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From Beginner to Master: A Survey for Deep
Learning-based Single-Image Super-Resolution

Juncheng Li†, Zehua Pei†, and Tieyong Zeng*

Abstract—Single-image super-resolution (SISR) is an important task in image processing, which aims to enhance the resolution of
imaging systems. Recently, SISR has made a huge leap and has achieved promising results with the help of deep learning (DL). In this
survey, we give an overview of DL-based SISR methods and group them according to their targets, such as reconstruction efficiency,
reconstruction accuracy, and perceptual accuracy. Specifically, we first introduce the problem definition, research background, and the
significance of SISR. Secondly, we introduce some related works, including benchmark datasets, upsampling methods, optimization
objectives, and image quality assessment methods. Thirdly, we provide a detailed investigation of SISR and give some domain-specific
applications of it. Fourthly, we present the reconstruction results of some classic SISR methods to intuitively know their performance.
Finally, we discuss some issues that still exist in SISR and summarize some new trends and future directions. This is an exhaustive
survey of SISR, which can help researchers better understand SISR and inspire more exciting research in this field. An investigation
project for SISR is provided in https://github.com/CV-JunchengLi/SISR-Survey.

Index Terms—Image super-resolution, single-image super-resolution, SISR, survey, overview.
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1 INTRODUCTION

IMAGE super-resolution (SR), especially single-image
super-resolution (SISR), is one kind of image transforma-

tion task and has received increasing attention in academic
and industry. As shown in Fig. 1, SISR aims to recon-
struct a super-resolution (SR) image from its degraded low-
resolution (LR) one. It is widely used in various computer
vision applications, including security and surveillance im-
age, medical image reconstruction, video enhancement, and
image segmentation.

Many SISR methods have been studied long before, such
as bicubic interpolation and Lanczos resampling [1] which
are based on interpolation. However, SISR is an inherently
ill-posed problem, and there always exist multiple HR im-
ages corresponding to one original LR image. To solve this
issue, some numerical methods utilize prior information to
restrict the solution space of the reconstruction, such as
edge-based methods [2] and image statistics-based meth-
ods [3]. Meanwhile, there are some widely used learning
methods, such as neighbor embedding methods [4] and
sparse coding methods [5], which assume that there exists a
transformation between LR and HR patches.

Recently, deep learning (DL) [6] has demonstrated better
performance than traditional machine learning models in
many artificial intelligence fields, including computer vi-
sion [7] and natural language processing [8]. With the rapid
development of DL techniques, numerous DL-based meth-
ods have been proposed for SISR, continuously prompting
the State-Of-The-Art (SOTA) forward. Like other image
transformation tasks, the SISR task can generally be divided
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Fig. 1. SISR aims to reconstruct a super-resolution (SR) image from its
degraded low-resolution (LR) one.

into three steps: feature extraction and representation, non-
linear mapping, and image reconstruction [9]. In traditional
numerical models, it is time-consuming and inefficient to
design an algorithm satisfying all these processes. On the
contrary, DL can transfer the SISR task to an almost end-
to-end framework incorporating all these three processes,
which can greatly decrease manual and computing ex-
pense [10]. Additionally, given the ill-posed nature of SISR
which can lead to unstable and hard convergence on the
results, DL can alleviate this issue through efficient network
architecture and loss functions design. Moreover, modern
GPU enables deeper and more complex DL models to
train fast, which show greater representation power than
traditional numerical models.

It is well known that DL-based methods can be di-
vided into supervised and unsupervised methods. This is
the simplest classification criterion, but the range of this
classification criterion is too large and not clear. As a result,
many technically unrelated methods may be classified into
the same type while methods with similar strategies may
be classified into completely different types. Different from
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Fig. 2. The content and taxonomy of this survey. In this survey, we divide the DL-based SISR methods into four categories, which are classified
according to their specific targets. Among them, the dark gray blocks are the focus methods in this survey.

previous SISR surveys [11], [12] that use supervision as the
classification criterion or introduce the methods in a pure
literature way, in this survey, we attempt to give a compre-
hensive overview of DL-based SISR methods and categorize
them according to their specific targets. In Fig. 2, we show
the content and taxonomy of this survey. Obviously, we
divide the DL-based SISR methods into four categories:
reconstruction efficiency methods, reconstruction accuracy
methods, perceptual quality methods, and further improve-
ment methods. This target-based survey has a clear context
hence it is convenient for readers to consult. Specifically,
in this survey, we first introduce the problem definition,
research background, and significance of SISR. Then, we in-
troduce some related works, including benchmark datasets,
upsample methods, optimization objectives, and assessment
methods. After that, we provide a detailed investigation
of SISR methods and provide the reconstruction results of
them. Finally, we discuss some issues that still exist in SISR
and provide some new trends and future directions. Overall,
the main contributions of this survey are as follows:

(1). We give a thorough overview of DL-based SISR
methods according to their targets. This is a new perspec-
tive that makes the survey has a clear context hence it is
convenient for readers to consult.

(2). This survey covers more than 100 SR methods and
introduces a series of new tasks and domain-specific appli-
cations extended by SISR in recent years.

(3). We provide a detailed comparison of reconstruction
results, including classic, latest, and SOTA SISR methods, to
help readers intuitively know their performance.

(4). We discuss some issues that still exist in SISR and
summarize some new trends and future directions.

2 PROBLEM SETTING AND RELATED WORKS

2.1 Problem Definition
Image super-resolution is a classic technique to improve
the resolution of an imaging system, which can be clas-
sified into single-image super-resolution (SISR) and multi-
image super-resolution (MISR) according to the number of
the input LR images. Among them, MISR has gradually
developed into video super-resolution (VSR). Compared
with MISR/VSR, SISR is much more challenging since
MISR/VSR have extra information for reference while SISR
only has information of a single input image for the missing
image features reconstruction.

Define the low-resolution image as Ix ∈ Rh×w and the
ground-truth high-resolution image as Iy ∈ RH×W , where
H > h and W > w. Typically, in a SISR framework, the
LR image Ix is modeled as Ix = D(Iy; θD), where D is
a degradation map RH×W → Rh×w and θD denotes the
degradation factor. In most cases, the degradation process is
unknown. Therefore, researchers are trying to model it. The
most popular degradation mode is:

D(Iy; θD) = (Iy ⊗ κ) ↓s +n, (1)

where Iy ⊗ κ represents the convolution between the blur
kernel κ and the HR image Iy , ↓s is a subsequent down-
sampling operation with scale factor s, and n is usually
the additive white Gaussian noise (AWGN) with standard
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deviation σ. In the SISR task, we need to recover a SR
image ISR from the LR image Ix. Therefore, the task can
be formulated as ISR = F(Ix; θF ), where F is the SR
algorithm and θF is the parameter set of the SR process.

Recently, researches have converted the SISR into an
end-to-end learning task, relying on massive training datas
and effective loss functions. Meanwhile, more and more
DL-based models have been proposed due to the powerful
representation power of CNN and its convenience in both
forward and backward computing. Therefore, the SISR task
can be transformed into the following optimization goal:

θ̂F = arg min
θF

L(ISR, Iy) + λΦ(θ), (2)

where L denotes the loss function between the generated
SR image ISR and the HR image Iy , Φ(θ) denotes the
regularization term, and λ is the trade-off parameter that
is used to control the percentage of the regularization term.

Fig. 3. The training process of data-driven based deep neural networks.

2.2 Benchmarks Datasets

Data is always essential for data-driven models, especially
the DL-based SISR models, to achieve promising recon-
struction performance (Fig. 3). Nowadays, industry and
academia have launched several available datasets for SISR.

2.2.1 Training and Test Datasets

Recently, many datasets for the SISR task have been
proposed, including BSDS300 [17], DIV2K [16], and
Flickr2K [15]. Meanwhile, there are also many test datasets
that can be used to effectively test the performance of the
models, such as Set5 [25], Set14 [26], Urban100 [27], and
Manga109 [28]. In Table 1, we list a series of commonly used
datasets and indicate their detailed attribute.

Among these datasets, DIV2K [16] is the most widely
used dataset for model training, which is a high-quality
dataset that contains 800 training images, 100 validation
images, and 100 test images. Flickr2k is a large extended
dataset, which contains 2650 2K images from Flickr. Re-
alSR [19] is the first truly collected SISR dataset with paired
LR and HR images. In addition to the listed datasets, some
datasets widely used in other computer vision tasks are also
used as supplementary training datasets for SISR, such as
ImageNet [31] and CelebA [32]. In addition, combining mul-
tiple datasets (e.g., DF2K) for training to further improve the
model performance has also been widely used.

2.2.2 Degradation Mode
Due to the particularity of the SISR task, it is difficult to
construct a large-scale paired real SR dataset. Therefore, re-
searchers often apply degradation patterns on the aforemen-
tioned datasets to obtain corresponding degraded images
to construct paired datasets. However, images in the real
world are easily disturbed by various factors (e.g., sensor
noise, motion blur, and compression artifacts), resulting in
the captured images being more complex than the simulated
images. In order to alleviate these problems and train a more
effective and general SISR model, some works model the
degradation mode as a combination of several operations
(Eq. 1). Based on this degradation formula, three most
widely used degradation modes have been proposed: BI,
BD, and DN. Among them, BI is the most widely used
degraded mode to simulate LR images, which is essentially
a bicubic downsampling operation. For BD, the HR images
are blurred by a Gaussian kernel of size 7× 7 with standard
deviation 1.6 and then downsampled with the scaling factor
of ×3. To obtain DN mode LR images, the bicubic down-
sampling is performed on the HR image with scaling factor
×3, and then the Gaussian noise with noise level = 30 is
added into the image.

2.3 Upsampling Methods
The purpose of SISR is to enlarge a smaller size image into a
larger one and to keep it as accurate as possible. Therefore,
enlargement operation, also called upsampling, is an im-
portant step in SISR. The current upsampling mechanisms
can be divided into four types: pre-upsampling SR, post-
upsampling SR, progressive upsampling SR, and iterative
up-and-down sampling SR. In this section, we will talk
about several kinds of upsampling methods that support
these upsampling mechanisms.

