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a b s t r a c t 

Single-particle reconstruction (SPR) in cryogenic electron microscopy (cryo-EM) aims at aligning and av- 

eraging two-dimensional micrographs to reconstruct a three-dimensional particle. 

How to reconstruct micrographs from heavy noise is a crucial point for achieving better micrograph qual- 

ity, and thus many methods focus on noise removal. However, new problems such as over-smoothing 

often occur in their results due to failure in handling heavy noise well. This paper proposes a three- 

dimensional weighted nuclear norm minimization (3DWNNM) model for SPR in the cryo-EM task to ad- 

dress these issues. Specifically, we design a minimization solver based on the forward-backward splitting 

algorithm to tackle our model efficiently. Under certain conditions, this solution has an energy-decaying 

feature and performs exceptionally well in reconstruction. Numerical experiments fully demonstrate the 

effectiveness and the robustness of the proposed method. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

In 2017, Jacques Dubochet, Joachim Frank, and Richard Hen- 

erson were awarded the Nobel Prize in Chemistry for developing 

ryogenic electron microscopy (cryo-EM). A giant technological 

eap in cryo-EM has ensured the realization of near-atomic- 

esolution structures of biological macromolecules. As an essential 

tructural biology research tool, cryo-EM is becoming increasingly 

rominent in structural biology. Together with X-ray crystallogra- 

hy and nuclear magnetic resonance (NMR), it is the cornerstone 

f high-resolution structural biology research. Recently, the 

esearch on single-particle reconstruction (SPR) in cryo-EM has at- 

racted considerable attention. SPR in cryo-EM is a new technique 

o determine the three-dimensional (3D) structure of macro- 

olecules, which uses the resulting set of noisy two-dimensional 

rojection images taken in unknown directions to reconstruct the 

D structure of the molecule [1] . 

As a challenging and gratifying task, various techniques have 

een proposed for SPR, among which variational-based models 

re extensively utilized and have had remarkable success [2] . Gen- 

rally, total variation (TV)-based models [3] and low rank-based 
∗ Corresponding author. 
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odels [4] are two types of variational-based models that are 

ommonly used. The reconstruction of TV-based models is mainly 

elied on gradient information, making the edge information 

ell-preserved [5] . On the other hand, since the high-dimensional 

ata inherently has a low-rank structure [6,7] , the purpose of low 

ank-based models [8,9] is to recover the underlying low-rank 

atrix from its corrupted observation precisely and effectively. 

he nuclear norm regularizer, for example, is the tightest con- 

ex relaxation of the NP-hard rank minimization function [10] . 

owever, several studies [11,12] have found that the nuclear 

orm-based low-rank methods generate sub-optimal results of the 

riginal rank minimization. The reason is that each singular value 

s considered identically, even though the large singular values 

hich may contain more information. To better approximate the 

ank function, many nonconvex surrogates have been proposed, 

uch as the Laplacian regularization [13] , weighted nuclear norm 

14] , Schatten norm [15] , and log-determinant function [16] , and 

ave shown promising results in various image processing tasks. 

mong them, the most popular one is the weighted nuclear norm 

inimization (WNNM) regularizer, which assigns varying weights 

o distinct unique values based on their physical relevance [17] . 

ontinuing in this vein, Lv and Li [18] proposed an iterative decou- 

led method, which combined the fast transforms and the WNNM 

or image restoration. In [19] , the authors proposed an effective 

NNM-based nonconvex model for phase retrieval. The authors in 

https://doi.org/10.1016/j.patcog.2023.109736
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. The schematic diagram of single-particle reconstruction. Here are particles trapped in different orientations. When we shoot the particles with an electron beam, 

the orientation of the particles leaves a unique “shadow”, which contains all the 3-dimensional information of the particle compressed into a 2D image. Some particles are 

trapped in the same orientation, and so are their sampled 2D images. We select these images and rotate them in the same direction, and the aligned images are then added 

together. This summed image provides a more detailed view of the particle in this orientation. We perform this same process for the different orientations of the particle. 

As a result, the reconstruction of the proposed method with orientated 2D images. 
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iang et al. [20] proposed a tubal nuclear norm-based model with 

ensors for imaging data recovery. All methods mentioned above 

emonstrate the robustness of the WNNM-based scheme. Inspired 

y this, in this paper, we aim to extend the WNNM-based model 

o three-dimension to handle the SPR task in cryo-EM. 

As for the SPR in cryo-EM, there are not many methods cur- 

ently available since cryo-EM imaging is still in an early stage, and 

t is a complicated and challenging task that many problems re- 

ain to be resolved [21] . In general, the signal-to-noise ratio (SNR) 

f cryo-EM data is very low. On the one hand, due to the lack of

ontrast enhancers in the solution, the micrographs acquired for 

ryo-EM exhibit low contrast. On the other hand, electron doses 

ust be maintained low to protect biomolecules from radiation. 

herefore, it is complicated to estimate the three-dimensional 

tructure of molecules at such low SNR [22,23] . In fact, the process 

f estimating the three-dimension structure of a molecule involves 

veraging the two-dimension images to mitigate the effects of mo- 

ion caused by the electron beam, thereby improving the SNR [24] . 

n general, the centroid of the particle needs to be identified first. 

owever, due to the Fourier transform of the point spread function 

PSF) in the microscope, estimating accurate characteristics of the 

ontrast transfer function (CTF) is quite difficult [25] . Fortunately, 

ccording to the Fourier slice theorem, acquiring tomographic pro- 

ections from known viewing directions is equivalent to sampling 

he three-dimension Fourier space. Therefore, the advantage of 

he Fourier space is that there is no need to rotate the numerator, 

.e., projections can be computed quickly using off-the-shelf non- 

niform fast Fourier transform (FFT) packages. In this case, the 

TF is just a diagonal operator. Once the viewing directions of all 

xperimental images are specified, the three-dimensional structure 

an be constructed using standard linear inversion techniques 

26] . Following this, in this paper, we consider the reconstruction 

ask with the known and fixed viewing directions. The schematic 

iagram of single-particle reconstruction is given in Fig. 1 . 

