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WeaFU: Weather-Informed Image Blind Restoration
via Multi-Weather Distribution Diffusion

Bodong Cheng, Juncheng Li∗, Jun Shi, Yingying Fang, Guixu Zhang, Yin Chen, Tieyong Zeng, Zhi Li∗

Abstract—The extraction of distribution from images with
diverse weather conditions is crucial for enhancing the robustness
of visual algorithms. When addressing image degradation caused
by different weather, accurately perceiving the data distribution
of weather-informed degradation becomes a fundamental chal-
lenge. However, given the highly stochastic nature, modelling
weather distribution poses a formidable task. In this paper,
we propose a novel multi-Weather distribution difFUsion blind
restoration model, named WeaFU. Firstly, the model employs
representation learning to map image distribution into a latent
space. Subsequently, WeaFU utilizes a diffusion-based approach,
with the assistance of Diffusion Distribution Generator (DDG),
to perceive and extract corresponding weather distribution. This
strategy ingeniously injects data distribution into the recovery
process, significantly enhancing the robustness of the model in
diverse weather scenarios. Finally, a Conditional Distribution-
Aware Transformer (CDAT) is constructed to align the distri-
bution information with pixels, thereby obtaining clear images.
Extensive experiments on real and synthetic datasets demonstrate
that WeaFU achieves superior performance.

Index Terms—Image restoration, diffusion model, distribution
learning.

I. INTRODUCTION

In various visual tasks, the impact of extreme weather
information on images is significantly amplified. This is par-
ticularly evident in tasks such as object detection [1]–[5],
image segmentation [6]–[9], and facial recognition [10], [11].
Confronted with such ill-posed problems, image restoration for
various weather often poses even more intricate challenges.
Due to the inability to determine the weather type of the
current image, restoration models usually incur higher costs
when learning this unstable degradation form.

Numerous methods [12]–[19] have been proposed to address
tasks associated with the specific weather information, in-
cluding image deraining, dehazing, snow removal, and smoke
removal. However, these methods are limited to individual
tasks, presenting difficulties in extending their applicability to
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Fig. 1: The proposed method differs from traditional direct learning
method. The direct learning method uses neural networks to narrow
the gap between LQ and HQ images. This strategy limits the ability
of the model to extract distribution information. In contrast, our
method focuses primarily on the distribution. By leveraging diffusion-
based representations, we effectively learn the distribution of images.
Subsequently, a pixel reconstructor is employed to obtain clean
images.

diverse scenarios. In the broader framework of unified restora-
tion models, the intelligent integration of diverse methods
seems ostensibly uncomplicated. Nevertheless, this strategy
comes with a higher storage and computational costs. More
importantly, it is unable to perform restoration for multi-
weather scenarios.

Currently, an increasing number of studies are focusing on
developing general multi-weather restoration models. How-
ever, a significant portion of research [20]–[23] still empha-
sizes directly shaping the unified representation of images
through learning, as shown in Fig. 1. These methods use super-
vised learning to fit various weather degradation by employing
different strategies, thereby achieving the goal of handling
multi-weather image degradation. Typically, they learn the
explicit features of different degraded images, overlooking the
implicit distribution behind the images. Moreover, the random
distribution of weather information can lead to inaccuracies
in model predictions. Given the randomness and uncertainty
of weather data, these models require optimization over a
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more extensive search space, which limits their generalization
performance. Consequently, their performance is constrained
when facing real weather degradation.

To capture the weather distribution within images, some
methods [24], [25] introduced generated models into im-
age restoration. Initially, Generative Adversarial Networks
(GANs), recognized as efficient end-to-end generators, were
employed for tasks such as image denoising and deblurring,
yielding impressive results. With the advent of Denoising
Diffusion Probabilistic Models (DDPMs), a considerable body
of current research has begun integrating DDPMs into image
restoration [26]–[29]. Undoubtedly, these endeavors have sig-
nificantly advanced the field. However, these methods often
confine themselves to a singular form of degradation, thereby
limiting the outstanding distribution learning capabilities of
DDPMs. To fully leverage the capabilities of DDPMs, we
integrate them into a multitask framework, utilizing it as a data
distribution generator to assist the recovery model in obtaining
more universally applicable distribution information.

The crux of multi-task image blind restoration lies in pre-
cisely modelling and extracting the distribution of the images,
and embedding distribution information into the network to
guide the restoration process. The inherent challenge of this
concept is finding a suitable approach capable of accurately
mapping complex weather in images to corresponding distri-
butions. To achieve this, we have developed a multi-Weather
distribution difFUsion blind restoration model (WeaFU) that
extracts distribution representations from which abstract map-
pings are reconstructed into a new pixel space (Fig. 1(b)). Our
method offers two significant advantages. Firstly, the diffusion
process expands the search space of distribution represen-
tations, mitigating unnecessary disturbances in the original
pixel space. Additionally, learned representations will yield
dense data mappings, enabling the utilization of distribution
information to avoid computations involving sparse tensors
and enhance overall efficiency. Therefore, compared to direct
pixel-to-pixel restoration methods, distribution information
endows the model with a high level of robustness.

• We design a Diffusion Distribution Generator (DDG) to
perceive the data distribution in diverse weather. This
efficient generator compresses sparse pixel information
from the image space into a denser high-dimensional
space. This process yields more generalizable features,
thereby enhancing the robustness of the multi-weather
model.

• We construct a Conditional Distribution-Aware Trans-
former (CDAT). This transformer utilizes the data dis-
tribution as a condition to guide the model towards more
accurate results.