2.3.1 Interpolation Methods
Interpolation is the most widely used upsampling method.
The current mainstream of interpolation methods includes
Nearest-neighbor Interpolation, Bilinear Interpolation, and
Bicubic Interpolation. Being highly interpretable and easy
to implement, these methods are still widely used today.
Among them, Nearest-neighbor Interpolation is a simple
and intuitive algorithm that selects the nearest pixel value
for each position to be interpolated, which has fast execution
time but has difficulty in producing high-quality results.
Bilinear Interpolation sequentially performs linear interpo-
lation operations on the two axes of the image. This method
can obtain better results than nearest-neighbor interpolation
while maintaining a relatively fast speed. Bicubic Interpo-
lation performs cubic interpolation on each of the two axes.
Compared with Bilinear, the results of Bicubic are smoother
with fewer artifacts, but slower than other interpolation
methods. Interpolation is also the mainstream method for
constructing SISR paired datasets, and is widely used in the
data pre-processing of CNN-based SISR models.

2.3.2 Transposed Convolutional Layers
As shown in Fig. 4, researchers usually consider two kinds
of transposed convolution operations: one adds padding
around the input matrix and then applies the convolution
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TABLE 1
Benchmarks datasets for single-image super-resolution (SISR).

Name Usage Amount Format Description
General-100 [13] Train 100 BMP Common images with clear edges but fewer smooth regions

T91 [5] Train 91 PNG Common Images
WED [14] Train 4744 MAT Common images

Flickr2K [15] Train 2650 PNG 2K images from Flickr
DIV2K [16] Train/Val 1000 PNG High-quality dataset for CVPR NTIRE competition

BSDS300 [17] Train/Val 300 JPG Common images
BSDS500 [18] Train/Val 500 JPG Common images
RealSR [19] Train/Val 100 Train/Val 100 real world low and high resolution image pairs

OutdoorScene [20] Train/Val 10624 PNG Images of outdoor scences
City100 [21] Train/Test 100 RAW Common images

Flickr1024 [22] Train/Test 100 RAW Stereo images used for Stereo SR
SR-RAW [23] Train/Test 7*500 JPG/ARW Raw images produced by real world computational zoom

PIPAL [24] Test 200 PNG Perceptual image quality assessment dataset
Set5 [25] Test 5 PNG Common images, only 5 images
Set14 [26] Test 14 PNG Common images, only 14 images

BSD100 [17] Test 100 JPG A subset of BSDS500 for testing
Urban100 [27] Test 100 PNG Images of real world structures
Manga109 [28] Test 109 PNG Japanese manga

L20 [29] Test 20 PNG Common images, very high-resolution
PIRM [30] Test 200 PNG Common images, datasets for ECCV PIRM competition

Fig. 4. Two kinds of transposed convolutional layers.

operation, the other adds padding between the values of the
input matrix followed by the direct convolution operation.
The latter is also called fractionally strided convolution,
since it works like doing convolution with a stride less than
one. In the transposed convolutional layer, the upsampling
level is controlled by the size of padding and it is essentially
the opposite of the operation of the normal convolutional
layer. Transposed convolutional layer is first proposed in
FSRCNN [13] and widely used in DL-based SISR models.

2.3.3 Sub-pixel Convolutional Layer
In ESPCN [33], Shi et al. proposed an efficient sub-pixel
convolutional layer. Instead of increasing the resolution by
directly increasing the number of LR feature maps, sub-
pixel first increases the dimension of LR feature maps, i.e.,
the number of the LR feature maps, and then a periodic
shuffling operator is used to rearrange these points in the
expanded feature maps to obtain the HR output (Fig. 5). In
detail, the formulation of the sub-pixel convolutional layer
can be defined as follow:

ISR = fL(Ix) = PS(WL ∗ fL−1(Ix) + bL), (3)

where PS denotes the periodic shuffling operator, which
transfers a h × w × C · r2 tensor to a tensor of shape rh ×
rw × C , and rh × rw is explicitly the size of HR image,
C is the dimension of operating channels. In addition, the

Fig. 5. Principle of the sub-pixel convolutional layer.

convolutional filterWL has the shape nL−1×r2C×KL×KL,
where nL is the number of feature maps in the L − 1 layer.
Compared with the transposed convolutional layer, the sub-
pixel convolutional layer shows better efficiency, so it is also
widely used in DL-based SISR models.

2.4 Optimization Objective
Evaluation and parameter up-gradation are the important
steps in all DL-based models. In this section, we will intro-
duce the necessary procedures during the model training.

2.4.1 Learning Strategy
According to different strategies, the DL-based SISR models
can be mainly divided into supervised learning methods
and unsupervised learning methods.

Supervised Learning: In supervised learning SISR, re-
searchers compute the reconstruction error between the
ground-truth image Iy and the reconstructed image ISR:

θ̂F = arg min
θF

L(ISR, Iy). (4)

Alternatively, researchers may sometimes search for a
mapping Φ, such as a pre-trained neural network, to trans-
form the images or image feature maps to some other space
and then compute the error:

θ̂F = arg min
θF

L(Φ(ISR),Φ(Iy)). (5)
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Among them, L is the loss function which is used to
minimize the gap between the reconstructed image and
ground-truth image. According to different loss functions,
the model can achieve different performances. Therefore, an
effective loss function is also crucial for SISR.

Unsupervised Learning: In unsupervised learning SISR,
the way of evaluation and parameter up-gradation is chang-
ing by different unsupervised learning algorithms. For ex-
ample, ZSSR [34] uses the test image and its downscaling
images with the data augmentation methods to build the
“training dataset” and then applies the loss function to
optimize the model. In CinCGAN [35], a model consists of
two CycleGAN [36] is proposed, where parameters are up-
graded through optimizing the generator-adversarial loss,
the cycle consistency loss, the identity loss, and the total
variation loss together in each cycle.

2.4.2 Loss Function
In the SISR task, the loss function is used to guide the
iterative optimization process of the model by computing
some kind of error. Meanwhile, compared with a single loss
function, researchers find that a combination of multiple loss
functions can better reflect the situation of image restoration.
In this section, we will briefly introduce several commonly
used loss functions.

Pixel Loss: Pixel loss is the simplest and most popular
type among loss functions in SISR, which aims to measure
the difference between two images on pixel basis so that
these two images can converge as close as possible. It mainly
includes the L1 loss, Mean Square Error (MSE Loss), and
Charbonnier loss (a differentiable variant of L1 loss):

LL1(ISR, Iy) =
1

hwc

∑
i,j,k

∣∣∣Ii,j,kSR − I
i,j,k
y

∣∣∣ , (6)

LMSE(ISR, Iy) =
1

hwc

∑
i,j,k

(Ii,j,kSR − I
i,j,k
y )2, (7)

LChar(ISR, Iy) =
1

hwc

∑
i,j,k

√
(Ii,j,kSR − I

i,j,k
y )2 + ε2, (8)

where, h, w, and c are the height, width, and the number
of channels of the image. ε is a numerical stability constant,
usually setting to 10−3. Since most mainstream image eval-
uation indicators are highly correlated with pixel-by-pixel
differences, pixel loss is still widely sought after. However,
the image reconstructed by this type of loss function usu-
ally lacks high-frequency details, so it is difficult to obtain
excellent visual effects.

Content Loss: Content loss is also called perceptual loss,
which uses a pre-trained classification network to measure
the semantic difference between images, and can be further
expressed as the Euclidean distance between the high-level
representations of these two images:

LCont(ISR, Iy, φ) =
1

hlwlcl

∑
i,j,k

(φi,j,k(l) (ISR)− φi,j,k(l) (Iy)),

(9)
where φ represents the pre-trained classification network
and φ(l)(IHQ) represents the high-level representation ex-
tracted from the l layer of the network. hl, wl, and cl are the
height, width, and the number of channels of the feature

map in the lth layer respectively. With this method, the
visual effects of these two images can be as consistent as
possible. Among them, VGG [37] and ResNet [38] are the
most commonly used pre-training classification networks.

Adversarial Loss: In order to make the reconstructed
SR image more realistic, Generative Adversarial Networks
(GANs [39]) have been proposed and introduced into vari-
ous computer vision tasks. Specifically, GAN is composed of
a generator and a discriminator. The generator is responsible
for generating fake samples, and the discriminator is used
to determine the authenticity of the generated samples. For
example, the discriminative loss function based on cross-
entropy is proposed by SRGAN [38]:

LAdversarial(Ix, G,D) =
N∑
n=1

−logD(G(Ix)), (10)

where G(ILQ) is the reconstructed SR image, G and D
represent the Generator and the Discriminator, respectively.

Prior Loss Apart from the above loss functions, some
prior knowledge can also be introduced into SISR models
to participate in high-quality image reconstruction, such as
sparse prior, gradient prior, and edge prior. Among them,
gradient prior loss and edge prior loss are the most widely
used prior loss functions, which are defined as follows:

LTV (ISR) =
1

hwc

∑
i,j,k

√
(Ii,j+1,k

SR − Ii,j,ky )2 + (Ii+1,j,k
SR − Ii,j,ky )2,

(11)

LEdge(ISR, Iy, E) =
1

hwc

∑
i,j,k

∣∣∣E(Ii,j,kSR )− E(Ii,j,ky )
∣∣∣ . (12)

where E is the image edge detector, and E(Ii,j,kSR ) and
E(Ii,j,ky ) are the image edges extracted by the detector.
The purpose of the prior loss is to optimize some specific
information of the image toward the expected target so that
the model can converge faster and the reconstructed image
will contain more texture details.