In this work, the orientations and positions are assumed to 

e known and fixed. Furthermore, based on this setting, Wang 

t al. [27] proposed a Fourier-based iterative method for cryo- 

M particle reconstruction with the known orientations and 

ositions prior. Later, considering the corruption of noise, Pan 

t al. [21] proposed a total variation regularization-based model 
2 
or SPR in cryo-EM. However, total variation regularization-based 

ethods are susceptible to noise, and they will misinterpret noise 

s a boundary, resulting in a staircase effect or oversmoothing. 

s mentioned before, WNNM-based models are more robust than 

otal variation-based models in many applications. Therefore, in 

his paper, we consider exploring a three-dimensional weighted 

uclear norm minimization (3DWNNM) model to better suppress 

eavy noise in SPR tasks. In addition to the proposed reconstruc- 

ion model, the minimization algorithm of the energy function is 

lso crucial for SPR in cryo-EM. The classical algorithm includes 

he alternating minimization algorithm (AMA), the alternating di- 

ection method of multipliers (ADMM), and the forward-backward 

plitting (FBS), etc. Among them, the AMA was proposed to handle 

he convex problem, which separated the minimization function 

nto two-block, and at least one of the blocks is assumed to be 

trongly convex [28] . The ADMM is frequently utilized in a variety 

f fields, and its convergence has been proved by updating two 

locks of variables alternately [29] . However, Chen et al. [30] have 

roved that the direct extension of ADMM for multi-block convex 

inimization problems is not necessarily convergent. Different 

rom ADMM, FBS can handle a more generic problem of mini- 

izing the sum of two convex functions [31] . Specifically, the FBS 

onsists of a forward gradient step on the differentiable part of the 

bjective function, followed by a backward step on the other part. 

he FBS algorithm can generate a sparse solution with minimum 

rocessing cost. On the other hand, the FBS allows the method to 

uild on existing analyses with the formal convergence of many 

xisting gradient-based convex optimization algorithms. Given the 

dvantageous qualities of the FBS algorithm, in this paper, we 

im to adopt the FBS algorithm to solve the proposed model and 

nalyze the convergence of our reconstruction model. 

How to reconstruct micrographs from heavy noise is critical for 

mproving micrograph quality. Many approaches focus on noise 

eduction. However, additional issues such as over-smoothing 

requently appear in their results as a consequence of their 

nability to handle heavy noise adequately. To overcome this 

hallenge, we propose a novel single-particle reconstruction model 

or three-dimensional cryogenic electron microscopy. The main 

ontributions are as follows. Firstly, to overcome the over-smooth 

nd the staircase effects of the TV-based reconstruction models, 
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Fig. 2. Some examples of single-particles, including ‘emd_1022’, ‘emd_1023’, ‘emd_1252’ ‘emd_1024’, and ‘emd_5505’. 
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e apply the low rank-based model to better suppress the noise 

n the SPR task. Secondly, treating different f eatures the same is 

ot conducive to the use of features, resulting in unsatisfactory re- 

onstruction results. We use the weighted nuclear norm to assign 

ifferent weights to different features so that the model can make 

etter use of features and reconstruct results with better structure 

nd details. Thirdly, as the SPR task has a three-dimensional struc- 

ure, we extend the WNNM model to three-dimension and give 

he theoretical analysis of the three-dimensional weighted nuclear 

orm minimization (3DWNNM). Fourthly, we design an efficient 

nd theoretically guaranteed algorithm for the proposed model, 

hich can solve the model accurately. Experiments on SPR in cryo- 

M show that the proposed method can provide more outstanding 

econstruction results than several state-of-the-art methods. 

The rest of this paper is organized as follows. In Section 2 , we

rst review the mathematical part of the cryo-EM reconstruction 

ask, then the essential works of the WNNM method and the 

BS algorithm are given. In Section 3 , we present the proposed 

DWNNM model and design the FBS-based algorithm for solving 

he developed model with the convergence analysis. In Section 4 , 

e provide the numerical results to demonstrate the superior 

erformance of the proposed scheme. Finally, a conclusion is 

rawn in Section 5 . 