• We propose a novel multi-Weather distribution difFusion
blind restoration model (WeaFU), which creatively em-
ploys diffusion model to perceive corresponding weather
distributions to address various weather recovery sce-
narios. Extensive experiments demonstrate that WeaFU
achieves optimal results in multi-weather blind restora-
tion, surpassing the performance of most specialized
methods.

II. RELATED WORKS

A. Single Weather Degradation Removal

Single degradation removal aims to reconstruct clean images
from specific weather. For rain removal, [30] introduced a
Progressive Recurrent Network (PReNet), leveraging recurrent
layers for learning feature dependency. [31] proposed a Multi-
Stage Progressive Reconstruction Network (MPRNet), using
a competitive objective to co-design spatial details and high-
level contextual information. This architecture progressively
learns and decomposes the restoration process, achieving
significant improvements across tasks with per-pixel adaptive
designs and information exchange mechanisms at each stage.
[32] introduced a compact learning rain removal transformer,
emphasizing task invariance and knowledge transfer. For snow
removal, DesnowNet [33] is a multi-level network addressing
translucent and opaque snow particle removal, while SM-
GARN [16] uses a snow mask-guided adaptive residual net-
work. For haze removal, FFA-Net [34] is an end-to-end feature
fusion attention network designed for haze removal. It utilizes
feature attention modules and attention-based fusion struc-
tures at different levels. AECR-Net [35] employs contrastive
learning for efficient fog removal, balancing performance, and
memory usage through a compact class autoencoder (AE)
framework.

These methods perform well for individual tasks, but they
have not yet achieved in unified restoration in different
weather. Thus, in constructing a unified model, the constrained
generalization of these methods impedes their performance in
multi-weather scenarios.

B. Multi Degradation Removal

Various weather phenomena introduce distinct forms of
interference to images, each exhibiting unique visual charac-
teristics. Despite these apparent differences, these phenomena
share commonalities. For instance, the impact of rain streaks,
snow stripes, and snowflakes on images shows similarities.
Moreover, in rainy and snowy weather, the inevitable oc-
currence of haze also affects images. Building upon these
observations, several studies [20]–[23], [36] have conducted
in-depth research in the field of image restoration under
various weather.

[20] proposed a model named All-in-One, capable of ad-
dressing image degradation caused by various severe weather
conditions. Through neural architecture search optimization
of the generator and employing a novel adversarial learning
scheme, it achieves competitiveness in the restoration of
images under different types of severe weather conditions. [22]
tackles the ill-posedness of the problem of removing multiple
severe weather effects by introducing a knowledge distillation
learning mechanism. [21] introduced an end-to-end model
called TransWeather, based on the Transformer architecture,
to efficiently handle image restoration under different weather
conditions through an encoder and a decoder. [23] designed
an efficient unified framework by discovering that distorted
images under different weather conditions contain general and
specific features.
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Fig. 2: WeaFU is composed of three main components: the Latent Semantic Mapper (LSM), the Diffusion Distribution Generator (DDG), and
the Conditional Distribution-Aware Transformer (CDAT). Training is carried out in three stages. Stage I: Low-quality (LQ) and high-quality
(HQ) images are simultaneously input to train the LSM, mapping the images into the feature space. During this stage, the CDAT is also
pre-trained. Stage II: The Noise Prediction Network within the DDG is trained to effectively sample distribution representations across
multi-weather scenarios. Stage III: The decoder part of the LSM and the entire CDAT are fine-tuned, ensuring accurate reconstruction of the
generic features sampled by the DDG into the new pixel space for clean image generation.

These methods focus on pixel-space restoration and over-
look deeper weather-informed distributions, limiting the search
space of the model. Although [22] considers distributions
across different weather, it only integrates multiple methods
through knowledge distillation, neglecting further exploring
distributions among distinct weather. Moreover, this integra-
tion introduces model complexity.

C. Diffusion Model for Restoration

Significant advancements in diffusion models for AI-
Generated Content (AIGC) have led to their integration into
image restoration tasks, outperforming previous GAN-based
methods. For instance, [26] introduced SR3, an image super-
resolution method based on DDPMs, employing stochastic
iterative denoising and U-Net architecture. Another approach,
WeatherDiff [27] utilizes a patch-based diffusion model for
image restoration under adverse weather conditions, inde-
pendent of image size. Despite the advanced performance
of diffusion models, their inefficiency in estimating entire
images during image restoration (IR) has been addressed
by [28] with the introduction of the efficient DiffIR. Luo
et al. [29]proposed a Stochastic Differential Equation (SDE)
method applicable to general image restoration, degrading HQ
images and recovering LQ images through inverse SDE.

However, these methods only apply DDPMs to single-task
scenarios and do not consider multi-task settings. Therefore,
we believe this limits the exceptional distribution modelling

capabilities of Diffusion. To fully unleash the potential of
the diffusion model, we aim to construct a multi-weather
restoration model with distribution-aware capabilities.

III. METHOD

A. Overview

As shown in Fig. 2, WeaFU primarily consists of the Latent
Semantic Mapper (LSM), the Diffusion Distribution Generator
(DDG), and the Conditional Distribution-Aware Transformer
(CDAT). Additionally, we divide the training process into three
stages: Stage I involves representation learning training of
the LSM and pixel reconstructor (CDAT), mapping HQ and
LQ images to the feature space and enabling the network
to acquire fundamental reconstruction capabilities; Stage II
focuses on training the DDG; Stage III fine-tunes the decoder
of the LSM and CDAT to adapt to the distribution of the
generator. Define X = [Xrain, Xsnow, Xhaze] as the LQ
image, Y = [Yrain, Ysnow, Yhaze] represents the HQ image,
and we use rain, snow, and haze as subscripts to distinguish
different weather conditions.