2.5 Assessment Methods
The image quality assessment (IQA) can be generally di-
vided into objective methods and subjective methods. Ob-
jective methods commonly use a specific formulation to
compute the results, which are simple and fair, thus become
the mainstream assessment method in SISR. However, they
can only reflect the recovery of image pixels from a numer-
ical point of view and are difficult to accurately measure
the true visual effect of the image. In contrast, subjective
methods are always based on human subjective judgments
and more related to evaluate the perceptual quality of
the image. Based on the pros and cons of the two types
of methods mentioned above, several assessment methods
are briefly introduced in the following with respect to the
aspects of image reconstruction accuracy, image perceptual
quality, and reconstruction efficiency.

2.5.1 Image Reconstruction Accuracy
The assessment methods applied to evaluate image recon-
struction accuracy are also called Distortion measures, which
are full-reference. Specifically, given a distorted image x̂ and
a ground-truth reference image x, full-reference distortion



6

quantifies the quality of x̂ by measuring its discrepancy to
x [40] using different algorithms.

Peak Signal-to-Noise Ratio (PSNR): PSNR is the most
widely used IQA method in the SISR field, which can be
easily defined via the mean squared error (MSE) between
the ground truth image Iy ∈ RH×W and the reconstructed
image ISR ∈ RH×W :

MSE =
1

HW

H−1∑
i=0

W−1∑
j=0

(Iy(i, j)− ISR(i, j))2, (13)

PSNR = 10 · log10(
MAX2

MSE
), (14)

where MAX is the maximum possile pixel of the image.
Since PSNR is highly related to MSE, a model trained
with the MSE loss will be expected to have high PSNR
scores. Although higher PSNR generally indicates that the
construction is of higher quality, it just considers the per-
pixel MSE, which makes it fails to capture the perceptual
differences [41].

Structural Similarity index measure (SSIM): SSIM [42]
is another popular assessment method that measures the
similarity between two images on perceptual basis, in-
cluding structures, luminance, and contrast. Different from
PSNR, which calculates absolute errors on the pixel-level,
SSIM suggests that there exists strong inter-dependencies
among the pixels that are spatially close. These dependen-
cies carry important information related to the structures
perceptually. Thus the SSIM can be expressed as a weighted
combination of three comparative measures:

SSIM(ISR, Iy) = (l(ISR, iy)α · c(ISR, Iy)β · s(ISR, Iy)γ)

=
(2µISR

µIy + c1)(2σISRIy + c2)

(µ2
ISR

+ µ2
Iy

+ c1)(σ2
ISR

+ σ2
Iy

+ c2)
.

(15)

where l, c, and s represent luminance, contrast, and struc-
ture between ISR and Iy , respectively. µISR

, µIy , σ2
ISR

, σ2
Iy

,
and σISRIy are the average(µ)/variance(σ2)/covariance(σ)
of the corresponding items.

A higher SSIM indicates higher similarity between two
images, which has been widely used due to its convenience
and stable performance on evaluating the perceptual qual-
ity. In addition, there are also some variants of SSIM, such as
Multi-Scale SSIM, which is conducted over multiple scales
by a process of multiple stages of subsampling.

2.5.2 Image Perceptual Quality
Since the visual system of humans is complex and concerns
many aspects to judge the differences between two images,
i.e., the textures and flow inside the images, methods which
pursue absolutely similarity differences (PSNR/SSIM) will
not always perform well. Although distortion measures
have been widely used, the improvement in reconstruction
accuracy is not always accompanied by an improvement
in visual quality. In fact, researchers have shown that the
distortion and perceptual quality are at odds with each other
in some cases [40]. The image perceptual quality of an image
x̂ is defined as the degree to which it looks like a natural
image, which has nothing to do with its similarity to any
reference image.

Mean Opinion Score (MOS): MOS is a subjective
method that can straightforwardly evaluate perceptual qual-
ity. Specifically, a number of viewers rate their opinions on
the quality of a set of images by Double-stimulus [43], i.e.,
every viewer has both the source and test images. After all
the viewers finishing ratings, the results are mapped onto
numerical values and the average scores will be the final
MOS. MOS is a time-consuming and expensive method as
it requires manual participation. Meanwhile, MOS is also
doubted to be unstable, since the MOS differences may be
not noticeable to the users. Moreover, this method is too
subjective to guarantee fairness.

Natural Image Quality Evaluator (NIQE): NIQE [44] is
a completely blind image quality assessment method. With-
out the requirement of knowledge about anticipated distor-
tions in the form of training examples and corresponding
human opinion scores, NIQE only makes use of measurable
deviations from statistical regularities observed in natural
images. It extracts a set of local (quality-aware) features from
images based on a natural scene statistic (NSS) model, then
fits the feature vectors to a multivariate Gaussian (MVG)
model. The quality of a test image is then predicted by
the distance between its MVG model and the MVG model
learned from a natural image:

D(ν1, ν2,Σ1,Σ2) =

√
((ν1 − ν2)T (

Σ1 + Σ2

2
)−1(ν1 − ν2)),

(16)
where ν1, ν2 and Σ1, Σ2 are the mean vectors and covariance
matrices of the HR and SR image’s MVG model. Notice
that, a higher NQIE index indicates lower image perceptual
quality. Compared with MOS, NIQE is a more convenient
perceptual-evaluation method.

Ma: Ma et al. [45] proposed a learning-based no-reference
image quality assessment. It is designed to focus on SR
images, while other learning-based methods are applied
to images degraded by noise, compression, or fast fading
rather than SR. It learns from perceptual scores based on
human subject studies involving a large number of SR
images. And then it quantifies the SR artifacts through three
types of statistical properties, i.e., local/global frequency
variations and spatial discontinuity. Then these features
are modeled by three independent learnable regression
forests respectively to fit the perceptual scores of SR im-
ages, ŷn(n = 1, 2, 3). The final predicted quality score is
ŷ =

∑
n λn · ŷn, and the weight λ is learned by minimizing

λ∗ = arg minλ(
∑
n λn · ŷn − y)2.

Ma performs well on matching the perceptual scores
of SR images, but it is still limited compared with other
learning-based no-reference methods, since it can only as-
sess the quality degradation arising from the distortion
types on which they have been trained.

PI: In the 2018 PIRM Challenge on Perceptual Image
Super-Resolution [30], perception index (PI) is first proposed
to evaluate the perceptual quality. It is a combination of the
no-reference image quality measures Ma and NIQE:

PI =
1

2
((10−Ma) +NIQE). (17)

A lower PI indicates better perceptual quality. This is a new
image quality evaluation standard, which has been greatly
promoted and used in recent years.
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Apart from the aforementioned evaluation methods,
some new methods have also been proposed over these
years. For example, Zhang et al. [46] proposed Ranker to
learn the ranking orders of NR-IQA methods (i.e., NIQE)
on the results of some perceptual SR models. Zhang et
al. [47] introduced a new dataset of human perceptual
similarity judgments. Meanwhile, a perceptual evaluation
metric, Learned Perceptual Image Patch Similarity (LPIPS),
is constructed by learning the perceptual judgement in this
dataset. In summary, how to measure the perceptual quality
of SR images more accurately and efficiently is an important
issue that needs to be explored.

2.5.3 Reconstruction Efficiency
Although designing deeper networks is the easiest way
to obtain better reconstruction performance, it cannot be
ignored that these models will also bring more param-
eters, execution time, and computational costs. In order
to broaden the practical application of SISR, we need to
consider the trade-off between the model performance and
model complexity. Therefore, it is important to evaluate the
reconstruction efficiency by the following basic assessments.

Model Size: The model size is related to the storage that
the devices need to store the data. A model containing more
parameters is harder for the device with limited hardware to
run it. Therefore, building lightweight models is conducive
to the promotion and application of the algorithm. Among
all the indicators, the parameter quantity of the model is the
most intuitive indicator to measure the model size.

Execution Time: Usually, a lightweight model tends to
require a short execution time, but the emergence of com-
plex strategies such as the attention mechanism has broken
this balance. In other words, when some complex operations
are introduced into the model, a lightweight network may
also require a long execution time. Therefore, it is critically
important to evaluate the execution time of the model.

Mult-Adds: The number of multiply-accumulate opera-
tions, or Mult-Adds, is always used to measure the model
computation since operations in the CNN model are mainly
multiplications and additions. The value of Mult-Adds is
related to the speed or the time needed to run the model.

In summary, the trade-off between the model perfor-
mance and model complexity is still need to be concerned.

3 SINGLE-IMAGE SUPER-RESOLUTION

3.1 Benchmark framework for DL-based SISR
In 2014, Dong et al. [9] proposed the Super-Resolution Con-
volutional Neural Network (SRCNN). SRCNN is the first
CNN-based SISR model. It shows that a deep CNN model
is equivalent to the sparse-coding-based method, which is
an example-based method for SISR. Recently, more and
more SISR models treat it as an end-to-end learning task.
Therefore, building a deep neural network to directly learn
the mapping between LR and HR images has become the
mainstream method in SISR. Motivated by SRCNN, CNN-
based SISR methods are blooming and constantly refreshing
the best results.

According to different targets, we divide the DL-based
SISR models into four categories: reconstruction efficiency
methods, reconstruction accuracy methods, perceptual qual-
ity methods, and further improvement methods.

3.2 Reconstruction Efficiency Methods
The problem of low accuracy caused by hardware limi-
tations raises the demand for research on efficient SISR
models. Therefore, designing lightweight SISR models that
can achieve the same or even better performance than
their cumbersome counterparts is urgently needed. In this
section, we will discuss some methods that contribute to
efficient network structure design.

Fig. 6. Sketch of residual learning architecture / residual block.

3.2.1 Residual Learning
In SRCNN, researchers find that better reconstruction per-
formance can be obtained by adding more convolutional
layers to increase the receptive field. However, directly
stacking the layers will cause vanishing/exploding gra-
dients and degradation problem [48]. Meanwhile, adding
more layers will lead to a higher training error and more
expensive computational cost.