. Related works 

.1. The cryo-EM reconstruction task 

Assume v ∈ R 

N ×N ×M is a three-dimensional particle to be esti- 

ated, the rotation and the position of the particle are known and 

xed, i.e., each image g 1 , g 2 , . . . , g M 

is formed by rotating v with

hree-dimensional rotation R ω . Then we have the following forma- 

ion 

 i = h i � S k i 

∫ ∞ 

−∞ 

R 

∗
ω i 

v dv 3 + b, i = 1 , . . . , M, (1)

here h is the PSF, S k is the 2D shift, � is the convolution op-

ration, R ∗ω is the adjoint operator of R ω , and b is the noise, v =
v 1 , v 2 , v 3 ) denotes the particle v in the v 1 v 2 v 3 -coordinate system.

hen the angle ω i of rotation R ω i changes, we can get M differ- 

nt slices g , i = 1 , 2 , . . . , M. To better understand, model (1) can be
i 

3

ondensed as 

 i = h i � S k i T v i + b, i = 1 , . . . , M, (2)

here T can be seen as a tomographic projection and v i ∈ 

 

N×N , i = 1 , . . . , M, represents M different slices [32,33] . After that,

ith the Fourier slice theorem, using project volume g i to obtain M

runcated Fourier slices corresponding to the particle v in Cartesian 

oordinates ω k 1 ,k 2 
= (ω k 1 

, ω k 2 
) = 2 π(k 1 , k 2 ) /N, k 1 , k 2 ∈ Z , (k 1 , k 2 )

s inside a ball in the Fourier domain as ‖ (k 1 , k 2 ) ‖ ≤ N 
2 . Suppose

 is some projection, model (2) can be reformulated as 

 = A (v ) + b. (3) 

ith the property of A and 〈 A (v ) , p〉 = 〈 v , A 

∗(p) 〉 , where p =
p k 1 ,k 2 ,m 

) is arbitrary collection of M truncated slices, we have 

 

∗(p) = 

M ∑ 

m =1 

∑ 

k 1 ,k 2 

exp (i 〈 R 

−1 
m 

(ω k 1 , ω k 2 , 0) 〉 ) h m 

(‖ ω k 1 ,k 2 ‖ ) p k 1 ,k 2 ,m 

. (4)

hen the A 

∗A operator can be given as 

 

∗A (p) = 

∑ 

l 

p k 1 ,k 2 ,l 

M ∑ 

m =1 

∑ 

k 1 ,k 2 

exp (i 〈 n − l, R −1 
m 

(ω k 1 , ω k 2 , 0) 〉 ) h m 

(‖ ω k 1 ,k 2 ‖ ) 2

(5) 

ote that the Eqs. (4) and (5) are needed when solving the pro- 

osed optimization model in Section 3 . 

Based on the above fact, the authors in Wang et al. [27] pro- 

osed a conjugate gradient method for SPR in cryo-EM as 

in 

v 
‖ g − A (v ) ‖ 

2 . (6) 

lthough a solution can be found from (6) , noise still apparently 

emains in the reconstructed particles. Late, in Pan et al. [21] , two 

fficient models with regularizers were proposed as 

in 

v 
α‖ g − A (v ) ‖ 

2 + ‖ v ‖ 

2 , (7) 

here α is a positive parameter, and 

in 

v 
α‖ g − A (v ) ‖ 

2 + ‖∇v ‖ 1 , (8) 

here ‖∇v ‖ 1 is the total variation regularizer. The reconstruction 

esults from (7) are unsatisfactory, then they make an adaptive pa- 

ameter to improve the model (7) . With the improvement of the 
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Fig. 3. The reconstruction results with different degradation at projection number 1800. From top to bottom: SNR = [4 , 2 , 1 , 1 / 4 , 1 / 16 , 1 / 64] . The first column is the observed 

particle, the second column is the reconstructed result by the TV-based model [21] , and the last column is ours. 

r

(

e

i

c

2

t

p

m

fi

a

t

m

w

v

w

w  

n

a

w  

s  

t

ω

v

w  

ω
o  

f

o

egularizer, model (8) shows better noise suppression ability than 

7) and has a better reconstruction effect. However, with the prop- 

rty of the total variation-based models, the artifact can be found 

n the results. Therefore, a more efficient reconstruction model in 

ryo-EM is urgently needed. 

.2. Weighted nuclear norm minimization 

Since high-dimensional signals usually have low-rank charac- 

ers, many low-rank-based models are proposed for various image 

rocessing tasks. Among them, the weighted nuclear norm mini- 

ization (WNNM) scheme has its superior. The WNNM model was 

rst proposed by Zhang et al. [17] for gray image denoising. Given 

n observed gray image g, their model with a close-formed solu- 

ion can be written as 

in 

v 
‖ 

g − v ‖ 

2 
2 + ‖ 

v ‖ �,w 

(9) 
4 
here v is the clean image, w is the weight. For each image patch 

 

j , the weight w t is defined as 

 t = c 
√ 

n / (σt (v j ) + ε) , (10) 

here σt (v j ) is the tth singular value of v j , c is a constant, n is the

umber of similar patches in image v , ε is a small parameter to 

void dividing by zero, and ‖ · ‖ �,w 

is the weighted nuclear norm 

ith ‖ v ‖ �,w 

= 

∑ 

t w t σt (v ) . Suppose the singular value decompo-

ition of g is defined by g = U SV ∗, where U and V are permuta-

ion matrices, and S is the singular value matrix. If weights satisfy 

 1 ≥ ω 2 ≥ . . . ≥ ω m 

, then 

 = UP ω (S) V 

∗, (11) 