B. Stage I: Pre-training the Backbone

The training in Stage I has two objectives: training the
Latent Semantic Mapper (LSM) and the pixel reconstructor
(CDAT), aimed at compressing the image space and capturing
distribution information.
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Latent Semantic Mapper. WeaFU maps pixels from the
image space to the feature space through the previously
trained LSM. This form of feature carries denser information,
allowing the model to understand the data distribution better.
Furthermore, it contains rich semantic information to guide
pixel-level reconstruction. We pre-train this mapper using a
representation-learning approach that leverages the architec-
ture of U-Net to compress the images. As illustrated in Fig. 2,
this process involves parallel operations on LQ images of
different weather and their corresponding HQ images. In order
to more effectively compress and restore the image space, we
conducted a cross-operation between the representations and
underlying features of LQ and HQ at the deepest layer of the
network:

Xl, Xh = LSMencoder(X), (1)

Yl, Yh = LSMencoder(Y ), (2)

X ′ = LSMdecoder(Xl, Xh), (3)

Y ′ = LSMdecoder(Yl, Xh), (4)

where the latent and hidden representations of the LQ image
output by the encoder are denoted as Xl and Xh, respectively,
while Yl and Yh represent the latent and hidden representations
of the HQ image. It is important to emphasize that while our
primary goal is to obtain the encoder (LSMencoder) within
the LSM, the pre-trained decoder (LSMdecoder) will perform
feature alignment in the subsequent pixel reconstruction.
Conditional Distribution-Aware Transformer. Precisely re-
constructing abstract distributions into specific pixels is a
pivotal concern for WeaFU. To address this, we introduce
a lightweight Conditional Distribution-Aware Transformer
(CDAT) to map distribution information into the image space.

Given the image distribution generated by DDG as x′, to
reconstruct HQ images, it is necessary to satisfy:

p(x̂) = pϕ(x̂|x, x′), (5)

where pϕ represents the pixel reconstruction pipeline, x is the
LQ image, and x̂ is the reconstructed clean image. Previous
research has mainly focused on x or derived features of x
(such as color, texture, luminance channels, etc., as prior
information). In contrast, this work embeds weather distri-
bution information as the conditional control in the pixel
reconstruction process. Specifically, CDAT consists of multiple
CDAT blocks, each containing a Multi-Head Gated Perception
Unit (MGPU) and a Perception Attention Unit (PAU).

Multi-head Gating Perception Unit: In the Transformer, Q,
K, and V represent abstract concepts of the query mechanism
in database retrieval. In the design of the pixel reconstruc-
tor, we extend this idea and propose a Multi-Head Gating
Perception Unit (MGPU). MGPU introduces three proposed
matrices, W 1

p , W 2
p , and W 3

p ∈ RĈ×Ĉ . Through these three
matrices, we can obtain the Query FQ ∈ RĈ×Ĥ×Ŵ and the
Key FK ∈ RĈ×Ĥ×Ŵ :

FQ = (W 1
p ⊙W 2

p )⊗Norm(Finput), (6)

FK = (W 1
p ⊙W 2

p ⊙W 3
p )⊗Norm(Finput), (7)

where ⊙ indicates element-wise multiplication and ⊗ indicates
matrix multiplication. Through the mainstream, we can obtain
the Value FV ∈ RĈ×Ĥ×Ŵ :

FV = Conv1(Finput). (8)

The overall process of MGPU can be described as follows:

F ′ = Softmax
(
FQ ⊗ FT

K

)
FV . (9)

Perception Attention Unit: We use a unified learnable query
F̂Q ∈ RĈ×Ĥ×Ŵ as the embedding for attention, and the
additional Key F̂K and Value F̂V can be obtained through
the mapping of F ′:

F̂K = Conv1k(Norm(F ′)), (10)

F̂V = Conv1v(Norm(F ′)). (11)

Subsequently, we employ an attention mechanism across
the channel dimensions to process the features. The process
of Perception Attention Unit (PGU) can be described as:

F̃ = Softmax
(
F̂Q ⊗ F̂T

K

)
F̂V . (12)

In this stage, we adopt the L1 loss function for pre-training,
which is used to guide LSM to learn the representation of
images:

Lrec = ∥X ′ −X∥1 , (13)

Lres = ∥Y ′ − Y ∥1 , (14)

where Lrec and Lres represent the reconstruction loss and
restoration loss, respectively. The purpose of Lrec is to guide
the encoder to generate representations of LQ images, while
Lres aims to help the decoder learn the degradation infor-
mation within LQ images to reconstruct images close to HQ
images. Additionally, we impose constraints at the distribution
level of the representations, where E() represents the mean
and Std() represents the standard deviation.

Ldis = ∥E(X ′)− E(X)∥1 + ∥Std(X ′)− Std(X)∥1 , (15)

Finally, we constrain the output of CDAT with Lacc to ensure
the accuracy of image reconstruction:

Lacc = ∥CDAT (Y ′, X)− Y ∥1 . (16)

In summary, the objective function to be optimized in Stage I
is:

L = Lrec + Lres + Ldis + Lacc. (17)

C. Stage II: Training the Diffusion Distribution Generator

WeaFU differs from previous methods by introducing the
idea of generating distribution representations in multi-weather
scenarios. We propose a Diffusion Distribution Generator
(DDG), which perceives the latent feature extracted by the
mapper using a diffusion process. To further enhance its
learning capacity for distribution representations, we employ
the simpler IR-SED [29]. The method can achieve high-quality
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Fig. 3: Visual comparisons with other SOTA methods in real-world scenarios.

