and (ii) to compare different so-
lutions.

3.1. Dataset

The Flickr1024 dataset [1] is used in the challenge.
Flickr1024 has 1024 pairs of RGB images with 800 for
training, 112 for validation and 112 for testing purposes.
The manually collected high quality images in Flickr1024
have diverse contents and rich details. In this challenge, we
use Flickr1024 for both training and validation, and collect
another 100 LR stereo image pairs (with private groundtruth
HR images) for test.

3.2. Track and Competition

Track: Bicubic degradation. Standard bicubic degrada-
tion (Matlab imresize function with default settings) is used
to synthesize LR stereo images from HR ones for both train-
ing, validation and test sets.
Challenge phases
(1) Development phase: The participants were provided
with pairs of LR and HR training images and LR validation
images of the Flickr1024 dataset. The participants had the



opportunity to test their solutions on the LR validation im-
ages and to receive immediate feedback by uploading their
results to the server. A validation leaderboard is available
online.
(2) Testing phase: The participants were provided with
the LR test images and were asked to submit their super-
resolved images, codes, and a fact sheet for their methods
before the challenge deadline. After the end of the chal-
lenge, the final results were released to the participants.
Evaluation protocol. The quantitative metrics are Peak
signal-to-noise ratio (PSNR) in deciBels [dB] and the struc-
tural similarity index (SSIM). These full-reference mea-
sures are calculated in the RGB and Y (luminance) chan-
nels, respectively. Results are averaged over all images (for
both left and right images).

4. Challenge Results
Among the 238 registered participants, 21 teams suc-

cessfully participated the final phase and submitted their re-
sults, codes, and factsheets. Table 1 reports the final test
results, rankings of the challenge, and major details from
the factsheets of 20 teams with PSNR (RGB) scores outper-
forming the baseline. These methods are briefly described
in Section 5 and the team members are listed in Appendix
7.
Architectures and main ideas. All the proposed meth-
ods are based on deep learning techniques. Transformers
(particularly SwinIR) are used in 16 solutions as the basic
architecture. To exploit cross-view information, parallax-
attention mechanism (PAM) are adopted in 14 solutions to
capture stereo correspondence.
Restoration fidelity. The top 2 methods, (i.e., The Fat, The
Thin and The Young team and the BigoSR team), achieved
similar PSNR scores (with a difference less than 0.08dB).
The BUAA-MC2 entry, which ranks 6th, is only 0.21dB
behind the best PSNR score of The Fat, The Thin and The
Young team.
Data Augmentation. Widely applied data augmentation
approaches such as random flipping are used for most solu-
tions. In addition, random horizontal shifting, random RGB
channel shuffling and Cutblur [37] are also used in several
solutions and help to achieve superior performance.
Ensembles and fusion. Ensemble strategy (including both
data ensemble and model ensemble) is adopted in several
solutions to further boost the final SR performance. For
data ensemble, the inputs are flipped and the resultant SR
results are aligned and averaged for enhanced prediction.
For model ensemble, the results produced by multiple mod-
els are averaged for better results.
Conclusions. By analyzing the settings, the proposed meth-
ods and their results, we can conclude that: 1) The proposed
methods improve the state-of-the-art in stereo image SR. 2)
Transformers are increasingly popular in stereo image SR

tasks and produce significant performance improvements
over CNNs. 3) Cross-view information lying at varying
disparities is critical to the stereo image SR task and helps
to achieve higher performance. 4) Benefited from bags of
tricks including delicate data augmentation strategies, sev-
eral single image SR solutions also produces competitive
results.

5. Challenge Methods and Teams
5.1. The Fat, The Thin and The Young Team
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Figure 1. The Fat, The Thin and The Young Team: The network
architecture of the proposed Nonlinear Activation Free Stereo im-
age SR network (NAFSSR).

This team proposed a Nonlinear Activation-Free Net-
work (NAFNet) for image restoration [38]. By using the
modules in NAFNet for feature extraction, they further ex-
tended NAFNet to NAFSSR for stereo image SR, by adding
cross attention modules to incorporate cross-view informa-



Table 1. NTIRE 2022 Stereo Image SR Challenge results, final rankings, and details from the factsheets. Note that, PSNR (RGB) is used
for the final ranking. “Transf” denotes Transformer, “PAM” denotes parallax attention mechanism, and “DConv” represents deformable
convolutions.