here P ω (S) tt = max (S tt − ω t , 0) . For other orders of the weight

 i , there are similar conclusions. A more comprehensive analysis 

f the WNNM model (9) can be found in Gu et al. [17] . There-

ore, with the theoretical guarantee, there are various applications 

f the WNNM scheme. For example, Li et al. [19] proposed a phase 
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Fig. 4. (a) is the energy-decaying property of our method for particle ‘emd_1022’ with different noise levels. (b) is the PSNR values along with the weight ω. 
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etrieval model 

in 

v 
‖ g − | B v |‖ 

2 
� 1 −2 

+ ‖ v ‖ w,� , (12) 

here B is an operator for phase retrieval, ‖ · ‖ � 1 −2 
represents the 

 1 −2 norm with ‖ v ‖ � 1 −2 , 	i 
:= 

∑ 

j∈ 	i 
| v ( j) | − α

(∑ 

j∈ 	i 
| v ( j) | 2 ) 1 

2 , α
as fixed as 0.5 in their paper. With the WNNM regularizer, they 

roposed a competitive model for phase retrieval with a closed- 

orm solution. Zhang and Ng [34] proposed a model with a tensor 

uclear norm minimization method. Moreover, they developed the 

onvergence of a symmetric Gauss-Seidel based multiblock alter- 

ating direction method of multipliers to solve the proposed cor- 

ection model. With the efficient algorithm, this completion model 

chieved promising results. However, when applying the WNNM 

egularizer to the three-dimensional cryo-EM task, two challenges 

merge. On the one hand, the high-dimensional particle has many 

lices, which means the close-formed solution (11) is properly not 

uaranteed. On the other hand, as far as we know, a ready algo- 

ithm for a high-dimensional cryo-EM model is scarcely accessi- 

le. As a result, a three-dimensional WNNM-based reconstruction 

trategy is required. 

.3. Forward-backward splitting algorithm 

Let H be a Hilbert space, f 1 : H → ] − ∞ , + ∞ ] and f 2 : H → R

e two proper low semicontinuous convex functions such that 

f 2 is differentiable on H with a 1 /β-Lipschitz continuous gradi- 

nt for some β ∈ ]0 , + ∞ [ . The symbol ] − ∞ , + ∞ ] is the same

s (−∞ , + ∞ ] and ] − ∞ , + ∞ [ is the same as (−∞ , + ∞ ) , which

re the definition in the extended real-valued number system. The 

orward-backward splitting (FBS) algorithm [31] aims to find the 

olution of 

in 

x ∈H 

f 1 (x ) + f 2 (x ) . (13) 

efore presenting the existence, uniqueness, and characterization 

f the solution of the model (13) , we give some basic notations 

rst. Denote �0 (H) as the class of all low semicontinuous convex 

unctions from H → ] − ∞ , + ∞ ] that are not identically + ∞ . De-

ote �(H) as the class of proper convex functions defined on H. 

et γ ∈ ]0 , + ∞ [ and ϕ ∈ �0 (H) , for every x ∈ H, the infimum in the

ontinuous convex function 

ϕ : H → R : x 
→ inf 
y ∈H 

ϕ(y ) + 

1 

2 γ
‖ x − y ‖ 

2 (14)

s achieved at a unique point prox γ ϕ x , which is characterized by 

 − prox γ ϕ x ∈ γ ∂ϕ( prox γϕ x ) . (15) 

he proximity operator of ϕ is therefore defined by 

rox ϕ : H → H : x 
→ arg min 

y ∈H 

ϕ(y ) + 

1 

2 

‖ x − y ‖ 

2 . (16)
5 
roposition 2.1. According to Combettes and Wajs [35] , we have 

i) Model (13) possesses at least one solution if f 1 + f 2 is coercive, i.e., 

lim ‖ x ‖→ + ∞ 

f 1 (x ) + f 2 (x ) = + ∞ . (17) 

ii) Model (13) possesses at most one solution if f 1 + f 2 is strictly con- 

vex. This happens especially when one of f 1 and f 2 is strictly con- 

vex. 

ii) Denote x ∈ H and γ ∈ ]0 , + ∞ [ . The following statements are

equivalent. 

(a) x is the solution of model (13) ; 

(b) x = prox γ f 1 
(x − γ∇ f 2 (x )) ; 

(c) for any y ∈ H, then 〈 x − y, ∇ f 2 (x ) 〉 + f 1 (x ) ≤ f 1 (y ) . 

The proof of Proposition 2.1 can be found in the supplementary 

aterial Appendix A. In the FBS algorithm, Proposition 2.1 (iii)(b) 

uggested solving (13) with a suitable γ and the fixed point itera- 

ion 

 n = prox γ f 1 
(x n − γ∇ f 2 (x n )) . (18) 

pecifically, the FBS consists of the forward (explicit) step and 

ackward (implicit) step, i.e., 

orward Step: x n + 1 2 
= x n − γ∇ f 2 (x n ) , Backward Step: x n +1 

= prox γ f 1 
x n + 1 2 

. (19) 

As a matter of fact, the formation (13) is suitable for most im- 

ge processing minimization problems. For example, Ding and Han 

36] proposed a method based on the FBS algorithm for maximal 

onotone mappings. Chang et al. [37] proposed a proximal alter- 

ating linearized minimization based on the FBS algorithm with 

lobal convergence. In [38] , the authors proposed an FBS algorithm 

or image segmentation. However, the effectiveness of the FBS al- 

orithm in cryo-EM reconstruction is still debatable. In this paper, 

e try to optimize the FBS algorithm to solve the proposed model 

nd give the convergence analysis. 