In ResNet [49], He et al. proposed a residual learning
framework, where a residual mapping is desired instead of
fitting the whole underlying mapping (Fig. 6). In SISR, as LR
image and HR image share most of the same information,
it is easy to explicitly model the residual image between
LR and HR images. Residual learning enables deeper net-
works and remits the problem of gradient vanishing and
degradation. With the help of residual learning, Kim [50]
proposed a very deep super-resolution network, also known
as VDSR. For the convenience of network design, the resid-
ual block [49] has gradually become the basic unit in the
network structure. In the convolutional branch, it usually
has two 3×3 convolutional layers, two batch normalization
layers, and one ReLU activation function in between. It is
worth noting that the batch normalization layer is often
removed in the SISR task since EDSR [51] points out that
the batch normalization layer consumes more memory but
will not improve the model performance.

Global and Local Residual Learning: Global residual
learning is a skip-connection from input to the final recon-
struction layer, which helps improve the transmission of
information from input to output and reduce the loss of
information to a certain extent. However, as the network
becomes deeper, a significant amount of image details are
inevitably lost after going through so many layers. There-
fore, the local residual learning is proposed, which is per-
formed in every few stacked layers instead of from input to
output. In this approach, a multi-path mode is formed and
rich image details are carried and also helps gradient flow.
Furthermore, many new feature extraction modules have
introduced the local residual learning to reinforce strong
learning capabilities [52], [53]. Of course, combining local
residual learning and global residual learning is also highly
popular now [38], [51], [53].

Residual Scaling: In EDSR [51], Lim et al. found that
increasing the feature maps, i.e., channel dimension, above a
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certain level would make the training procedure numerical
unstable. To solve such issues, they adopted the residual
scaling [54], where the residuals are scaled down by mul-
tiplying a constant between 0 and 1 before adding them to
the main path. With the help of this residual scaling method,
the model performance can be further improved.

Fig. 7. The model structure of DRRN, where the shaded part denotes
the recursive block and the parameters in the dashed box are sharing.

3.2.2 Recursive Learning
In order to obtain a large receptive field without increasing
model parameters, recursive learning is proposed for SISR,
where the same sub-modules are repeatedly applied in
the network and they share the same parameters. In other
worlds, a recursive block is a collection of recursive units,
where the corresponding structures among these recursive
units share the same parameters. For instance, the same con-
volutional layer is applied 16 times in DRCN [55], resulting
in a 41 × 41 size receptive field. However, too many stacked
layers in recursive learning based model will still cause
the problem of vanishing/exploding gradient. Therefore,
in DRRN [56], the recursive block is conducted based on
residual learning (Fig. 7). Recently, more and more models
introduce the residual learning strategy in their recursive
units, such as MemNet [57], CARN [58], and SRRFN [59].

Fig. 8. The structure of the hierarchical feature distillation block (HFDB).

3.2.3 Gating Mechanism
Skip connection in the above residual learning tends to
make the channel dimension of the output features ex-
tremely high. If such a high dimension channel remains the
same in the following layers, the computational cost will
be terribly large and therefore will affect the reconstruction
efficiency and performance. Intuitively, the output features
after the skip connection should be efficiently re-fused in-
stead of simply concatenated.

To solve this issue, researchers recommend using the
gating mechanism to adaptively extract and learn more
efficient information. Most of the time, a 1×1 convolutional

layer is adopted to accomplish the gating mechanism, which
can reduce the channel dimension and leave more effective
information. In SRDenseNet [60] and MSRN [52], such 1×1
convolutional layer acts as a bottleneck layer before the
reconstruction module. In MemNet [57], it is a gate unit at
the end of each memory block to control the weights of the
long-term memory and short-term memory. Note that the
gate is not only able to serve as bottlenecks placed at the
end of the network, but also be continuously conducted in
the network. For example, in MemNet [57], IDN [61], and
CARN [62], the gating mechanism is used in both global and
local region. Sometimes, it can be combined with other op-
erations, such as attention mechanism, to construct a more
effective gate module to achieve feature distillation. For
instance, Li et al. proposed a hierarchical feature distillation
block (Fig. 8) by combining 1 × 1 convolutional layer and
attention mechanism in MDCN [63].

3.2.4 Curriculum Learning
Curriculum learning refers to gradually increasing the dif-
ficulty of the learning task. For some sequence prediction
tasks or sequential decision-making problems, curriculum
learning is used to reduce the training time and improve
the generalisation performance. Since SISR is an ill-posed
problem which is always confronted with great learning
difficulty due to some adverse conditions such as large
scaling factors, unknown degradation kernels, and noise,
it is suitable to utilize curriculum learning to simplify the
learning process and improve the reconstruction efficiency.

In LapSRN [64], curriculum learning is applied to
progressively reconstruct the sub-band residuals of high-
resolution images. In ProSR [65], each level of the pyramid
is gradually blended in to reduce the impact on the previ-
ously trained layers and the training pairs of each scale are
incrementally added. In SRFBN [66], the curriculum learn-
ing strategy is applied to solve the complex degradation
tasks, where targets of different difficulties are ordered to
learn it progressively. With the help of curriculum learning,
complex problems can be decomposed into multiple simple
tasks, hence accelerating model convergence and obtaining
better reconstruction results.

3.3 Reconstruction Accuracy Methods
The quality of the reconstructed SR image is always the
main concern in SISR. In this section, we will introduce
some classic methods and strategies that can help improve
the reconstruction accuracy of SISR models.

3.3.1 Multi-scale Learning
As we all know, rich and accurate image features are es-
sential for SR image reconstruction. Meanwhile, plenty of
research works [64], [67], [68] have pointed out that images
may exhibit different characteristics at different scales and
thus making full use of these features can further improve
model performance. Inspired by the inception module [68],
Li et al. [52] proposed a multi-scale residual block (MSRB,
Fig. 9) for feature extraction. MSRB integrates different
convolution kernels in a block to adaptively extract image
features at different scales. After that, Li et al. [63] fur-
ther optimized the structure and proposed a more efficient
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multi-scale dense cross block (MDCB) for feature extraction.
MDCB is essentially a dual-path dense network that can
effectively detect local and multi-scale features.

Fig. 9. The structure of multi-scale residual block (MSRB [52]).

Recently, more and more multi-scale SISR models have
been proposed. For instance, Qin et al. [69] proposed a
multi-scale feature fusion residual network (MSFFRN) to
fully exploit image features for SISR. Chang et al. [70] pro-
posed a multi-scale dense network (MSDN) by combining
multi-scale learning with dense connection. Cao et al. [71]
developed a new SR approach called multi-scale residual
channel attention network (MSRCAN), which introduced
the channel attention mechanism into the MSRB. All the
above examples indicate that the extraction and utilization
of multi-scale image features are of increasing importance
to further improve the quality of the reconstructed images.

Fig. 10. The structure of a simple dense connection module.

3.3.2 Dense Connection

Dense connection mechanism was proposed in
DenseNet [72], which is widely used in the computer
vision tasks in recent years. Different from the structure
that only sends the hierarchical features to the final
reconstruction layer, each layer in the dense block receives
the features of all preceding layers (Fig. 10). Short paths
created between most of the layers can help alleviate the
problem of vanishing/exploding gradients and strengthen
the deep information flow through layers, thereby further
improving the reconstruction accuracy.

Motivated by the dense connection mechanism, Tong
et al. introduced it into SISR and proposed the SR-
DenseNet [60]. SRDenseNet not only uses the layer-level
dense connections, but also the block-level one, where the
output of each dense block is connected by dense connec-
tions. In this way, the low-level features and high-level
features are combined and fully used to conduct the re-
construction. In RDN [73], dense connections are combined
with the residual learning to form the residual dense block
(RDB), which allows low-frequency features to be bypassed
through multiple skip connections, making the main branch
focusing on learning high-frequency information. Apart

from aforementioned models, dense connection is also ap-
plied in MemNet [57], RPMNet [74], MFNet [75], etc. With
the help of dense connection mechanism, the information
flow among different depths of the network can be fully
used, thus provides better reconstruction results.

3.3.3 Attention Mechanism
Attention mechanism can be viewed as a tool that can
allocate available resources to the most informative part
of the input. In order to improve the efficiency during the
learning procedure, some works are proposed to guide the
network to pay more attention to the regions of interest. For
instance, Hu et al. [76] proposed a squeeze-and-excitation
(SE) block to model channel-wise relationships in the image
classification task. Wang et al. [77] proposed a non-local
attention neural network for video classification by incor-
porating non-local operations. Motivated by these methods,
attention mechanism has also been introduced into SISR.

Fig. 11. The principle of channel attention mechanism (CAM).

Channel Attention: In SISR, we mainly want to recover
as much valuable high-frequency information as possible.
However, common CNN-based methods treat channel-wise
features equally, which lacks flexibility in dealing with dif-
ferent types of information. To solve this problem, many
methods [53], [78] introduce the SE mechanism in the SISR
model. For example, Zhang et al. [53] proposed a new mod-
ule based on the SE mechanism, named residual channel
attention block (RCAB). As shown in Fig. 11, a global aver-
age pooling layer followed by a Sigmoid function is used to
rescale each feature channel, allowing the network to con-
centrate on more useful channels and enhancing discrimi-
native learning ability. In SAN [79], second-order statistics
of features are explored to conduct the attention mecha-
nism based on covariance normalization. A great number
of experiments have shown that the second-order channel
attention can help the network obtain more discriminative
representations, leading to higher reconstruction accuracy.

Non-Local Attention: When CNN-based methods con-
duct convolution in a local receptive field, the contextual
information outside this field is ignored, while the features
in distant regions may have a high correlation and can
provide effective information. Given this issue, non-local
attention has been proposed as a filtering algorithm to
compute a weighted mean of all pixels of an image. In this
way, distant pixels can also contribute to the response of a
position in concern. For example, the non-local operation
is conducted in a limited neighborhood to improve the
robustness in NLRN [80]. A non-local attention block is
proposed in RNAN [81], where the attention mechanisms
in both channel- and spatial-wise are used simultaneously
in its mask branch to better guide feature extraction in the
trunk branch. Meanwhile, a holistic attention network is
proposed in HAN [82], which consists of a layer attention
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module and a channel-spatial attention module, to model
the holistic interdependence among layers, channels, and
positions. In CSNLN [83], a cross-scale non-local attention
module is proposed to mine long-range dependencies be-
tween LR features and large-scale HR patches within the
same feature map. All these methods show the effectiveness
of the non-local attention, which can further improve the
model performance.