Rank Team Authors PSNR (RGB) PSNR (Y) SSIM (RGB) SSIM (Y) Transf? Disparity Ensemble

1 The Fat, The Thin
and The Young L. Chen, X. Chu, W. Yu 23.7873 25.2033 0.7360 0.7438 7 PAM Data & Model

2 BigoSR K. Jin, Z. Wei, S. Guo, et al. 23.7126 25.1305 0.7295 0.7379 3 PAM Data & Model
3 NUDT-CV&CPLab B. Dai, F. Peng, H. Xiao, et al. 23.6007 25.0166 0.7287 0.7366 3 PAM 7
4 BUPT-PRIV P. Cao, Y. Nie, L. Yang, Q. Song 23.5983 25.0100 0.7217 0.7296 3 7 Data & Model
5 NKU caroline X. Hu, J. Xu 23.5770 24.9978 0.7263 0.7352 3 PAM Data
6 BUAA-MC2 M. Xu, J. Jing, X. Deng, et al. 23.5733 24.9861 0.7267 0.7349 3 Optical Flow Data
7 No War W. Guo, C. Peng, Z. Chen 23.5664 24.9864 0.7233 0.7330 3 PAM Data & Model
8 GDUT 506 J. Chen, H. Li, J. Chen, et al. 23.5601 24.9789 0.7239 0.7325 3 PAM Data
9 DSSR G. Li, A. Li, L. Sun 23.5533 24.9711 0.7242 0.7322 3 PAM & DConv Data

10 xiaozhazha D. Zhang, S. Liu 23.5490 24.9570 0.7203 0.7290 3 7 Data & Model
11 Zhang9678 J. Zhang, Y. Qu 23.5150 24.9346 0.7183 0.7263 3 PAM 7
12 NTU607QCO-SSR H. Yang, Z. Huang, W. Chen, et al. 23.5090 24.9190 0.7186 0.7265 3 7 Data
13 supersmart Q. Liang 23.4896 24.9058 0.7227 0.7331 3 PAM Data
14 LIMMC HNU J. Lin, Y. Wang, L. Yin, et al. 23.4381 24.8550 0.7199 0.7283 3 PAM 7
15 HIT-IIL R. Xu, Z. Zhang, W. Zuo 23.4066 24.8165 0.7144 0.7225 3 7 Data
16 Hansheng H. Guo, G. Gao, T. Zeng 23.2918 24.7072 0.7101 0.7194 3 PAM Model
17 VIP-SSR J. Kim, H. Kim, E. Park, J. Sim 23.2910 24.7146 0.7103 0.7207 7 PAM Data
18 phc H. Pi, S. Zhang 23.2323 24.6584 0.7071 0.7182 7 PAM 7
19 qylen J. Zhai, P. Zeng, Y. Liu, C. Ma 23.2241 24.6480 0.7086 0.7179 3 PAM 7
20 Modern SR Y. Huang, J. Chen 22.8370 24.2836 0.6820 0.6925 7 DConv 7
- PASSRnet (Baseline) - 22.7965 24.2016 0.6801 0.6911 7 PAM 7
- Bicubic (Baseline) - 21.8358 23.3865 0.6287 0.6443 - - -

tion. In this report, we briefly introduce their solution and
readers can refer to [39] for more details.

As shown in Fig. 1, NAFSSR has two branches with
shared weights to process left and right views, respectively.
Several attention modules are inserted between the left and
right branches to interact cross-view information. Similar
to biPAM [33], the attention module calculates the correla-
tion of features along the horizontal epipolar line, and then
fuses the features by performing correlation operation.

In addition to the network design, a series of effective
tricks were introduced to boost the SR performance. Specif-
ically, in the training phase, random cropping, random hor-
izontal and vertical flipping, random horizontal shifting and
random RGB channel shuffling were performed for data
augmentation. In the testing phase, four models were used
for ensemble, and a series of test-time augmentation ap-
proaches, including horizontal and vertical flipping, RGB
channel shuffling, and left-right view exchanging, were per-
formed.

Moreover, this team addressed the training/test inconsis-
tency issue described in [40], i.e., the training is performed
on image patches while testing is performed on full image.
The local-SE module in [40] was adopted in their solution
and introduced a 0.1 dB PSNR improvement. Besides, the
stochastic depth strategy [41] and the skip-init strategy [42]
were used to handle the over-fitting issue and facilitate the
training process.