Algorithm 1 Inference Processing

Input: LQ Image X , implicit sampling steps T .
Parameter: Latent Semantic Mapper LSM()θ, Noise predic-

tion Network ϵ()θ, Conditional Distribution-Aware Trans-
former CDAT ()θ.

Output: Weather-free image X̂ .
1: Xl, Xh = LSMencoder(X)θ
2: for t = 1...T do
3: Xdist(t) = Xl + σmaxϵ ∼ N(0, I)

4: dXl =
[
θt(µ−Xl)− σ2

t
ϵ(Xdist(t),Xl)θ

vt

]
dt+ σtdŵ

5: Xdist(t− 1) = Xdist(t)− dXl

6: end for
7: X ′ = LSMdecoder(Xdist(0), Xh)θ
8: X̂ = CDAT (X ′, X)θ
9: return X̂

distributions using shorter processes. The forward process of
IR-SDE is defined as:

dX = θt(µ−X)dt+ σtdw, (18)

where θt and σt represent the mean-reversion speed and
stochastic volatility, respectively. And µ is latent feature of
LQ image. According to IR-SDE, when σ2

t

θ2
t
= 2λ2 holds, the

score in the reverse process can be solved:

dX =
[
θt(µ−X)− σ2

t ▽X logpt
(X)

]
dt+ σtdŵ, (19)

▽X logpt
(X) = −X(t)−mt

vt
, (20)

here, mt and vt are derived from the marginal distribution
pt(X) ∼ N(X(t)|mt, vt):

mt := µ+ (X(0)− µ)eθ̄t , (21)

vt := λ2(1− e−2θ̄t), (22)

as X(t) can be obtained through mt and vt, the ▽X logpt(X)
can be expressed as − ϵt

vt
.

D. Stage III: Fine-tuning and Inference

The LSM and CDAT use the U-Net architecture to facilitate
the pre-training. By summing the features at each level of these
U-Nets, information from both is integrated, ensuring that
CDAT can fully perceive the distribution information during
reconstruction. However, since the DDG, which generates
distribution information, is trained separately in Stage II, a
divergence occurs between the original feature space and the
pre-trained network. Therefore, in the third phase, fine-tuning
focuses on adjusting the parameters of the decoders and CDAT.
This process aims to realign the distribution information output
by DDG and ensure the accurate reconstruction of image
pixels.

As illustrated in Stage III of Fig. 2, we froze the LSM’s
encoder and the parameters within DDG. Simultaneously,
we employ the L1 loss function to measure the difference
between the reconstructed images and the originals, which
guides updating the parameters in LSM’s decoder and CDAT.
This approach allows us to fine-tune the model to closely align
with the output distribution of DDG, ensuring that the pixel
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TABLE I: Quantitative comparisons in real-world scenarios on the SPA+, RealSnow, and REVIDE datasets. The best results are highlighted,
and the second best results are underlined.

Methods SPA+ RealSnow REVIDE
PSNR↑ LPIPS↓ SSIM↑ IL-NIQE↓ PSNR↑ LPIPS↓ SSIM↑ IL-NIQE↓ PSNR↑ LPIPS↓ SSIM↑ IL-NIQE↓

Specific Methods
DeSnowNet [33] - - - - 28.52 0.258 0.8952 27.16 - - - -
SMGARN [16] - - - - 29.27 0.221 0.8994 26.45 - - - -
PReNet [30] 37.30 0.124 0.9631 24.67 - - - - - - - -
MPRNet [31] 39.02 0.086 0.9803 23.89 - - - - 20.81 0.513 0.8453 43.91
ESTINet [37] 38.73 0.093 0.9823 23.50 - - - - - - - -
GridDehazeNet [38] - - - - - - - - 19.40 0.682 0.8421 45.34
FFA-Net [34] - - - - - - - - 21.19 0.411 0.8504 43.78
Mb-TaylorFormer [39] - - - - - - - - 20.78 0.510 0.8501 43.90
SwinIR [40] 38.64 0.089 0.9776 24.12 28.93 0.210 0.9067 26.12 19.67 0.692 0.8502 45.01
Uformer [41] 37.58 0.120 0.9759 25.23 28.77 0.237 0.9073 26.45 18.60 0.808 0.8142 46.45
Restormer [42] 38.87 0.084 0.9820 24.89 29.41 0.216 0.8787 25.45 19.86 0.599 0.8316 44.82
MambaIR [43] 38.42 0.083 0.9835 23.75 29.36 0.243 0.8930 25.91 20.61 0.527 0.8461 44.31
GridFormer [44] 38.92 0.089 0.9814 22.85 29.47 0.223 0.8986 25.23 20.73 0.503 0.8482 43.81
Diffusion-Based Methods
Refusion [45] 36.40 0.208 0.9613 25.45 28.04 0.496 0.8834 28.65 19.70 0.608 0.8210 45.12
WeatherDiff [27] 38.57 0.088 0.9824 23.78 29.44 0.275 0.9078 25.23 19.65 0.629 0.8289 44.23
DiffIR [28] 39.08 0.082 0.9873 22.45 29.63 0.172 0.8907 24.89 20.39 0.547 0.8476 44.67
Multi-Weather Methods
All-in-One [20] 34.78 0.161 0.9436 26.12 29.28 0.253 0.9048 25.89 20.24 0.570 0.8256 44.56
TransWeather [21] 33.64 0.168 0.9258 27.45 29.16 0.248 0.8962 26.23 20.31 0.532 0.8297 44.40
Chen et al. [22] 38.15 0.092 0.9744 24.78 29.35 0.221 0.8983 25.56 20.47 0.516 0.8372 44.32
WGWS-Net [23] 38.94 0.086 0.9823 24.45 29.46 0.216 0.9083 25.12 20.56 0.507 0.8311 44.16
WeaFU (Ours) 39.06 0.071 0.9844 22.12 29.58 0.208 0.9094 24.51 20.82 0.498 0.8592 43.56

values generated by the decoder closely resemble those of the
original image. Additionally, we introduce the LQ image as
a conditional factor for the pixel reconstructor. This enables
the network to preserve the fundamental pixel distribution of
the image, thereby enhancing the quality of the reconstructed
image. Upon completing Stage III, the parameters of these two
components remain frozen for inference. The entire inference
process of the model is detailed in Algorithm 1.