3.3.4 Feedback Mechanism
Feedback mechanism refers to carrying a notion of output
to the previous states, allowing the model to have a self-
correcting procedure. It is worth noting that the feedback
mechanism is different from recursive learning since in the
feedback mechanism the model parameters are keeping self-
correcting and do not share. Recently, feedback mechanism
has been widely used in many computer vision tasks [84],
[85], which is also beneficial for the SR images recon-
struction. Specifically, the feedback mechanism allows the
network to carry high-level information back to previous
layers and refine low-level information, thus fully guide the
LR image to recover high-quality SR images.

In DBPN [86], iterative up- and down-sampling layers
are provided to achieve an error feedback mechanism for
projection errors at each stage. In DSRN [87], a dual-state
recurrent network is proposed, where recurrent signals are
exchanged between these states in both directions via de-
layed feedback. In SFRBN [66], a feedback block is pro-
posed, in which the input of each iteration is the output of
the previous one as the feedback information. Followed by
several projection groups sequentially with dense skip con-
nections, low-level representations are refined and become
more powerful high-level representations.

3.3.5 Additional Prior
Most methods tend to build end-to-end CNN models to
achieve SISR since it is simple and easy to implement.
However, it is rather difficult for them to reconstruct realistic
high-frequency details due to plenty of useful features have
been lost or damaged. To solve this issue, priors guided SISR
framework has been proposed. Extensive experiments have
shown that with the help of image priors, the model can
converge faster and achieve better reconstruction accuracy.
Recently, many image priors have been proposed, such as
total variation prior, sparse prior, and edge prior.

Motivated by this, Yang et al. integrated the edge prior
with recursive networks and proposed a Deep Edge Guided
Recurrent Residual Network (DEGREE [88]) for SISR. After
that, Fang et al. proposed an efficient and accurate Soft-edge
Assisted Network (SeaNet [89]). Different from DEGREE,
which directly applies the off-the-shelf edge detectors to de-
tect image edges, SeaNet automatically learns more accurate
image edges from the constructed Edge-Net. Meanwhile,
the authors pointed out that the more accurate priors in-
troduced, the greater improvement in performance.

3.4 Perceptual Quality Methods
Most methods simply seek to reconstruct SR images with
high PSNR and SSIM. However, the improvement in re-
construction accuracy is not always accompanied by an

improvement in visual quality. Blau et al. [90] pointed out
that there was a perception-distortion trade-off. It is only
possible to improve either perceptual quality or distortion,
while improving one must be at the expense of the other.
Hence, in this section, we provide methods to ease this
trade-off problem, hoping to provide less distortion while
maintaining good perceptual quality of the image.

3.4.1 Perceptual Loss

Although pixel-wise losses, i.e., L1 and MSE loss, have been
widely used to achieve high image quality, they do not
capture the perceptual differences between the SR and HR
images. In order to address this problem and allow the loss
functions to better measure the perceptual and semantic
differences between images, content loss, texture loss, and
targeted perceptual loss are proposed. Among them, content
loss has been widely used to obtain more perceptual and
natural images [20], [38], [91], which has been introduced
in Sec. 2.4.1. Apart from obtaining more similar content,
the same style, such as colors, textures, common patterns,
and semantic information are also needed. Therefore, other
perceptual loss need to be considered.

Texture Loss: Texture loss, also called style reconstruc-
tion loss, is proposed by Gatys et al. [92], [93], which
can make the model reconstruct high-quality textures. The
texture loss is defined as the squared Frobenius norm of the
difference between the Gram matrices Gφj (x) of the output
and the ground truth images:

Lφ,jtexture(ISR, Iy) = ||Gφj (ISR)−Gφj (Iy)||2F . (18)

With the help of the texture loss, the model tends to
produce images that have the same local textures as the HR
images during training [94].

Targeted Perceptual Loss: The conventional perceptual
loss estimates the reconstruction error for an entire image
without considering semantic information, resulting in lim-
ited capability. Rad et al. [95] proposed a targeted perceptual
loss that penalized images at different semantic levels on
the basis of the labels of object, background, and boundary.
Therefore, more realistic textures and sharper edges can be
obtained to reconstruct realistic SR images.

3.4.2 Adversarial Training

In 2014, the Generative Adversarial Networks (GANs) was
proposed by Goodfellow et al. [39], which has been widely
used in compute vision tasks, such as style transfer and
image inpainting. The GANs consists of a generator and
a discriminator. When the discriminator is trained to judge
whether an image is true or false, the generator aims at fool-
ing the discriminator rather than minimizing the distance
to a specific image, hence it tends to generate outputs that
have the same statistics as the training set.

Inspired by GAN, Ledig et al. proposed the Super-
Resolution Generative Adversarial Network (SRGAN [38]).
In SRGAN, the generator G is essentially a SR model that
trained to fool the discriminator D, and D is trained to
distinguish SR images from HR images. Therefore, the gen-
erator can learn to produce outputs that are highly similar
to HR images, and then reconstruct more perceptual and
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natural SR images. Following this approach, the generative
loss LGen(Ix) can be defined as:

LGen = − logDθD (GθG(Ix)), (19)

and the loss in terms of discriminator is:

LDis = − log(DθD (Iy))− log(1−DθD (GθG(Ix))). (20)

Therefore, we need to solve the following problem:

min
θG

max
θD

EIy∼pdata(Iy)
(logDθD (Iy)) +

EIx∼pG(Ix)
(log(1−DθD (GθG(Ix)))).

(21)

In SRGAN [38], the generator is the SRResNet and the
discriminator uses the architecture proposed by Radford et
al. [96]. In ESRGAN [97], Wang et al. made two modifications
to the SRResNet: (1) replace the original residual block with
the residual-in-residual dense block; (2) remove the BN
layers to improve the generalization ability of the model. In
SRFeat [98], Park et al. indicated that the GAN-based SISR
methods tend to produce less meaningful high-frequency
noise in reconstructed images. Therefore, they adopted two
discriminators: an image discriminator and a feature dis-
criminator, where the latter is trained to distinguish SR
images from HR images based on the intermediate feature
map extracted from a VGG network. In ESRGAN [97],
Wang et al. adopted the Relativistic GAN [99], where the
standard discriminator was replaced with the relativistic av-
erage discriminator to learn the relatively realistic between
two images. This modification helps the generator to learn
sharper edges and more detailed textures.

3.4.3 Additional Prior (Perceptual)
In Sec. 3.3.5, we have introduced the applications of prior
knowledge in the CNN-based SISR models. In this section,
we will show the benefits of using additional priors in GAN-
based models. The target of all the introduced additional
priors is to improve the perceptual quality of the recon-
structed SR images.

For example, the semantic categorical prior is used to
generate richer and more realistic textures with the help of
spatial feature transform (SFT) in SFTGAN [20]. With this
information from high-level tasks, similar LR patches can be
easily distinguished and more natural textual details can be
generated. In SPSR [100], the authors utilized the gradient
maps to guide image recovery to solve the problem of struc-
tural distortions in the GAN-based methods. Among them,
the gradient maps are obtained from a gradient branch and
integrated into the SR branch to provide structure prior.
With the help of gradient maps, we know which region
should be paid more attention to, so as to guide the image
generation and reduce geometric distortions.

3.4.4 Cycle Consistency
Cycle consistency assumes that there exist some underlying
relationships between the source and target domains, and
tries to make supervision at the domain level. To be precise,
we want to capture some special characteristics of one image
collection and figure out how to translate these charac-
teristics into the other image collection. To achieve this,
Zhu et al. [36] proposed the cycle consistency mechanism,

where not only the mapping from the source domain to the
target domain is learned, but also the backward mapping
is combined. Specifically, given a source domain X and a
target domain Y , we have a translator G : X → Y and
another translator F : Y → X that trained simultaneously
to guarantee both an adversarial loss that encourages
G(X) ≈ Y and F (Y ) ≈ X and a cycle consistency loss
that encourages F (G(X)) ≈ X and G(F (Y )) ≈ Y .

In SISR, the idea of cycle consistency has also been
widely discussed. Given the LR images domain X and
the HR images domain Y , we not only learn the mapping
from LR to HR but also the backward process. Researchers
have shown that learning how to do image degradation
first without paired data can help generate more realistic
images [101]. In CinCGAN [35], a cycle in cycle network is
proposed, where the noisy and blurry input is mapped to
a noise-free LR domain firstly and then upsampled with a
pre-trained model and finally mapped to the HR domain. In
DRN [102], the mapping from HR to LR images is learned
to estimate the down-sampling kernel and reconstruct LR
images, which forms a closed-loop to provide additional
supervision. DRN also gives us a novel approach in un-
supervised learning SR, where the deep network is trained
with both paired and unpaired data.

3.5 Further Improvement Methods

In the aforementioned part, we have introduced the way
to design an efficient SISR model, as well as obtaining
high reconstruction accuracy and high perceptual quality
for SR images. Though current SISR models have made a
significant breakthrough in achieving a balance between re-
construction accuracy and perceptual quality, it still remains
a hot topic to explore more effective models.

3.5.1 Internal Statistics
In [103], Zontak et al. found that some patches exist only in a
specific image and can not be found in any external database
of examples. Therefore, SR methods trained on external
images can not work well on such images due to the lack
of patches information, while methods based on internal
statistics may have a good performance. Meanwhile, Zontak
et al. pointed out that the internal entropy of patches inside a
single image was much smaller than the external entropy of
patches in a general collection of natural images. Therefore,
using the internal image statistics to further improve model
performance is a good choice.