5.2. The BigoSR Team

The BigoSR team developed a SwiniPASSR network by
combining the Swin Transformer [21] with the parallax-
attention mechanism [28]. To use the cross-view informa-

tion from paired LR images, they employed biPAM [33]
in their network. SwiniPASSR consists of three parts in-
cluding feature extraction, cross-view interaction and re-
construction, as illustrated in Fig. 2. Within the SwinIR-
like framework, a biPAM module is plugged into the middle
of consecutive residual swin Transformer blocks (RSTBs)
to model cross-view information while handling occlussion
and boundary issues. To keep semantic structure consis-
tency with convolution-based biPAM module, a layer nor-
malization and a patch unembedding module are used be-
fore biPAM.

During the training phase, to facilitate the learning of
stereo correspondence, a multi-stage training strategy was
employed. In the first stage, stereo image pairs in the train-
ing set were divided into separate images and a Swin Trans-
former based network was trained for the single image SR
task. At this stage, the network aims to learn structured in-
formation of images and model local spatial relationship.
In the second stage, the biPAM module was plugged into
middle of RSTBs to model stereo correspondence between
a stereo image pair. In the third stage, the input patch size
were further enlarged from 24×24 to 48×48 to help biPAM
to aggregate cross-view information at a larger range. In
the last stage, the stereo losses in the overall loss function
were increased by 10 times for fine-tuning to encourage the
network to focus more on cross-view information.

5.3. The NUDT-CV&CPLab Team

Inspired by SwinIR, the NUDT-CV&CPLab team pro-
posed a Transformer-based network architecture (namely,
SSRFormer) for stereo image SR, as shown in Fig. 3. SSR-
Former is a Siamese network architecture with two branches
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Figure 2. The BigoSR Team: The network architecture of the proposed SwiniPASSR.

Figure 3. The NUDT-CV&CPLab Team: The network architecture of the proposed SSRFormer.

sharing weights. Specifically, four residual Swin Trans-
former blocks (RSTBs) are first used as the feature extrac-
tor to extract deep features. Then, inspired by parallax
attention mechanism, an attention-based feature matching
(AFM) module is adopted to extract rich cross-view infor-
mation without explicitly aligning the left and right images.

During the training phase, 800 pairs of stereo images
were used as the training set. HR images were randomly
cropped into 192 × 192 patches, and LR images were
cropped accordingly. Random flipping was used for data
augmentation. The proposed SSRFormer was first trained
for 300,000 iterations on two 2080ti GPUs with batch size
of 8 using the L1 loss. Then, the model was further fine-
tuned for 124,000 iterations on four 2080ti GPUs with batch
size of 16. An L1 loss was adopted for the first 60000 iter-
ations and an L2 loss was used for the remaining iterations.
The learning rate was initialized to 2 × 10−4 and halved at

LR Stereo 
Images

Shallow Feature 
Extraction R

ST
B

R
ST

B

Deep Feature 
Extraction

HQ Image 
Reconstruction

HR Stereo
Images

Figure 4. The BUPT-PRIV Team: The network architecture of the
proposed SwinIR-impr network.

iteration 250000, 300000, 375000, and 400000.

5.4. The BUPT-PRIV Team

The BUPT-PRIV team developed an improved version
of SwinIR [20] to super-resolve left and right images, re-
spectively. The network architecture is shown in Fig. 4.
Although the cross-view information is not used in this



Figure 5. The NKU caroline Team: The network architecture of
the proposed PAMSwin network.

solution, benefited from the effective data augmentation
and test-time augmentation strategies, the proposed method
achieves a very competitive SR performance. In addition
to the data augmentations originally used in SwinIR, this
team further introduced a series of tricks. In the training
phase, they: 1) adjusted the possibility of selecting training
samples to ensure that an image with higher resolution will
get a higher possibility to be selected, 2) randomly shuffled
RGB channels with a probability of 50%, and 3) trained
three models with different combinations of architectures
and losses. In the testing phase, a series of test-time aug-
mentation approaches was adopted including flipping, self-
ensemble, and RGB shuffling. Note that, the window size
was set to 16 in this method, which is different from the
setting (i.e., 8) in SwinIR.