IV. EXPERIMENT

A. Implementation

WeaFU consists of three main components: the Latent
Semantic Mapper, the Diffusion Distribution Generator, and
the Conditional Distribution-Aware Transformer. The Latent
Semantic Mapper adopts a 4-level down-sampling strategy,
with the number of residual units per layer set as [4, 8, 8, 16].
The Conditional Distribution-Aware Transformer follows a
similar 4-level design, with the number of units per layer
specified as [1, 1, 2, 4] and an embedding dimension of 48.

For the Diffusion Distribution Generator, the batch size is 8,
and the training block size is 128× 128 pixels. We utilize the
AdamW optimizer with β1 = 0.9 and β2 = 0.99. The initial
learning rate is set to 3× 10−5 and is decayed to 1e−7 using
a cosine scheduler. The noise level is fixed at 50 for all tasks,
and the diffusion denoising steps are set to 100.

B. Datasets

We evaluated different datasets to validate the effectiveness
of WeaFU on multi-weather images. The training data is
divided into two groups: a composite dataset from real-world
images (SPA+ [23], RealSnow [23], and REVIDE [46]) and
a composite dataset from synthetic images (Rain1400 [47],

Rain800 [48], Rain200 [49], Snow100K [33], and RE-
SIDE [50]).

C. Compare with SOTA Methods
For evaluating the performance of WeaFU, we employ

several metrics, including PSNR (Peak Signal-to-Noise Ratio),
LPIPS (Learned Perceptual Image Patch Similarity), SSIM
(Structural Similarity Index Measure), and IL-NIQE (Inte-
grated Local Natural Image Quality Evaluator).

TABLE I compares WeaFU with other state-of-the-art
(SOTA) models on the real-world datasets. As can be observed,
WeaFU achieves competitive results on all datasets. While
DiffIR demonstrates slightly higher PSNR among diffusion
methods, WeaFU excels in SSIM and IL-NIQE, highlight-
ing its robust performance in multi-weather restoration tasks
through unified training. In addition, compared with the multi-
weather methods, WeaFU similarly yields competitive scores,
indicating the higher robustness of our proposal towards
different scenarios.

To validate the robustness of WeaFU, we created a test
dataset (MultiWeather) by randomly sampling subsets of
degraded images containing rain, snow, and haze from various
datasets to evaluate the ability of general models to handle
unknown weather types. According to Fig. 6, we can observe
that our WeaFU outperforms other methods significantly under
multi-weather conditions. Despite being a recently proposed
general method, the performance of WGWS-Net [23] notably
degrades in unknown weather, further highlighting the robust-
ness of WeaFU in multi-weather tasks.

D. Comparison on Synthetic Datasets
We further evaluate the reconstruction performance of

WeaFU on synthetic datasets to emphasize its robustness in
diverse weather scenarios.
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Fig. 4: Visual comparisons of SOTA models on the CSD dataset. The red boxes of LQ image depict varying snowflake sizes and dense rain
streaks. From a global perspective, the image also exhibits vailing effects.

Fig. 5: Visualization assessment of the model in unknown weather restoration on the MultiWeather dataset.

TABLE II compares the performance of our method with ex-
isting methods on the RESIDE dataset. WeaFU achieves 29.37
PSNR, 0.236 LPIPS and 22.80 NIQE, which outperforms
previous state-of-the-art methods, indicating its exceptional
ability to recover clear images from the haze. Additionally,
WeaFU achieves 0.8962 SSIM, which is still a decent result
(0.8975 SSIM achieved by Restormer [42]).

In TABLE III, we compare WeaFU with state-of-the-art
restoration models on Rain200 (L and H), Rain800, and
Rain1400. In contrast to the previous methods, our method
achieves competitive results on all rainy datasets, demonstrat-
ing its robust performance in deraining tasks under differ-
ent rainfall. Specifically, WeaFU achieves 37.65 PSNR on
Rain200-L, the highest among all methods, indicating its
exceptional ability to restore clear images from rainy scenes.
It can be observed that MPRNet achieves excellent results for
SSIM and IL-NIQE on the Rain200 dataset. However, they
usually generalize poorly to other datasets.

TABLE IV demonstrates the quantitative results of our
proposed method compared with specific methods and multi-
weather restoration methods. One can observe that our net-
work, while being trained for multiple bad weather types,
achieves competitive performance compared with specific
methods. WeaFU achieves the best PSNR, demonstrating its
ability to restore clear images from snowy scenes. WeaFU also
achieves the best LPIPS and SSIM, indicating its effective-
ness in preserving image quality. Furthermore, WeaFU attains
18.12, 20.34 and 23.23 IL-NIQE. Such results demonstrate
exceptional performance under heavy snow.