In ZSSR [34], the property of internal image statistics
is used to train an image-specific CNN, where the training
examples are extracted from the test image itself. In training
phase, several LR-HR pairs are generated by using data
augmentation, and a CNN is trained with these pairs. In test
time, the LR image ILR is fed to the trained CNN as input
to get the reconstructed image. In this process, the model
makes full use of internal statistics of the image itself for
self-learning. In SinGAN [104], an unconditional generative
model with a pyramid of fully convolutional GANs is
proposed to learn the internal patch distribution at different
scales of the image. To make use of the recurrence of internal
information, they upsampled the LR image several times
(depending on the final scale) to obtain the final SR output.
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3.5.2 Multi-factors Learning
Typically, in SISR, we often need to train specific models
for different upsampling factors and it is difficult to arise
at the expectation that a model can be applied to multiple
upsampling factors. To solve this issue, some models have
been proposed for multiple upsampling factors, such as
LapSRN [105], MDSR [51], and MDCN [63].

In LapSRN [105], LR images are progressively recon-
structed in the pyramid networks to obtain the large-scale
results, where the intermediate results can be taken directly
as the corresponding multiple factors results. In [51], Lim
et al. found the inter-related phenomenon among multiple
scales tasks, i.e., initializing the high-scale model parameters
with the pre-trained low-scale network can accelerate the
training process and improve the performance. Therefore,
they proposed the scale-specific processing modules at the
head and tail of the model to handle different upsampling
factors. To further exploit the inter-scale correlation between
different upsampling factors, Li et al. further optimized
the strategy in MDCN [63]. Different from MDSR which
introduces the scale-specific processing strategy both at the
head and tail of the model, MDCN can maximize the reuse
of model parameters and learn the inter-scale correlation.

3.5.3 Knowledge Distillation
Knowledge distillation refers to a technique that transfers
the representation ability of a large (Teacher) model to a
small one (Student) for enhancing the performance of the
student model. Hence, it has been widely used for network
compression or to further improve the performance of the
student model, which has shown the effectiveness in many
computer vision tasks. Meanwhile, there are mainly two
kinds of knowledge distillation, soft label distillation and
feature distillation. In soft label distillation, the softmax out-
puts of a teacher model are regarded as soft labels to provide
informative dark knowledge to the student model [106].
In feature distillation, the intermediate features maps are
transferred to the student model [107], [108].

Inspired by this, some works introduce the knowledge
distillation technique to SISR to further improve the perfor-
mance of lightweight models. For instance, in SRKD [109],
a small but efficient student network is guided by a deep
and powerful teacher network to achieve similar feature
distributions to those of the teacher. In [110], the teacher
network leverage the HR images as privileged information
and the intermediate features of the decoder of the teacher
network are transferred to the student network via feature
distillation, so that the student can learn high frequencies
details from the Teacher which trained with the HR images.

3.5.4 Reference-based SISR
In contrast to SISR where only a single LR image is used
as input, reference-based SISR (RefSR) takes a reference
image to assist the SR process. The reference images can
be obtained from various sources like photo albums, video
frames, and web image searches. Meanwhile, there are sev-
eral approaches proposed to enhance image textures, such
as image aligning and patch matching. Recently, some RefSR
methods [111], [112] choose to align the LR and reference
images with the assumption that the reference image pos-
sesses similar content as the LR image. For instance, Yue et

al. [111] conducted global registration and local matching
between the reference and LR images to solve an energy
minimization problem. In CrossNet [112], optical flow is
proposed to align the reference and LR images at different
scales, which are later concatenated into the corresponding
layers of the decoder. However, these methods assume that
the reference image has a good alignment with the LR
image. Otherwise, their performance will be significantly
influenced. Different from these methods, Zhang et al. [23]
applied patch matching between VGG features of the LR
and reference images to adaptively transfer textures from
the reference images to the LR images. In TTSR [113], Yang
et al. proposed a texture transformer network to search and
transfer relevant textures from the reference images to the
LR images based on the attention mechanisms.

3.5.5 Transformer-based SISR
The key idea of Transformer is the self-attention mechanism,
which can capture long-term information between sequence
elements. Recently, Transformer [114] has achieved brilliant
results in NLP tasks. For example, the pre-trained deep
learning models (e.g., BERT [115], GPT [116]) have shown
effectiveness over conventional methods. Inspired by this,
more and more researchers have begun to explore the ap-
plication of Transformer in computer vision tasks and have
achieved breakthrough results many tasks.

Nowadays, some researchers try to introduce Trans-
former to image restoration tasks. For exsample, Chen et
al. proposed the Image Processing Transformer (IPT [117])
which was pre-trained on large-scale datasets. In addition,
contrastive learning is introduced for different image pro-
cessing tasks. Therefore, the pre-trained model can effi-
ciently be employed on the desired task after finetuning.
However, IPT [117] relies on large-scale datasets and has
a large number of parameters (over 115.5M parameters),
which greatly limits its application scenarios. To solve this
issue, Liang et al. proposed the SwinIR [118] for image
restoration based on the Swin Transformer [119]. Specifi-
cally, the Swin Transformer blocks (RSTB) is proposed for
feature extraction and DIV2K+Flickr2K are used for train-
ing. Moreover, Lu et al. [120] proposed an Efficient Super-
Resolution Transformer (ESRT) for fast and accurate SISR.
It is worth noting that ESRT is a lightweight model, which
achieves competitive results with fewer parameters and low
computing costs. Transformer is a powerful technology, but
how to use fewer parameters and datasets to effectively
train the model is still worth exploring.

4 DOMAIN-SPECIFIC APPLICATIONS

4.1 Real-World SISR
The degradation modes are complex and unknown in real-
world scenarios, where downsampling is usually performed
after anisotropic blurring and sometimes signal-dependent
noise is added. It is also affected by the in-camera signal
processing (ISP) pipeline. Therefore, SISR models trained
on bicubic degradation exhibit poor performance when han-
dling real-world images. Moreover, all the aforementioned
models can only be applied to some specific integral upsam-
pling factors, but it is essential to develop scale arbitrary
SISR models for different practical applications.
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Recently, some datasets and new technologies have been
proposed for real SISR. In [19], the RealSR dataset is pro-
posed, where paired LR-HR images on the same scene are
captured by adjusting the focal length of a digital camera.
Meanwhile, a Laplacian Pyramid based Kernel Prediction
Network (LP-KPN) is trained with this dataset to learn per-
pixel kernels to recover SR images. After that, a series of real
image pairs-based methods [121], [122], [123] are proposed.
However, this dataset are post-processed and difficult to
collect in large quantities, which still limits the model
performance. Otherwise, some new technologies have been
proposed, such as unsupervised learning [124], [125], self-
supervised learning [34], [126], zero-shot learning [34], [127],
meta-learning [128], [129], blind SISR, and scale arbitrary
SISR [130], [131]. In this part, we introduce the latter three
methods due to their impressive foresight and versatility.

4.1.1 Blind SISR
Blind SISR has attracted increasing attention due to its
significance in real-world applications, which aims to super-
resolved LR images with unknown degradation. According
to the ways of degradation modelling, they can be simply
divided into two categories: explicit degradation model-
ing methods and implicit degradation modeling methods.
Among them, explicit degradation modeling methods can
be further divided into two categories according to whether
they use the kernel estimation technology. For instance,
Zhang et al. proposed a simple and scalable deep CNN
framework for multiple degradation (SRMD [132]) learning.
In SRMD, the concatenated LR image and degradation
maps are taken as input after the dimensionality stretching
strategy. In DPSR [133], deep super-resolver can be used
as a prior with a new degradation model, in order to
handle LR images with arbitrary blur kernels. After that,
UDVD [134], AMNet [135], USRNet [136], and a series of
blind SISR methods are proposed by using the degradation
map as an additional input for SR images reconstruction.
In contrast, some blind SISR methods pay attention to the
kernel estimation along with the SR process [137], [138],
[139], [140]. For example, in IKC [137], the iterative kernel
correction procedure is proposed to help the blind SISR
task to find more accurate blur kernels. In DAN [138],
Luo et al. adopted an alternating optimization algorithm
to estimate blur kernel and restore SR image in a single
network, which makes the restorer and estimator be well
compatible with each other, and thus achieves good results
in kernel estimation. However, the reconstruction accuracy
of the above methods greatly depends on the accuracy of the
degradation mode estimation. To address this issue, more
implicit degradation modeling methods are proposed [35],
[141], [142], which aim to implicitly learn the potential
degradation modes by the external datasets.

4.1.2 Meta-Learning
It is hard for artificial agents to quickly adapt to new
things/data like human intelligence, since it is challenging
to integrate the prior experience with a few more new
information. Meta-learning, or learning to learn, is the mech-
anism proposed for the learning-based problems, which is
usually used in few-shot/zero-shot learning and transfer
learning. In meta-learning, the trained model quickly learns

a new task in large task space, where the test samples are
used to optimize the meta-learner, therefore the model can
quickly adapt with the help of the meta-learner when it
encounters new tasks. In SISR, considering the lack of real
paired samples, we hope that the model can be trained
on simulated paired datasets and then transfer the learned
experience to the real SISR task. To address this issue, Soh
et al. proposed the MZSR [128]. In MZSR, a novel training
scheme based on meta-transfer learning is proposed to learn
an effective initial weight for fast adaptation to new tasks
with the zero-shot unsupervised setting, thus the model can
be applied to the real-world scenarios and achieve good re-
sults. In [129], Park et al. proposed an effective meta-learning
method to further improve the model performance without
changing the architecture of conventional SISR networks.
This method can be applied to any existing SISR models
and effectively handle unknown SR kernels. In [143], Hu
et al. proposed the first unified super-resolution network
for arbitrary degradation parameters with meta-learning,
termed Meta-USR [143].