5.5. The NKU caroline Team

The NKU caroline team shares a similar idea with many
other teams and developed a PAMSwin network by com-
bining SwinIR [20] with parallax-attention mechanism [27]
for the stereo image SR task. The network architecture of
PAMSwin is shown in Fig. 5. Within the SwinIR frame-
work, a biPAM module is plugged into the middle of resid-
ual swin Transformer blocks (RSTBs) to capture cross-view
information. Besides, a channel attention layer is employed
to exploit correlations between different channels. This
team also emphasizes that the order of the input left and
right images contains priori information and is critical to
the performance. Training with mixed orders of left-right
images produced inferior SR performance in their experi-
ments.

During the training phase, a three-stage training strategy
was employed. First, the proposed PAMSwin was trained
from scratch for 500K iterations. Then, Cutblur [37] was
included for data augmentation to fine-tune the model with
the best performance in the first stage for 500K iterations.
Note that, the parameters for the biPAM module were fixed
at this stage. Finally, a small learning rate was used to fur-
ther fine-tune the whole model with the highest SR accuracy
in the second stage for 500K iterations. During the testing

phase, a self-ensemble strategy was adopted to improve the
performance.

5.6. The BUAA-MC2 Team

Figure 6. The BUAA-MC2 Team: The architecture of the pro-
posed Stereo Image Super-Resolution Transformer (StereoSRT).

The BUAA-MC2 team proposed a Stereo Image Super-
Resolution Transformer (StereoSRT). As shown in Fig. 6,
the input stereo images are first fed into a shallow convo-
lution layer and several Swin Transformer layers (STL) to
extract shallow features. Then, the output feature maps are
concatenated and passed to several mutual attention layers
(MAL) to extract cross-view information. After MALs, HR
images are reconstructed using a sub-pixel convolutional
layer. Finally, a multi-scale enhancement module consisting
of several MALs is adopted to further enhance the quality
of the HR images.

During the training phase, an L1 loss was used for SR
and an L2 loss was used for enhancement. The initial learn-
ing rate was set to 4 × 10−4. The model was trained with
a multi-stage strategy. Specifically, in the first stage, the
model was trained only with the STL part (the output of
STL wass directly fed into the up-sample module) for 200K
iterations with a patch size of 64×64. In the second stage,
the MAL part (without the flow module) was optimized for
200K iterations while the parameters of the STL parts were
fixed. In the third stage, the whole network was optimized
end-to-end for 100K iterations. In the fourth stage, the flow
module was added to MAL and optimized for 300K iter-
ations with the STL parts being fixed. Finally, the whole
model was fine-tuned with a patch size of 96× 96 for 100K
iterations.

5.7. The No War Team

Figure 7 illustrates the network architecture proposed by
the NO War team. The participants of this team used the
modules of iPASSR [33] for feature extraction and cross-
view information interaction. In the reconstruction stage,
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a parallel interactive Transformer with four Swin Trans-
former Blocks (STBs) [21] was designed to further enhance
the interaction of left and right view features. During the
training phase, the input images were cropped into patches
of size 128 × 128 with a stride of 20. The batch size was
set to 4. To prevent model over-fitting, the participants per-
formed model ensemble by selecting five models at non-
adjacent epochs and averaging their weights to obtain the
final model for test.

5.8. The GDUT 506 Team

The GDUT 506 team developed a Parallax Res-
Transformer Network (PRTN) by combining Transformers
with the parallax attention mechanism. The network ar-
chitecture of the proposed PRTN is illustrated in Fig. 8.
First, four residual Transformer blocks (RTBs) are used for
shallow feature extraction. Then, a biPAM module is em-
ployed to perform cross-view interaction between features
extracted from left and right images. Finally, four cascaded
RTBs are used to obtain deep features and a Transformer
Block (TB) is adopted to reconstruct the HR images. Note
that, the proposed RTB is hybrid module mixed with both
convolutional layers and Transformer layers.

During the training phase, random horizontal and verti-
cal flipping was used for data augmentation. A three-stage
training strategy was employed. At the first stage, PRTN
was trained for ×2 SR using an L1 loss. At the second
stage, PRTN was fine-tuned for × 4 SR using an L1 loss.
At the last stage, PRTN was further fine-tuned for × 4 SR
using an L2 loss.
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Figure 8. The GDUT 506 Team: The network architecture of the
proposed PRTN.

Figure 9. The DSSR Team: The architecture of the proposed De-
formable Stereo Super-Resolution (DSSR).