. Our scheme 

In this section, we present the proposed scheme for single- 

article reconstruction (SPR) in cryogenic electron microscopy 

cryo-EM). Owing to the robustness of the weighted nuclear norm 

inimization (WNNM) regularizer, we extend model (9) to three- 

imension. Meanwhile, considering that the forward-backward 

plitting (FBS) algorithm has a close-formed solution with the ex- 

licit and implicit steps, we introduce the FBS to the proposed 

ethod. 
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Fig. 5. The reconstruction results with different projection numbers under SNR = 4 . From top to bottom: Projection number = [60 0 , 180 0 , 540 0 , 10 , 80 0] . The first column is 

the observed particle, the second column is the reconstructed result by our method, and the last column is the PSNR (dB) and SSIM results corresponding to the reconstructed 

result. Obviously, as the number of projections increases, better reconstruction results can be obtained. 
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.1. The proposed reconstruction model 

We aim to find a single-particle v in a real Hilbert space H from 

he observation g in a real Hilbert space G. The CTF and other cor- 

ections mentioned in Section 2.1 are denoted as the linear opera- 

or A , so that the degradation formation is 

 = A v + b, (20) 

here b ∈ G stands for an additive Gaussian noise. We intend to 

andle the three-dimensional SPR task and propose the recon- 

truction model as 

in 

v 
‖ v ‖ �,w 

+ ‖ A v − g‖ 

2 , (21) 

here ‖ · ‖ � is the nuclear norm and w is the weight. Specifically, 

 v ‖ �,ω = 

∑ 

t ω t σt (v j i ) , σt (v j i ) is the tth singular value of v j 
i 
, and

 t = 

c 
√ 

n 

σt (v 
j 
i 
)+ ε

is the weight of patch v j 
i 
, c > 0 is a constant, n is

he number of similar patches in the image v i , ε > 0 is a small

umber to avoid dividing by zero. It can be seen that the regu- 

arization parameter in the above formula is ω, and different sin- 

ular values have different weights. Different from (9) , there is 

 linear operator A that appeared in the data fidelity term and 

he minimization vary v is in three-dimension. As the proposed 

odel (21) has two terms, let f 1 (v ) = ‖ v ‖ �,w 

, f 2 (u ) = ‖ A v − g‖ 2 ,
nd β = 1 / 2 ‖ A ‖ 2 , according to Section 2.3 , the proposed model

an be solved by the FBS algorithm. More specifically, we constrain 
6 
he model (21) under some conditions. Let (1) K be a real Hilbert 

pace; (2) A : H → G be a nonzero bounded linear operator; (3) 

f 1 (v ) ∈ �0 (K) ; (4) G be the set of solutions to model (21) . 

roposition 3.1. Model (21) is a special case of minimization prob- 

em (13) with f 1 (v ) = ‖ v ‖ �,w 

, f 2 (u ) = ‖ A v − g‖ 2 , and β = 1 / 2 ‖ A ‖ 2 . 
roof. Let f 1 (v ) = ‖ v ‖ �,w 

and f 2 (u ) = ‖ A v − g‖ 2 , then from the

bove conditions (1)–(4) we know that f 1 , f 2 ∈ �0 (H) and f 2 is dif- 

erentiable on H with ∇ f 2 (v ) = 2 A 

∗(A v − g) . Then, for any v 1 and

 2 ∈ H we have 

∇ f 2 (v 1 ) − ∇ f 2 (v 2 ) ‖ = ‖ 2 A 

∗(A v 1 − g) − 2 A 

∗(A v 2 − g) ‖ 

= ‖ 2 A 

∗A (v 1 − v 2 ) ‖ 

≤ ‖ 

√ 

2 A ‖ 

2 ‖ v 1 − v 2 ‖ . 

(22) 

herefore, ∇ f 2 is Lipschitz continuous with constant 2 ‖ A ‖ 2 . �

emark 3.1. The WNNM model is generally nonconvex. However, 

hen the weights w i in (10) are in a non-ascending order, the 

roblem (9) is still convex. Here we analyze the proposed model 

21) with weights in a non-ascending order. 

Given the FBS algorithm, the proposed model has the following 

roperties. 

heorem 3.1. 

i) The minimization problem (21) possesses at least one solution if 

f + f is coercive. 
1 2 
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1 Single particles are collected from https://www.ebi.ac.uk/emdb/ . Particle 

emd_1022 is with size 50 × 50 × 50 and resolution 34.5 Å, emd_1023 is with size 

50 × 50 × 50 and resolution 42.2 Å, emd_1252 is with size 69 × 69 × 69 and res- 

olution 34.0 Å, emd_1024 is with size 50 × 50 × 50 and resolution 29.0 Å, and 

emd_5505 is with size 54 × 54 × 54 and resolution 20.0 Å. 
ii) The minimization problem (21) possesses at most one solution if 

one of the following conditions is satisfied: 

(a) f 1 + f 2 is strictly convex; 

(b) A is injective. 

ii) The minimization problem (21) possesses exactly one solution if A 

is bounded below, i.e., 

(∃ κ ∈ ]0 , + ∞ [) (∀ v ∈ H) ‖ A v ‖ ≥ κ‖ v ‖ . (23)

v) Let v ∈ H and γ ∈ ]0 , + ∞ [ . The following statements are equiva-

lent. 