4.1.3 Scale Arbitrary SISR
In real application scenarios, in addition to processing real
images, it is also important to handle arbitrary scale factors
with a single model. To achieve this, Hu et al. proposed
two simple but powerful methods termed Meta-SR [130]
and Meta-USR [143]. Among them, Meta-SR is the first SISR
method that can be used for arbitrary scale factors and Meta-
USR is an improved version that can be applied to arbi-
trary degradation mode (including arbitrary scale factors).
Although Meta-SR and Meta-USR achieve promising per-
formance on non-integer scale factors, they cannot handle
SR with asymmetric scale factors. To alleviate this problem,
Wang et al. [131] suggested learning the scale-arbitrary SISR
model from scale-specific networks and developed a plug-
in module for existing models to achieve scale-arbitrary SR.
Specifically, the proposed plug-in module uses conditional
convolution to dynamically generate filters based on the
input scale information, thus the networks equipped with
the proposed module achieve promising results for arbitrary
scales with only a single model.

4.2 Remote Sensing Image Super-Resolution

With the development of satellite image processing, remote
sensing has become more and more important. However,
due to the limitations of current imaging sensors and com-
plex atmospheric conditions, such as limited spatial reso-
lution, spectral resolution, and radiation resolution, we are
facing huge challenges in remote sensing applications.

Recently, many methods have been proposed for remote
sensing image super-resolution. For example, a new unsu-
pervised hourglass neural network is proposed in [144] to
super-resolved remote sensing images. The model uses a
generative random noise to introduce a higher variety of
spatial patterns, which can be promoted to a higher scale
according to a global reconstruction constraint. In [145], a
Deep Residual Squeeze and Excitation Network (DRSEN)
is proposed to overcome the problem of the high com-
plexity of remote sensing image distribution. In [146], a
mixed high-order attention network (MHAN) is proposed,
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which consists of a feature extraction network for feature
extraction and a feature refinement network with the high-
order attention mechanism for detail restoration. In [147],
the authors developed a Dense-Sampling Super-Resolution
Network (DSSR) to explore the large-scale SR reconstruction
of the remote sensing imageries.

4.3 Hyperspectral Image Super-Resolution
In contrast to human eyes that can only be exposed to
visible light, hyperspectral imaging is a technique for col-
lecting and processing information across the entire range of
electromagnetic spectrum [148]. The hyperspectral system
is often compromised due to the limitations of the amount
of the incident energy, hence there is a trade-off between
the spatial and spectral resolution. Therefore, hyperspectral
image super-resolution is studied to solve this problem.

In [149], a 3D fully convolutional neural network is
proposed to extract the feature of hyperspectral images.
In [150], Li et al. proposed a grouped deep recursive resid-
ual network by designing a group recursive module and
embedding it into a global residual structure. In [151], an
unsupervised CNN-based method is proposed to effectively
exploit the underlying characteristics of the hyperspectral
images. In [152], Jiang et al. proposed a group convolution
and progressive upsampling framework to reduce the size
of the model and made it feasible to obtain stable training
results under small data conditions. In [153], a Spectral
Grouping and Attention-Driven Residual Dense Network
is proposed to facilitate the modeling of all spectral bands
and focus on the exploration of spatial-spectral features.

4.4 Light Field Image Super-Resolution
Light field (LF) camera is a camera that can capture infor-
mation about the light field emanating from a scene and can
provide multiple views of a scene. Recently, the LF image is
becoming more and more important since it can be used for
post-capture refocusing, depth sensing, and de-occlusion.
However, LF cameras are faced with a trade-off between
spatial and angular resolution [154]. In order to solve this
issue, SR technology is introduced to achieve a good balance
between spatial and angular resolution.

In [155], a cascade convolution neural network is intro-
duced to simultaneously up-sample both the spatial and
angular resolutions of a light field image. Meanwhile, a new
light field image dataset is proposed for training and vali-
dation. In order to reduce the dependence of accurate depth
or disparity information as priors for the light-field image
super-resolution, Sun et al. [156] proposed a bidirectional
recurrent convolutional neural network and an implicitly
multi-scale fusion scheme for SR images reconstruction.
In [154], Wang et al. proposed a spatial-angular interac-
tive network (LF-InterNet) for LF image SR. Meanwhile,
they designed an angular deformable alignment module
for feature-level alignment and proposed a deformable con-
volution network (LF-DFnet [157]) to handle the disparity
problem of LF image SR.

4.5 Face Image Super-Resolution
Face image super-resolution is the most famous field in
which apply SR technology to domain-specific images.

Due to the potential applications in facial recognition sys-
tems such as security and surveillance, face image super-
resolution has become an active area of research.

Recently, DL-based methods have achieved remarkable
progress in face image super-resolution. In [158], a dubbed
CPGAN is proposed to address face hallucination and illu-
mination compensation together, which is optimized by the
conventional face hallucination loss and a new illumination
compensation loss. In [159], Zhu et al. proposed to jointly
learn face hallucination and facial spatial correspondence
field estimation. In [160], spatial transformer networks are
used in the generator architecture to overcome problems
related to misalignment of input images. In [161], [162],
the identity loss is utilized to preserve the identity-related
features by minimizing the distance between the embedding
vectors of SR and HR face images. In [163], the mask
occlusion is treated as image noise and a joint and collab-
orative learning network (JDSR-GAN) is constructed for the
masked face super-resolution task.

4.6 Medical Image Super-Resolution
Medical imaging methods such as computational tomog-
raphy (CT) and magnetic resonance imaging (MRI) are
essential to clinical diagnoses and surgery planning. Hence,
high-resolution medical images are desirable to provide
necessary visual information of the human body. Recently,
many methods have been proposed for medical image
super-resolution

For instance, Chen et al. proposed a Multi-level Densely
Connected Super-Resolution Network (mDCSRN [164])
with GAN-guided training to generate high-resolution MR
images, which can train and inference quickly. In [165], a 3D
Super-Resolution Convolutional Neural Network (3DSR-
CNN) is proposed to improve the resolution of 3D-CT volu-
metric images. In [166], Zhao et al. proposed a deep Channel
Splitting Network (CSN) to ease the representational burden
of deep models and further improve the SR performance
of MR images. In [167], Peng et al. introduced a Spatially-
Aware Interpolation Network (SAINT) for medical slice
synthesis to alleviate the memory constraint that volumetric
data posed. All of these methods are the cornerstone of
building the smart medical system and have great research
significance and value.

4.7 Stereo Image Super-Resolution
The dual camera has been widely used to estimate the
depth information. Meanwhile, stereo imaging can also be
applied in image restoration. In the stereo image pair, we
have two images with disparity much larger than one pixel.
Therefore, full use of these two images can enhance the
spatial resolution.

In StereoSR [168], Jeon et al. proposed a method that
learned a subpixel parallax prior to enhancing the spatial
resolution of the stereo images. However, the number of
shifted right images is fixed in StereoSR, which makes it
fail to handle different stereo images with large disparity
variations. To handle this problem, Wang et al. [169], [170]
proposed a parallax-attention mechanism with a global
receptive field along the epipolar line, which can generate
reliable correspondence between the stereo image pair and
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improve the quality of the reconstructed SR images. In [22],
a dataset named Flickr1024 is proposed for stereo image
super-resolution, which consists of 1024 high-quality stereo
image pairs. In [171], a stereo attention module is pro-
posed to extend pre-trained SISR networks for stereo image
SR, which interacts with stereo information bi-directionally
in a symmetric and compact manner. In [172], a sym-
metric bi-directional parallax attention module and an in-
line occlusion handling scheme are proposed to effectively
interact crossview information. In [173], a Stereo Super-
Resolution and Disparity Estimation Feedback Network
(SSRDE-FNet) is proposed to simultaneously handle the
stereo image super-resolution and disparity estimation in
a unified framework.

5 RECONSTRUCTION RESULTS

In order to help readers intuitively know the performance
of the aforementioned SISR models, we provide a detailed
comparison of reconstruction results of these models. Ac-
cording to the number of model parameters, we divide
SISR models into two types: lightweight models and large
models. Note that we call model with parameters less than
1000K as lightweight model and model with parameters
more than 1M (M=million) as large model. Specifically, we
collect 44 representative SISR models, including the most
classic, latest, and SOTA SISR models.

In TABLE 2 we provide the reconstruction results,
training datasets, and model parameters of these models
(lightweight models and large models are separated by
the bold black line). According to the results, we can
find that: (1) using a large dataset (e.g., DIV2K+Flickr2K)
can make the model achieve better results; (2) it is not
entirely correct that the more model parameters, the bet-
ter the model performance. This means that unreason-
ably increasing the model size is not the best solution;
(3) Transformer-based models show strong advantages,
whether in lightweight models (e.g., ESRT [120]) or large
models (e.g., SwinIR [118]); (4) research on the tiny model
(parameters less than 1000K) is still lacking. In the future, it
is still important to explore more discriminative evaluation
indicators and develop more effective SISR models.

6 REMAINING ISSUES AND FUTURE DIRECTIONS

It is true that the above models have achieved promising
results and have greatly promoted the development of
SISR. However, we cannot ignore that there are still many
challenging issues in SISR. In this section, we will point
out some of the challenges and summarize some promising
trends and future directions.

6.1 Lightweight SISR for Edge Devices
With the huge development of smart terminal market, re-
search on lightweight SISR models has gained increasing
attention. Although existing lightweight SISR models have
achieved a good balance between model size and perfor-
mance, we find that they still cannot be used in edge
devices (e.g., smartphones, smart cameras). This is because
the model size and computational costs of these models are
still exceed the limits of edge devices. Therefore, exploring

lightweight SISR models that can be practical in use for the
edge devices has great research significance and commercial
value. To achieve this, more efficient network structure and
mechanisms are worthy of further exploration. Moreover, it
is also necessary to use technologies like network binariza-
tion [184] and network quantization [185] to further reduce
the model size. In the future, it is worth combining the
lightweight SISR models with model compression schemes
to achieve the usage of SISR on edge devices.

6.2 Flexible and Adjustable SISR
Although DL-based SISR models have achieved gratifying
results, we notice a phenomenon that the structure of all
these models must be consistent during training and testing.
This greatly limits the flexibility of the model, making the
same model difficult to be applied to different applications
scenarios. In other words, training specially designed mod-
els to meet the requirements of different platforms in neces-
sary for previous methods. However, it will require a great
amount of manpower and material resources. Therefore, it
is crucial for us to design a flexible and adjustable SISR
model that can be deployed on different platforms without
retraining while keeping good reconstruction results.