5.9. The DSSR Team

The DSSR team proposed a Deformable Stereo Super-
Resolution (DSSR) network. As shown in Fig. 9, DSSR
consists of a coarse SR stage and a refinement stage. In the
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Figure 10. The Xiaozhazha Team: The network architecture of the
proposed SwinFIR for stereo image super-resolution.

coarse SR stage, a Bi-Directional Align (BDA) module with
pyramid cascading deformable convolutions [43] is used to
help the biPAM module [33] to better exploit cross-view
information. In the refinement stage, the SR results from
the previous stage is fed into a refinement module with 4
groups of residual in residual dense block (RRDB) [44] for
enhancement.

During the training phase, the generated LR images were
cropped into patches of size 120 × 120 with a stride of 40.
These patches were randomly flipped horizontally and ver-
tically for data augmentation. All models were optimized
using the Adam method with β1 = 0.9, β2 = 0.999, and a
batch size of 36. The initial learning rate was set to 2×10−4

and reduced to half after every 30 epochs. The training was
stopped after 100 epochs. In the early stage of training, an
L1 loss was used to accelerate convergence. Then, an L2
loss was used to obtain higher results in terms of PSNR.

5.10. The Xiaozhazha Team

The xiaozhazha team proposed a network called Swin-
FIR based on SwinIR [20] and fast Fourier convolution [45],
as shown in Fig. 10. SwinFIR consists of three modules, in-
cluding a shallow feature extraction module, a deep feature
extraction module and a high-quality image reconstruction
module. The shallow feature extraction and high-quality
image reconstruction modules adopt the same configura-
tions as in SwinIR [20]. Since the fast Fourier convolu-
tion can extract global features, the participants replaced the
3×3 convolution in SwinIR with fast Fourier convolution
and a residual module to fuse global and local features. The
proposed spatial-frequency block improves the representa-
tion capability of this model.

During the training phase, random horizontal flipping,
random vertical flipping, random RGB channel shuffling
and mix-up strategy [37] were used for data augmentation.
Self-ensemble and multi-model ensemble were adopted to
further improve the SR performance.

Figure 11. The Zhang9678 Team: The network architecture of the
proposed MPTnet.

5.11. The Zhang9678 Team

The Zhang9678 team developed a multi-stage progres-
sive Transformer network (MPTnet) for stereo image SR.
The network architecture of the proposed MPTnet is shown
in Fig. 11. First, self-calibrated feature extractor (SCFE)
is used for feature extraction. Within each SCFE, SCConv
[46] and a three-branch structure are employed to achieve
large receptive fields. Then, multiple cross-view Trans-
formers (CVTs) and adaptive selective modules (ASFs) are
employed to exploit cross-view information. CVT performs
information interaction between left and right images along
epipolar lines, while ASF aggregates features from different
views using a gating mechanism.

5.12. The NTU607QCO-SSR Team

The NTU607QCO-SSR team mainly considers the
stereo image super-resolution task as a single image super-
resolution task and adopts the state-of-the-art SwinIR [20]
as the backbone. As shown in Fig. 12, the model con-
tains convolutional blocks, SwinBlocks, and a pixel shuf-
fling layer. Images are first passed to the 3× 3 convolutions
and then SwinBlocks are used to extract the global and local
features. At the end of the SwinBlocks, image features are
passed to a pixel shuffling layer and a 3 × 3 convolution is
used to enlarge the feature maps and reconstruct the SR re-
sult. During the training phase, an L1 loss was first used for
optimization with 300 epochs. After that, a wavelet-based
L1 loss was adopted for fine-tuning. The wavelet-based
loss [47,48] uses wavelet transforms to generate sub-images
with different scales and frequencies from the original im-
age. Since the resultant sub-images have higher-frequency
details, better performance can be achieved.



Figure 12. The NTU607QCO-SSR Team: The network architec-
ture of the proposed model.

Figure 13. The supersmart Team: The network architecture of the
proposed SwinRSTB.

Figure 14. The LIMMC HNU Team: The network architecture of
the proposed PAMSwinIR.

5.13. The Supersmart Team

The supersmart team proposed a method called
SwinRSTB, as shown in Fig. 13. Since SwinIR [20] is de-
signed for single image SR and cannot incorporate cross-
view information, this team combined iPASSR [33] with
SwinIR for stereo image SR. In the proposed SwinRSTB
network, the RSTB module in SwinIR was used to replace
the RGB module in iPASSR.