(a) v is the solution of model (21) ; 

(b) v = prox γ f 1 
(v − γ∇ f 2 (v )) ; 

(c) for any v 0 ∈ H, then 〈 v − v 0 , 2 A 

∗(A v − g) 〉 + f 1 (v ) ≤ f 1 (v 0 ) . 

The proof of Theorem 3.1 can be found in the supplementary 

aterial Appendix B. 

Next, we study the stability of the solution to model (21) with 

he observed data g. 

heorem 3.2. Suppose that A is bounded below, let g 1 and g 2 ∈ G, v 1 
nd v 2 be the unique solutions to model (21) associated with g 1 and 

 2 , respectively. Then we have 

 v 1 − v 2 ‖ ≤ ‖ g 1 − g 2 ‖ 

κ
. (24) 

roof. The uniqueness and the existence of model (21) are pro- 

osed in Theorem 3.1 . Form Theorem 3.1 (iv)(c), we know that 

〈 A v 1 − A v 2 , g 2 − A v 2 〉 + f 1 (v 2 ) ≤ f 1 (v 1 ) , 
〈 A v 2 − A v 1 , g 1 − A v 1 〉 + f 1 (v 1 ) ≤ f 1 (v 2 ) , 

(25) 

hen we have 

 A (v 1 − v 2 ) ‖ 

2 ≤ 〈 A (v 1 − v 2 ) , g 1 − g 2 〉 . (26)

y Cauchy–Schwarz inequality, we have 

 A (v 1 − v 2 ) ‖ ≤ ‖ g 1 − g 2 ‖ . (27) 

ith ‖ A v ‖ ≥ κ‖ v ‖ , we then completed the proof. �

Following [39] , we study a more general iteration with im- 

roved convergence. First, the following condition is given. 

emma 3.1. Let X be a nonempty set in Hilbert space H, a function 

 ∈ �0 (H) satisfies this lemma on X if for all sequences (y n ) n ∈ N and 

v n ) n ∈ N ∈ H, point y ∈ X and v ∈ ∂ϕ(y ) , there holds 

 

y n → y, v n → v , (∀ n ∈ N ) v n ∈ ∂ϕ ( y n ) ] ⇒ y is a strong cluster 

pointof ( y n ) n ∈ N . (28) 

Then the convergence result is given as follows. 

heorem 3.3. Suppose G � = ∅ . Let (γn ) n ∈ N be a sequence in ]0 , + ∞ [

uch that 0 < inf n γn ≤ sup n γn < 2 β . Let (γn ) n ∈ N be a sequence in 

0 , 1[ such that inf n λn > 0 . Let (a n ) n ∈ N and (b n ) n ∈ N be sequences in

such that 
∑ 

n ‖ a n ‖ < + ∞ and 
∑ 

n ‖ b n ‖ < + ∞ . Fix x 0 ∈ H and for

very n ∈ N , set 

 n +1 = x n + λn ( prox γn f 1 
(x n − γn (∇ f 2 (x n ) + b n )) + a n − x n ) . (29)

hen the following holds. 

i) ( x n ) n ∈ N converges weakly to a point x ∈ G . 

ii) 
∑ 

n ∈ N ‖ ∇ f 2 ( x n ) − ∇ f 2 (x ) ‖ 2 < + ∞ . 

ii) 
∑ 

n ∈ N 
∥∥prox γn f 1 

( x n − γn ∇ f 2 ( x n ) ) − x n 
∥∥2 

< + ∞ . 

v) ( x n ) n ∈ N converges strongly to x if and only if lim d G ( x n ) = 0 . 

In particular, strong convergence occurs in each of the following 

cases: 

(a) int G � = ∅ . 
7 
(b) f 1 satisfies Lemma 3.1 on G . 

(c) f 2 satisfies Lemma 3.1 on G . 

The proof of Theorem 3.1 can be found in the supplementary 

aterial Appendix C. 

.2. The numerical scheme 

For the proposed model (21) , as mentioned in 

roposition 3.1 and the analysis in Section 3.1 , let f 1 (v ) = ‖ v ‖ �,w 

nd f 2 (v ) = ‖ A v − g‖ 2 , then we have 

 

k +1 = prox t f 1 
(v k − t∇ f 2 (v k )) , (30) 

here t is a positive parameter, prox t f 1 
(·) is the proximal operator 

nd defined as 

rox t f 1 
(u ) := arg min 

v 
{ f 1 (v ) + 

1 

2 t 
‖ v − u ‖ 

2 } . (31)

herefore, the final solution of model (21) is 

 

k +1 = arg min 

v 
‖ v ‖ �,w 

+ 

1 

2 t 
‖ v − (v k − t∇ f 2 (v k )) ‖ 

2 . (32)

herefore, the proposed SPR model can be solved by the FBS algo- 

ithm with theorem guaranteed. The proposed algorithm scheme 

s summarized in Algorithm 1 . 

lgorithm 1 The proposed scheme. 

Input The observed g, operator A , iteration T , parameter t , and 

weight ω; 

Initialization v 0 = g; 

for k = 1 : T do 

Forward step: u k +1 = v k − tA 

∗(A v k − g) ; 

Backward step: v k +1 = prox t f 1 
(u k +1 ) = arg min v ‖ v ‖ �,w 

+ 

1 
2 t ‖ v − u k +1 ‖ 2 ; 

end for 

return v k +1 . 