6.3 New Loss Functions and Assessment Methods
In the past, most of SISR models relied on L1 loss or
MSE loss. Although some other new loss functions like
content loss, texture loss, and adversarial loss have been
proposed, they still cannot achieve a good balance between
reconstruction accuracy and perceptual quality. Therefore,
it remains a important research topic to explore new loss
functions that can ease the perception-distortion trade-off.
Meanwhile, some new assessment methods are subjective
and unfair. Therefore, new assessment methods that can
efficiently reflect image perception and distortion at the
same time are also essential.

6.4 Mutual Promotion with High-Level Tasks
As we all know, high-level computer vision tasks (e.g., im-
age classification, image segmentation, and image analysis)
are highly dependent on the quality of the input image, so
SISR technology is usually used for pre-processing. Mean-
while, the quality of the SR images will greatly affect the
accuracy of these tasks. Therefore, we recommend using the
accuracy of high-level CV tasks as an evaluation indicator
to measure the quality of the SR image. Meanwhile, we can
design some loss functions related to high-level tasks, thus
we can combine the feedback from other tasks to further
improve the quality of SR images. On the other hand, we
find that the two-step method of pre-processing the image
using the SISR model is inefficient, which cannot fully use
the potential features of the image itself, resulting in poor
model performance. Therefore, we recommend exploring
SISR models that can interact with high-level CV tasks, thus
SISR and other tasks can promote and learn from each other.

6.5 Efficient and Accurate Real SISR
Real SISR is destined to become the future mainstream in
this field. Therefore, it will inevitably become the focus
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TABLE 2
PSNR/SSIM comparison on Set5 (×4), Set14 (×4), and Urban100 (×4). Meanwhile, the training datasets and the number of model parameters

are provided. Sort by PSNR of Set5 in ascending order. Best results are highlighted. Please zoom in to see details.

Models
Set5

PSNR/SSIM
Set14

PSNR/SSIM
Urban100

PSNR/SSIM Training Datasets Parameters

SRCNN [174] 30.48/0.8628 27.50/0.7513 24.52/0.7221 T91+ImageNet 57K
ESPCN [33] 30.66/0.8646 27.71/0.7562 24.60/0.7360 T91+ImageNet 20K

FSRCNN [13] 30.71/0.8660 27.59/0.7550 24.62/0.7280 T91+General-100 13K
VDSR [50] 31.35/0.8838 28.02/0.7680 25.18/0.7540 BSD+T91 665K

LapSRN [64] 31.54/0.8855 28.19/0.7720 25.21/0.7560 BSD+T91 812K
DRRN [56] 31.68/0.8888 28.21/0.7721 25.44/0.7638 BSD+T91 297K

MemNet [57] 31.74/0.8893 28.26/0.7723 25.50/0.7630 BSD+T91 677K
AWSRN-S [175] 31.77/0.8893 28.35/0.7761 25.56/0.7678 DIV2K 588K

IDN [61] 31.82/0.8903 28.25/0.7730 25.41/0.7632 BSD+T91 678K
NLRN [80] 31.92/0.8916 28.36/0.7745 25.79/0.7729 BSD+T91 330K

CARN-M [58] 31.92/0.8903 28.42/0.7762 25.62/0.7694 DIV2K 412K
MAFFSRN [176] 32.24/0.8952 28.61/0.7819 26.11/0.7858 DIV2K 550K

RFDN [177] 32.18/0.8948 28.58/0.7812 26.04/0.7848 DIV2K 441K
ESRT [120] 32.19/0.8947 28.69/0.7833 26.39/0.7962 DIV2K 751K

IMDN [178] 32.21/0.8949 28.58/0.7811 26.04/0.7838 DIV2K 715K
MSFIN [179] 32.28/0.8957 28.57/0.7813 26.13/0.7865 DIV2K 682K

DSRN [87] 31.40/0.8830 28.07/0.7700 25.08/0.7470 T91 1.2M
DRCN [55] 31.53/0.8838 28.02/0.7670 25.14/0.7510 T91 1.8M

MADNet [180] 31.95/0.8917 28.44/0.7780 25.76/0.7746 DIV2K 1M
SRMD [132] 31.96/0.8925 28.35/0.7787 25.68/0.7731 BSD+DIV2K+WED 1.6M

SRDenseNet [60] 32.02/0.8934 28.50/0.7782 26.05/0.7819 ImageNet 2.0M
SRResNet [38] 32.05/0.8910 28.49/0.7800 ——-/——- ImageNet 1.5M

MSRN [52] 32.07/0.8903 28.60/0.7751 26.04/0.7896 DIV2K 6.3M
CARN [58] 32.13/0.8937 28.60/0.7806 26.07/0.7837 BSD+T91+DIV2K 1.6M
SeaNet [89] 32.33/0.8970 28.81/0.7855 26.32/0.7942 DIV2K 7.4M
CRN [58] 32.34/0.8971 28.74/0.7855 26.44/0.7967 DIV2K 9.5M
EDSR [51] 32.46/0.8968 28.80/0.7876 26.64/0.8033 DIV2K 43M
RDN [73] 32.47/0.8990 28.81/0.7871 26.61/0.8028 DIV2K 22.6M

DBPN [86] 32.47/0.8980 28.82/0.7860 26.38/0.7946 DIV2K+Flickr2K 10M
SRFBN [66] 32.47/0.8983 28.81/0.7868 26.60/0.8015 DIV2K+Flickr2K 3.63M
MDCN [63] 32.48/0.8985 28.83/0.7879 26.69/0.8049 DIV2K 4.5M
RNAN [81] 32.49/0.8982 28.83/0.7878 26.61/0.8023 DIV2K 7.5M
SRRFN [59] 32.56/0.8993 28.86/0.7882 26.78/0.8071 DIV2K 4.2M
IGNN [181] 32.57/0.8998 28.85/0.7891 26.84/0.8090 DIV2K 48M
NLSA [182] 32.59/0.9000 28.87/0.7891 26.96/0.8109 DIV2K 41M
RCAN [183] 32.63/0.9002 28.87/0.7889 26.82/0.8087 DIV2K 16M

SAN [79] 32.64/0.9003 28.92/0.7888 26.79/0.8068 DIV2K 15.7M
HAN [82] 32.64/0.9002 28.90/0.7890 26.85/0.8094 DIV2K 16.1M
IPT [117] 32.64/——– 29.01/——– 27.26/——– ImageNet 115.5M

RFANet [177] 32.66/0.9004 28.88/0.7894 26.92/0.8112 DIV2K 11M
DRN-S [102] 32.68/0.9010 28.93/0.7900 26.84/0.8070 DIV2K+Flickr2K 4.8M
RRDB [97] 32.73/0.9011 28.99/0.7917 27.03/0.8153 DIV2K+Flickr2K 16.7M

DRN-L [102] 32.74/0.9020 28.98/0.7920 27.03/0.8130 DIV2K+Flickr2K 9.8M
SwinIR [118] 32.92/0.9044 29.09/0.7950 27.45/0.8254 DIV2K+Flickr2K 11.8M

of researchers in the next few years. On the one hand, a
sufficiently large and accurate real image dataset is critical
to Real SISR. To achieve this, in addition to the manual
collection, we recommend using generative technology to
simulate the images, as well as using the generative ad-
versarial network to simulate enough degradation modes
to build the large real dataset. On the other hand, consid-
ering the difficulty of constructing real image dataset, it
is important to develop unsupervised learning-based SISR,
meta learning-based SISR, and blind SISR. Among them,
unsupervised learning can make the models get rid of the
dependence on dataset, meta learning can help models
migrate from simulated datasets to real data with simple
fine-tuning, and blind SISR can display or implicitly learn

the degradation mode of the image, and then reconstruct
high-quality SR images based on the learned degradation
mode. Although plenty of blind SISR methods have been
proposed, they always have unstable performance or have
strict prerequisites. Therefore, combining them may bring
new solutions for real SISR.

6.6 Efficient and Accurate Scale Arbitrary SISR
SISR has seen its applications in diverse real-life scenarios
and users. Therefore, it is necessary to develop a flexible and
universal scale arbitrary SISR model that can be adapted
to any scale, including asymmetric and non-integer scale
factors. Currently, most DL-based SISR models can only be
applied to one or a limited number of multiple upsampling
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factors. Although a few scale arbitrary SISR methods have
also been proposed, they tend to lack the flexibility to use
and the simplicity to be implemented, which greatly limits
their application scenarios. Therefore, exploring a CNN-
based accurate scale arbitrary SISR model as simple and
flexible as Bicubic is crucial to the spread of SISR technology.

6.7 Consider the Characteristics of Different Images
Although a series of models have been proposed for
domain-specific applications, most of them directly transfer
the SISR methods to these specific fields. This is the simplest
and feasible method, but it will also inhibit the model
performance since they ignore the data structure character-
istics of the domain-specific images. Therefore, fully mining
and using the potential prior and data characteristics of
the domain-specific images is beneficial for efficient and
accurate domain-specific SISR models construction. In the
future, it will be a trend to further optimize the existing SISR
models based on the prior knowledge and the characteristics
of the domain-specific images.

7 CONCLUSION

In this survey, we have given a comprehensive overview of
DL-based single image super-resolution methods according
to their targets, including reconstruction efficiency, recon-
struction accuracy, perceptual quality, and other technolo-
gies that can further improve model performance. Mean-
while, we provided a detailed introduction to the related
works of SISR and introduced a series of new tasks and
domain-specific applications extended by SISR. In order
to view the performance of each model more intuitively,
we also provided a detailed comparison of reconstruction
results. Moreover, we provided some underlying problems
in SISR and introduced several new trends and future di-
rections worthy of further exploration. We believe that the
survey can help researchers better understand this field and
further promote the development of this field.
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