We also provide a comparative analysis of this experiment
from a visual perspective. Fig. 4 showcases the results of
different methods on the CSD dataset. It is worth emphasizing
that the CSD dataset integrates diverse weather degradation,
providing a robust assessment of the comprehensive perfor-
mance of the methods. To further evaluate the overall per-
formance of WeaFU, we also include the single-task method
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TABLE II: Quantitative comparisons of image dehazing on the
RESIDE dataset. The best results are highlighted, and the second
best results are underlined.

Methods RESIDE
PSNR↑ LPIPS↓ SSIM↑ IL-NIQE↓

Specific Methods
AOD-Net [51] 27.50 0.653 0.8569 26.78
GridDehazeNet [38] 29.01 0.315 0.8801 23.96
FFA-Net [34] 29.27 0.281 0.8736 23.84
MPRNet [31] 28.69 0.411 0.8822 24.12
SwinIR [40] 28.92 0.353 0.8795 23.89
Restormer [42] 29.36 0.240 0.8975 23.13
Uformer [41] 28.77 0.376 0.8705 24.34
MambaIR [43] 28.73 0.381 0.8752 24.39
Mb-TaylorFormer [39] 28.92 0.346 0.8771 24.05
GridFormer [44] 29.11 0.293 0.8864 23.92
Multi-Weather Methods
All-in-One [20] 28.29 0.483 0.8823 23.45
TransWeather [21] 28.43 0.452 0.8750 24.12
Chen et al. [22] 28.35 0.457 0.8904 23.67
WSWG-Net [23] 28.82 0.384 0.8815 23.34
WeaFU (Ours) 29.37 0.236 0.8962 22.80

DiffIR [28], based on the diffusion model, for comparison.
Upon closer inspection of the region inside the yellow box
after local magnification, it can be observed that WeaFU
exhibits fewer rain/snow artifacts. While TransWeather [21]
can eliminate more rain and snow textures, it fails to remove
haze in the image, resulting in uneven, patchy artifacts. In
contrast, the other three methods can eliminate these artifacts
but at the cost of generating more residual raindrops or snow
streaks. Additionally, results in Fig. 5 reflect the outcomes
on the MultiWeather dataset, which randomly samples images
with different weather degradation to assess the capability of
the model in handling unknown weather. Firstly, compared to
the single-task image restoration model DiffIR [28], WeaFU
demonstrates more robust general restoration capabilities.
The reconstructed weather-free images exhibit less residual
weather degradation. Compared to other general methods,
WeaFU produces more accurate image details and shows no
residues in the edge regions.

Overall, these results highlight the outstanding performance
of WeaFU in deraining (Rain200, Rain800, and Rain1400
datasets), desnowing (Snow100K dataset), and dehazing (RE-
SIDE dataset). They further validate the exceptional per-
formance of WeaFU in diverse weather scenarios. Notably,
WeaFU consistently outperforms state-of-the-art unified and
specific methods, emphasizing its robustness in addressing
various weather-related challenges.

E. Effectiveness in Multi-Weather and Mixed-Weather Condi-
tions

In addition, we integrated methods designed for specific
weather conditions into a comprehensive model to address
mixed-weather degradation in CSD [12]. In other words, in
CSD, each image contains multiple different weather con-
ditions simultaneously, and they are randomly distributed
on the image. This greatly tests the robustness of the

Fig. 6: PSNR comparisons on the MultiWeather dataset.
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Fig. 7: Quantitative analysis of the influence of DDG on representa-
tion distribution. In this context, the light-colored region signifies the
distribution generated by the model, whereas the dark-colored region
represents the original data distribution. The distribution in Fig. 1 is
obtained by computing the mean and variance of feature maps.

model. As shown in Table VI, the performance of the in-
tegrated and multi-weather models significantly deteriorated
in mixed-weather tasks, while our WeaFU still performed
excellently. Table VII includes the evaluation results for the
RainKITTI [55] and JRSRD [56] datasets. It is evident that
our method has achieved the best results when compared with
other multi-weather methods. This further demonstrates the
excellence of WeaFU.

F. Ablation Study

In this part, we validate the effectiveness of each component
in WeaFU. For detailed information, please refer to TABLE V,
where WeaFUbase denotes our WeaFU, serving as a control
reference.
Study of the Diffusion Distribution Generator. As the core
of our method, DDG utilizes the diffusion mechanism to per-
ceive the distribution information in the image space, thereby
enhancing restoration performance across diverse weather. We
remove DDG from the model, resulting in WeaFU1. Clearly,
the comprehensive performance of WeaFUbase is signifi-
cantly superior to that of WeaFU1 across various weather
conditions. This indicates that DDG contributes to enhancing
the overall robustness of the model across diverse weather.

We also conduct a quantitative analysis of the features
generated by DDG to validate the accuracy of generating dis-
tribution representations when matching sample distributions,
as illustrated in Fig. 7. Clearly, under the guidance of DDG, the
model can better fit data distributions under different weather
conditions. This further confirms the rationality and feasibility
of WeaFU in leveraging distribution information.
Study of the Conditional Distribution-Aware Transformer.
The role of CDAT in WeaFU is to remap the obtained
distribution information back to the pixel space without being
affected by weather. We remove CDAT from the model,
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TABLE III: Quantitative comparisons of image deraining on Rain200 (-L and -H), Rain800, and Rain1400 datasets. The best results are
highlighted, and the second best results are underlined.