. Experiment 

This section presents the numerical results and visual quality of 

he single-particle reconstruction (SPR) in cryo-EM. To demonstrate 

he effectiveness of the proposed three-dimensional weighted nu- 

lear norm minimization (WNNM) model, we compare the pro- 

osed method with the total variation (TV)-based reconstruction 

pproach (model (8) ), the Tikhonov regularizer (Tik)-based algo- 

ithm (model (7) ), and the adaptive Tikhonov regularizer (aTik)- 

ased model (model (7) with adaptive parameter α). The test sin- 

le particles 1 ‘emd_1022’, ‘emd_1023’, ‘emd_1252’ ‘emd_1024’, and 

emd_5505’ are shown in Fig. 2 . 

.1. The effectiveness of the proposed method 

In this part, we test the performance of the proposed scheme 

ith degradation under noise level cases measured by the signal- 

o-noise ratio (SNR), SNR = [4 , 2 , 1 , 1 / 4 , 1 / 16 , 1 / 64] . As shown in

ig. 3 , we provide the visual result of particle ‘emd_1022’ recon- 

tructed by the proposed model and the TV-based method. Accord- 

ng to the figure, we can see that as the SNR decreases, the pro- 

osed model has better robustness compared with the TV-based 

https://www.ebi.ac.uk/emdb/
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Fig. 6. Reconstruction results of different methods. From top to bottom: The degraded particle, reconstruction result by Tik, aTik, TV, and ours. The first column 

lists the single particle ‘emd_1022’ with the SNR = 1 and Projection number = 10 , 800 . The second column lists the single particle ‘emd_1023’ with the SNR = 1 and 

Projection number = 5400 . The third column lists the single particle ‘emd_1024’ with the SNR = 4 and Projection number = 10 , 800 . The last column lists the single par- 

ticle ‘emd_5505’ with the SNR = 2 and Projection number = 5400 . Obviously, our model can reconstruct more accurate and smoother results. 
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ethod. Meanwhile, we show the energy-decaying property of our 

ethod in Fig. 4 (a). Obviously, in all the test SNR values, the en-

rgy of our method is convergence stability, which demonstrates 

he proposed scheme is robust under different noise levels. As the 

roposed model (21) is with regularizer parameter ω, we conduct 

he analysis of the effect of the final results of ω in Fig. 4 (b).

he parameter c in QWNNM [9] was set to be 1 . 7 ∗ √ 

2 , here, we

et c ∈ [1 : 10] ∗
√ 

2 with step size 0.1. Since the parameter ε is a

mall positive constant to avoid the denominator as zero. Hence, 

does not effectively affect the result, we set ε = eps for all our 

xperiments. Meanwhile, c is a significant parameter in weight ω t . 

he choice of c is directly affecting weight w t and the final result. 

hrough trial and error, we set c = 7 . 2 ∗
√ 

2 for all our experiments.

.2. Reconstruction with different projection numbers 

Since the reconstruction of the three-dimensional particle is re- 

ated to the number of projections, it is worth comparing the re- 

ults with the different numbers of projections. Here we test the 

rojection numbers at 60 0, 180 0, 540 0, and 10 , 80 0 to further il-

ustrate the effectiveness of the proposed approach. The recon- 

truction results of ‘emd_1023’ with SNR = 4 are given in Fig. 5 . 

he numerical curves of PSNR (left and blue line) and SSIM (right 
8 
nd orange line) demonstrate that the reconstruction performance 

mproves as the projection number increases. 

.3. Comparison with state-of-the-art algorithms 

In this part, we compare the proposed model with the TV- 

ased model, the Tik-based algorithm, and the aTik-based method 

n noise-corrupted particles with different projection numbers. In 

able 1 , we provide the average PSNR/SSIM comparison with these 

ethods under different projection numbers and SNR. According 

o these results, we can clearly observe that our method achieves 

he best results in all cases. This fully demonstrates the effective- 

ess and excellence of our proposed method. Meanwhile, the re- 

onstruction results are shown in Fig. 6 . According to the figure, 

e can see that the proposed method can reconstruct better re- 

ults compared with others. This experiment further verifies the 

ffectiveness of the proposed method. 

For a particle with a more complex structure (‘emd_1252’), we 

resent the reconstruction results in Fig. 7 . The reconstruction task 

ith heavy noise in the particle ‘emd_1252’ is more challenging 

ince some structures will be misidentified as noise. However, us- 

ng a low noise level algorithm leaves some noise in the recon- 

tructed particles. In general, the proposed model has competitive 

erformance in reconstructing the particle with complex struc- 
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Fig. 7. Reconstruction results of particle ‘emd_1252’. From left to right: The reconstruction results by Tik, aTik, TV, and ours. The first row is with the SNR = 1 / 16 and 

Projection number = 1800 . The second row is with the SNR = 0 . 25 and Projection number = 5400 . The third row is with the SNR = 1 and Projection number = 10 , 800 . With 

the increasing of projection numbers and the SNR levels, the reconstruction results get better. 