5.14. The LIMMC HNU Team

The LIMMC HNU team developed a PAMSwinIR net-
work inspired by SwinIR [20] and iPASSRnet [33]. The
network architecture is illustrated in Fig. 14. Different from
the solutions of many other teams, they postponed the bi-
PAM module until the end of the residual swin Transformer
blocks. During the training phase, the loss function in [33]
was first used for training to capture cross-view correspon-
dence. Then, only MSE loss was adopted for fine-tuning.
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5.15. The HIT-IIL Team

The HIT-IIL team employed SwinIR [20] (see Fig. 15)
as a basic SISR model and introduced an FFT loss for op-
timization. The FFT loss measures the difference between
outputs and their corresponding HR image in the frequency
domain:

LFFT(y, ŷ) = ‖F(y)− F(ŷ)‖1, (1)

where F denotes the Fourier transform, y is the output of
the model, and ŷ represents the ground truth image. There-
fore, the overall loss function can be written as:

Ltotal(y, ŷ) = ‖y − ŷ‖1 + λ ∗ LFFT (y, ŷ). (2)

Compared with the model trained with only L1 loss, the ad-
ditional FFT loss helps the model converge faster and obtain
higher performance.

5.16. The Hansheng Team

The Hansheng team developed a stereo image SR net-
work based on SwinIR [20] and iPASSR [33]. As shown
in Fig. 16, the proposed network first performs feature ex-
traction and cross-view interaction using the modules of
iPASSR. Then, 6 RSTB blocks are used to aggregate the
left and right features, with each block consisting of 6 STL
blocks. Next, the resultant features are further fed into sev-
eral RDBs for reconstruction. During the training phase,
input images were cropped into patches of 48×48, and the
window size in STL blocks was set to 8.

5.17. The VIP-SSR Team

The VIP-SSR team improved the performance of iPASS-
Rnet [33] by introducing a hierarchical feature blended-



Figure 17. The VIP-SSR Team: The network architecture of the
proposed HFB-iPASSR.

Figure 18. The phc Team: Network architecture of Improved-
PASSR.

iPASSR (HFB-iPASSR) network. They first split the pixel-
shuffle layer in iPASSR into two pixel-shuffle layers, with
each one being followed by a residual dense group (RDG)
to relax the discontinuity along pixels caused by the pixel-
shuffle operation. They also add a residual block to the first
RDG as post-processing to utilize the relation of multi-level
features. The architecture of the proposed HFB-iPASSR
network is shown in Fig. 17.

5.18. The phc Team

Inspired by PASSRnet [27, 28], the phc team proposed
an Improved-PASSR, as shown in Fig. 18. Specifically, the
participants introduced a self-attention module to further
capture long-range correlations within the image. Mean-
while, the participants deepen the original RDB layers and
employ a pixel perception block (PPB) for feature en-
hancement. In the upsampling block, two sub-pixel lay-
ers are used to generate the super-resolved image gradu-
ally. Since batch normalization cannot introduce a notable
performance improvement, it is removed from the network.
During the training phase, the model was optimized for 100
epochs using the Adam method with β1 = 0.9, β2 = 0.999
and a batch size of 32. The initial learning rate was set to
2× 10−4 and reduced to half after every 40 epochs.

5.19. The qylen Team

The qylen team combined iPASSR with Transformers to
achieve improved SR performance. As shown in Fig. 19,
the proposed network sequentially performs feature extrac-
tion, Transformer-based information fusion, and SR recon-
struction. The feature extraction and SR reconstruction
parts of this method are similar to those in iPASSR. In
the proposed Transformer-based information fusion mod-
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ule, self-attention is used to model dependencies among
pixels within a single view, while cross attention is used
to model correspondence of pixels along the epipolar lines
between two views. These two attention modules are al-
ternately applied to update the features based on intra-view
and cross-view information.

5.20. The Modern SR Team

The Modern SR team considered a pair of stereo images
as two consecutive frames and developed a Stereo-EDVR
network for SR. They aim at seeking a more general SR
framework that can be used for different types of SR tasks.



The network architecture of the proposed Stereo-EDVR is
shown in Fig. 20. First, a stereo image pair is formulated
as a three-frame sequence by duplicating a left or right im-
age. Then, an improved EDVR model with more channels
is used to reconstruct an HR left or right image.
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