Methods Rain200-L Rain200-H Rain800 Rain1400
PSNR↑LPIPS↓SSIM↑IL-NIQE↓PSNR↑LPIPS↓SSIM↑IL-NIQE↓PSNR↑LPIPS↓SSIM↑IL-NIQE↓PSNR↑LPIPS↓SSIM↑IL-NIQE↓

Specific Methods
RESCAN [52] 28.79 0.331 0.8720 27.67 26.54 0.594 0.8545 28.13 25.81 0.358 0.8634 30.72 29.81 0.254 0.8898 25.58
PReNet [30] 33.66 0.175 0.8831 23.45 29.04 0.320 0.8703 26.89 28.14 0.244 0.8687 28.73 31.76 0.176 0.8976 24.90
SwinIR [40] 34.52 0.166 0.9130 22.56 29.23 0.306 0.8799 25.68 28.03 0.263 0.8729 28.15 32.88 0.155 0.9010 24.45
Restormer [42] 34.87 0.143 0.9566 22.34 29.82 0.265 0.8921 24.89 28.11 0.277 0.8773 27.98 32.43 0.159 0.8991 24.67
Uftormer [41] 33.10 0.184 0.8895 23.78 28.56 0.278 0.8697 27.23 27.47 0.306 0.8643 29.11 31.89 0.183 0.8964 25.23
MPRNet [31] 37.41 0.116 0.9835 21.89 30.27 0.176 0.8942 24.43 28.57 0.228 0.8791 27.67 32.96 0.146 0.9034 23.98
MAXIM [53] 36.28 0.127 0.9724 22.23 29.79 0.254 0.8909 25.01 28.33 0.265 0.8785 28.56 32.81 0.151 0.9020 24.46
MambaIR [43] 36.93 0.125 0.9753 22.12 30.08 0.205 0.8930 24.71 28.45 0.235 0.8788 27.84 32.91 0.150 0.9018 24.41
ESTINet [37] 37.34 0.120 0.9772 22.01 30.22 0.182 0.8925 24.86 28.49 0.230 0.8726 27.72 32.90 0.150 0.9013 24.35
GridFormer [44] 37.39 0.118 0.9736 22.04 30.25 0.181 0.8905 24.92 28.52 0.236 0.8762 27.79 32.81 0.148 0.9032 24.05
Multi-Weather Methods
All-in-One [20] 33.13 0.192 0.9157 23.87 29.11 0.331 0.8672 25.78 27.59 0.282 0.8661 28.99 32.22 0.162 0.8982 24.89
TransWeather [21] 33.30 0.189 0.9420 23.56 28.92 0.348 0.8609 26.34 27.40 0.295 0.8635 29.12 32.08 0.166 0.8970 25.04
Chen et al. [22] 37.06 0.124 0.9621 22.27 29.35 0.295 0.8823 25.78 27.45 0.286 0.8679 29.34 32.34 0.157 0.8998 24.54
WGWS-Net [23] 35.46 0.138 0.9456 22.14 29.74 0.220 0.8754 25.45 27.97 0.254 0.8702 28.78 32.67 0.164 0.9002 24.58
WeaFU (Ours) 37.65 0.108 0.9792 21.56 30.58 0.156 0.8958 24.67 28.84 0.227 0.8803 27.34 33.16 0.122 0.9045 23.78

TABLE IV: Quantitative comparisons of image desnowing on Snow100K (-S, -M, and -L) datasets. The best results are highlighted, and
the second best results are underlined.

Methods Snow100K-S Snow100K-M Snow100K-L
PSNR↑ LPIPS↓ SSIM↑ IL-NIQE↓ PSNR↑ LPIPS↓ SSIM↑ IL-NIQE↓ PSNR↑ LPIPS↓ SSIM↑ IL-NIQE↓

Specific Methods
DesnowNet [33] 32.23 0.277 0.9500 20.48 30.68 0.407 0.9035 22.95 28.79 0.528 0.8823 25.34
SwinIR [40] 33.27 0.214 0.9521 19.56 31.44 0.366 0.9409 21.77 29.28 0.473 0.8947 24.12
Restormer [42] 33.89 0.163 0.9534 18.73 32.42 0.265 0.9301 21.10 29.36 0.456 0.8989 23.48
Uformer [41] 31.04 0.335 0.9356 20.52 31.07 0.381 0.9134 22.89 28.76 0.501 0.8901 25.67
SMGARN [16] 34.16 0.153 0.9610 18.56 32.47 0.246 0.9434 20.67 29.45 0.438 0.9178 23.45
DDMSNET [54] 31.46 0.318 0.9276 20.34 31.35 0.370 0.9268 22.61 28.85 0.498 0.8834 25.11
MambaIR [43] 34.62 0.148 0.9638 18.42 32.50 0.241 0.9455 20.55 29.47 0.435 0.9185 23.41
GridFormer [44] 34.05 0.178 0.9550 19.20 32.11 0.280 0.9350 21.40 29.27 0.456 0.9060 23.89
Multi-Weather Methods
All-in-One [20] 32.73 0.243 0.9512 19.01 31.82 0.339 0.9198 21.74 28.99 0.476 0.8843 24.12
TransWeather [21] 32.60 0.247 0.9598 19.45 31.22 0.378 0.9073 21.88 29.14 0.460 0.8865 24.01
Chen et al. [22] 32.86 0.210 0.9445 19.23 31.68 0.354 0.9101 21.55 29.33 0.443 0.9089 23.56
WSWG-Net [23] 33.56 0.236 0.9528 19.45 31.48 0.360 0.9289 21.68 29.06 0.461 0.8954 24.12
WeaFU (Ours) 34.77 0.139 0.9723 18.12 32.63 0.239 0.9456 20.34 29.49 0.431 0.9198 23.23

resulting in WeaFU2. Obviously, in the absence of CDAT,
WeaFU struggles to correspond distribution information with
weather-free pixels. To further validate the effectiveness of the
Multi-Head Gating Perception Unit (MGPU) and Perception
Attention Unit (PAU) in CDAT, we replace these two units
with CNN and the original attention structure, resulting in
WeaFUw/oPAG and WeaFUw/oMGPU . TABLE V shows
that both sets of experimental configurations fail to surpass
WeaFUbase. All of these studies demonstrate the effective-
ness of the proposed model.