Fig. 8. Reconstruction results of particle ‘emd_1023’ (from v 3 -axis angle). From left to right: The reconstruction results by Tik, aTik, TV, and ours. The first row is with the 

SNR = 1 and Projection number = 5400 . The second row is with the SNR = 1 and Projection number = 10 , 800 . The third row is with the SNR = 4 and Projection number = 

600 . 

t

s

p

w

s

‘

w  

c

c

h

i  

r

ticle’s. The reconstruction results are much better in the condi- 
ures. Although with the projection number set to 10,800, the re- 

ults still show some noise around the particle, our scheme is su- 

erior to other compared state-of-the-art methods. In the future, 

e aim to explore a more fixable model to handle particle recon- 

truction with complex structures. 

Different from the other particle, the topology of particle 

emd_1023’ is of genus-1. To better present the particle ‘emd_1023’, 
9 
e rotate the particles. As can be seen from Fig. 8 , the parti-

le in the top view is of genus-1 attributes. The difficulty in re- 

onstructing the genus-1 is that the heavy noise will fulfill the 

ole in the particle so that the noise can not be removed eas- 

er. With the SNR = 1 , the surface inside the particle is not well

econstructed, i.e., the holes are not perfect as the original par- 
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Table 1 

Average PSNR/SSIM comparison with other methods under different projection numbers [60 0, 180 0, 540 0, 10,80 0] 

and SNR [4, 2, 1, 1/4, 1/16, 1/64]. The best results are highlighted . 

method 

Projection number = 600 

SNR = 4 SNR = 2 SNR = 1 SNR = 1 / 4 SNR = 1 / 16 SNR = 1 / 64 

Tik 42.15/0.1130 37.74/0.0495 34.04/0.0223 27.54/0.0048 21.42/0.0011 15.41/0.0002 

aTik 63.26/0.6711 59.26/0.4525 57.39/ 0.7678 55.63/0.3671 53.70/0.4070 50.86/ 0.2701 

TV 66.73/0.7338 65.09/0.4890 62.95/0.5040 59.64/0.3839 54.23/0.4013 51.04/0.2594 

Ours 68.09/0.7554 66.33/0.7165 64.55/ 0.6737 60.92/0.5707 56.75/0.4184 53.43/ 0.2601 

Projection number = 1800 

Tik 46.65/0.2142 41.03/0.0915 36.69/0.0389 29.70/0.0077 23.46/0.0016 17.40/0.0004 

aTik 63.71/0.6691 62.81/0.5765 62.02/0.3579 61.80/0.5411 57.60/0.4511 54.80/0.2951 

TV 68.41/0.7773 67.93/0.6278 65.14/0.6120 63.71/0.5026 58.29/0.4363 54.29/0.3274 

Ours 70.62/0.8087 68.89/0.7750 67.18/0.7390 63.89/0.6584 60.32/0.5550 56.07/0.3916 

Projection number = 5400 

Tik 52.13/0.3611 45.38/0.1789 39.74/0.0700 31.57/0.0113 25.01/0.0022 18.86/0.0004 

aTik 64.11/0.6952 66.67/0.6791 63.04/0.6310 59.16/0.5514 57.97/0.4980 55.60/0.3300 

TV 71.69/0.8305 69.51/0.6740 66.21/0.6577 65.59/0.5845 60.56/0.4886 56.32/0.3873 

Ours 73.17/0.8547 71.38/0.8245 69.64/0.7917 66.27/0.7163 62.44/0.6155 57.74/0.4783 

Projection number = 10 , 800 

Tik 52.57/0.3683 46.63/0.2052 40.73/0.0806 31.32/0.0098 23.85/0.0015 17.28/0.0003 

aTik 68.91/0.7721 67.03/0.7537 63.98/0.7465 64.28/0.7229 59.96/0.6123 53.89/0.3328 

TV 72.98/0.8468 71.17/0.8213 68.83/0.7788 65.42/0.6905 64.92/0.5897 58.53/0.3592 

Ours 73.79/0.8815 71.86/0.8497 69.05/0.7939 67.31/0.7234 65.98/0.6514 59.89/0.3878 
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[  
ion of a relatively high-level SNR = 4 . The results of genus-0 

nd genus-1 demonstrate the proposed scheme’s effectiveness and 

obustness. 

. Conclusion 

This paper proposed a novel three-dimensional reconstruction 

cheme for single-particle reconstruction (SPR) in Cryo-EM. This 

cheme consists of a new weighted nuclear norm minimization 

WNNM) with three-dimensional energy and an efficient energy- 

ecaying forward-backward splitting (FBS) algorithm. The proposed 

hree-dimensional WNNM model and the FBS algorithm signifi- 

antly improved the performance of the reconstruction task with 

ifferent noise levels and projection numbers in cryo-EM. Further- 

ore, we have analyzed and given the convergence guarantee of 

he proposed model. Experiments demonstrate the robustness and 

he energy-decaying propriety of our method. Compared with the 

xisting approaches, the proposed method has better performance 

n terms of reconstruction quality. Since the SPR in Cryo-EM is still 

n its early stage, in this paper, we only consider reconstruction 

ith fixed and known orientations and positions. In the future, 

e will consider studying the construction with different view- 

ng directions to better synthesize the accurate imaging. Besides, 

e only analyze the convergence and consistency with the non- 

scending order of the weight in the 3DWNNM model. We will 

tudy the non-convex condition in the next work to perfect the 

heoretical analysis. Furthermore, the weighted nuclear norm min- 

mization and total variation are combined in several image pro- 

essing works. We believe this combination in three-dimensional 

lso worked. In future work, we will further improve our research 

y combining these two regularizers to handle three-dimensional 

asks. 
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