Study of Training Strategy In order to explore a more
effective training strategy, we compare end-to-end optimiza-
tion with the optimization employed by WeaFU. End-to-end
optimization allows the entire model to be trained in a single
pass, optimizing from input to output. This facilitates the direct
learning of complex mappings for the model, eliminating
the need for manually designing intermediate representations

or features. However, this proves detrimental for WeaFU,
which possesses diffusion generation capabilities. Due to the
indirect learning approach of WeaFU , which involves sam-
pling the distribution of images rather than directly learning
from the images, the training process occurs independently of
the mainstream model. As a result, end-to-end optimization
methods are not applicable. Additionally, the staged training
proves effective in controlling the information flow through the
intermediate layers of the model, providing valuable assistance
in guiding model learning.

In the TABLE VIII, WeaFUbase and WeaFUe2e contrast
the final performance of the two training strategies, where
WeaFUbase represents the segmented optimization strategy
employed by our WeaFU, and WeaFUe2e represents the
end-to-end optimization strategy. Clearly, the performance of
WeaFUe2e is significantly inferior to WeaFUbase, demon-
strating the applicability of segmented optimization for dif-
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TABLE V: Quantitative comparisons of different components within WeaFU across multi-weather conditions (PSNR and LPIPS).

Method DDG CDAT CDAT-MGPU CDAT-PAG Rain Snow Haze
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

WeaFUbase 39.06 0.071 29.58 0.208 20.82 0.498
WeaFU1 38.82 0.092 29.14 0.274 20.36 0.520
WeaFU2 37.66 0.288 28.38 0.325 19.52 0.652
WeaFUw/oPAG 38.77 0.106 29.30 0.259 20.55 0.501
WeaFUw/oMGPU 38.69 0.112 29.27 0.261 20.60 0.506

TABLE VI: Quantitative comparisons of multi-task integration mod-
els and unified models on CSD dataset (PSNR). R, S, and H represent
single-task methods for rain, snow, and haze removal, respectively.
Among them, the best results are highlighted and the second best
results are underline.

Type Methods CSD
Integrad Methods

R+S PReNet+SMGARN 29.25
MPRNet+Restormer 29.11

S+H Restormer+FFA-Net 30.19
SMGARN+GridDehazeNet 30.38

H+R FFA-Net+PReNet 28.54
GridDehaze+MPRNet 28.26

R+S+H PReNet+SMGARN+FFA-Net 30.45
MPRNet+Restormer+GridDehazeNet 31.12

Multi-Weather Methods

(R, S, H)

All-in-One [20] 29.83
TransWeather [21] 30.15

Chen et al. [22] 31.29
WGWS-Net [23] 31.34
WeaFU (Ours) 32.87

TABLE VII: Quantitative comparisons on the RainKITTI and JRSRD
datasets. The best results are highlighted.

Methods RainKITTI JRSRD
All-in-One [20] 32.78 27.42
TransWeather [21] 33.71 27.83
Chen et al. [22] 34.62 28.54
WGWS-Net [23] 34.55 28.62
WeaFU (Ours) 35.13 28.97

TABLE VIII: Quantitative comparisons of different training strategies
within WeaFU across multi-weather conditions (PSNR).

Models Rain Snow Haze
WeaFUe2e 35.42 27.53 18.76
WeaFUS1S2

36.58 28.03 19.20
WeaFUS2S3

37.16 28.39 19.25
WeaFUbase 39.06 29.58 20.82

fusion models. Additionally, we conducted combined experi-
ments with Stage I, Stage II, and Stage III, where WeaFUS1S2

involves joint optimization of Stage I and Stage II, and
WeaFUS2S3

involves joint optimization of Stage II and Stage
III. As reflected in the results listed in TABLE VIII, end-to-end
optimization, including diffusion models, severely impacts the
performance of the model. Hence, we employ a segmented op-
timization strategy to train the proposed generated distribution
mapping model.
Study of Hyperparameters In this part, we ablate image
patch size, embedding dimension, and network depth, as
shown in Table IX and X. Larger image patch sizes and em-
bedding dimensions can continuously improve PSNR. Based

on this, we set the patch size to 128×128, with an embedding
dimension of 48. Additionally, as shown in Table X, PSNR
also increases with the depth of the network. Therefore, we
follow the setup of previous work and set the network depth
for LSM and CDAT to 4 to achieve the best PSNR.

V. CONCLUSION

In this work, we addressed the fundamental challenge
of image restoration under unknown weather conditions by
emphasizing the precise modelling of image representation
distributions. Specifically, we proposed a multi-Weather dis-
tribution difFUsion blind restoration model (WeaFU), which
introduces a novel idea creatively utilizing the diffusion-based
weather information distribution for image restoration, en-
hancing robustness under various weather conditions. WeaFU
employed a Latent Semantic Mapper (LSM) and Diffusion
Distribution Generator (DDG) to perceive universal distribu-
tions by constraining sparse image features into a denser fea-
ture space. Additionally, the designed lightweight Conditional
Distribution-Aware Transformer (CDAT) further enhanced the
accuracy of restoration results. Extensive experiments demon-
strated that WeaFU excels in multi-weather image restoration
under various weather conditions, validating its outstanding
robustness.
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