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Abstract—The B-mode ultrasound based computer-

aided diagnosis (CAD) has shown its effectiveness for 
diagnosis of Developmental Dysplasia of the Hip (DDH) in 
infants within 6 months. Hip landmark detection is a 
feasible way for the CAD of DDH according to the Graf’s 
method. However, existing landmark detection algorithms 
mainly focus on designing special models to capture the 
features from hip ultrasound images, but generally ignore 
the important spatial relations among different landmarks. 
To this end, a novel weakly supervised learning-based 
algorithm, the Topological Graph Convolutional Network 
(TGCN) guided Improved Conformer (TGCN-ICF), is 
proposed for detecting landmarks from hip ultrasound 
images. The TGCN-ICF includes two subnetworks: an 
Improved Conformer (ICF) subnetwork to generate 
heatmaps and constraint vectors from ultrasound images, 
and a TGCN subnetwork to additionally explore topological 
relations among hip landmarks with the guidance of class 
labels for further refining and improving the detection 
accuracy. Moreover, a new Mutual Modulation Fusion (MMF) 
module is developed to fully exchange and fuse the 
extracted feature information from the convolutional neural 
network (CNN) and Transformer branches in ICF. 
Meanwhile, a novel Mutual Supervision Constraint (MSC) 
strategy is designed to provide a constraint for detection of 
each hip landmark. The experimental results on two real-
world DDH datasets demonstrate that the TGCN-ICF 
outperforms all the compared algorithms, suggesting its 
potential applications. The source code is publicly available 
on https://github.com/Tianxiang-Huang/TGCN-ICF. 

 
Index Terms—Developmental Dysplasia of the Hip (DDH), 

B-mode Ultrasound Images, Landmark Detection, 
Topological Graph Convolutional Network.  

I. INTRODUCTION 
EVELOPMENTAL Dysplasia of the Hip (DDH) is one of 
the most common orthopedic disorders in infants, which 

may result in acetabular dysplasia, hip instability, and hip 
dislocation [1]. It is crucial to accurately diagnose DDH in the 
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early stagy for the following treatment [2]. In clinical practice, 
B-mode Ultrasound (BUS) imaging is commonly used for 
diagnosis of DDH in infants within 6 months, due to the 
advantages of non-invasive, non-radiation, and real-time 
imaging [3]. The Graf’s method is considered as the gold 
standard examination for diagnosing DDH by measuring the α 
and β angles as shown in Fig. 1(a) [4]. However, this method is 
susceptible to the subjective expertise of sonologists. Therefore, 
the computer-aided diagnosis (CAD) for DDH has gained its 
reputation in recent years. 

Recently, deep learning (DL) has garnered significant 
attention in the field of BUS-based CAD for DDH [5], [6], [7], 
[8]. Most of these models focus on developing specialized 
segmentation algorithms to segment the critical anatomical 
structures for calculating two angles [5], [6], resulting in the 
issue that the accuracy of angle measurement extremely 
depends on the performance of segmentation algorithms. In fact, 
the angle measurement can be simply determined by some 
critical hip landmarks as shown in Fig. 1(b) and (c). Some 
pioneering works then have explored the feasibility of 

D 

Fig. 1. Illustration of hip BUS images according to Graf’s method. (a) 
Two angles. α is formed by the angle between the base line (LB) and the 
bone roof line (L1), β is created by the intersection of the base line (LB) 
and the cartilage roof line (L2). (b) Six landmarks. Landmarks 1 to 6 are 
the anatomical critical points in the hip BUS images. (c) Three lines. The 
red base line (LB) is formed by landmark 1 and 2, the green bone roof 
line (L1) is formed by landmark 3 and 4, and the yellow cartilage roof line 
(L2) is formed by landmark 5 and 6. 
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developing the CAD based on hip landmark detection [7], [8]. 
However, it is still a challenging task to accurately detect the 
critical hip landmarks due to the effect of speckle noise in 
ultrasound images [9]. 

As shown in Fig. 1(b), the hip landmarks are distributed 
across multiple regions in BUS images. Thus, it is essential to 
capture both the local and global information to improve the 
detection accuracy of DL-based detection models. Since the 
convolutional neural network (CNN) mainly focuses on 
extracting local features [10], while the Transformer 
architecture can well learn global representations [11], the 
hybrid models by combining CNN and Transformer then 
indicate their superior performance for the point detection task 
[12]. As a classical hybrid model, Conformer is specially 
designed a dual-branch structure to integrate the CNN with the 
visual Transformer into a unified framework. Moreover, the 
Conformer model has shown its effectiveness in many 
computer vision tasks [13]. Therefore, it is feasible to adopt the 
Conformer as the backbone network in our hip landmark 
detection task. However, the simple features fusion strategy in 
Conformer, such as concatenation, cannot fully fuse the local 
and global features extracted from two branches, which will 
affect the detection performance to a certain extend. 

Moreover, existing heatmap generation-based landmark 
detection methods generally hypothesize that the landmarks are 
independent [14], and thus they only generate the 
corresponding heatmaps by the neighborhood information 
surrounding with the points. In fact, the hip landmarks in the 
BUS images are correlated with each other, or they exhibit 
some special spatial relations based on topological position 
information. For example, as shown in Fig. 1(b), the red 
landmarks (landmark 1 and 2) are collinear, which serve as the 
key points to form the base line (LB in Fig. 1(a)) according to 
the Graf’s method [4]. These special relations among different 
landmarks can provide important spatial topology knowledge 
and constraint to help enhance the detection accuracy. However, 
existing hip landmark detection algorithms do not pay close 
attention to this important prior and constraint information, and 
it is also difficult to model and utilize them. 

In recent years, graph convolutional network (GCN) has gain 
its reputation to learn informative representations for different 
tasks in medical image analysis [15]. When constructing a 
graph, each node has its inherent features, and the graph edges 
can represent the special relations of different nodes [16]. The 
GCN is one of the most representative neural network-based 
graph learning methods, which can effectively model rich 
relational information by using convolution operation on the 
graph [17]. Thus, it is necessary to further apply the GCN to 
capture valuable prior spatial relationships among different 
landmarks for refining and improving detection performance. 
Since each hip ultrasound image can be annotated with an 
image-level diagnostic class label, it is then feasible to use the 
class labels for training graph convolutional network, so as to 
capture and learn the spatial topological information. Here, the 
image-level labels are not directly related to the labeled 
landmarks, and therefore, it is a weakly supervised-based 

approach for landmark detection. 
Besides the existing spatial topological relations based on the 

Graf’s method, each detected point within the hip BUS images 
can be further constrained and supervised by other landmarks. 
For example, as illustrated in Fig. 1(b), the landmark 2 
consistently appears to the right of the landmark 1, and is 
simultaneously in the upper-left corner relative to the landmark 
3. These specific spatial relationships across different 
landmarks can provide additional supervisory information to 
guide the performance of hip landmark detection. However, the 
previous point detection algorithms generally ignore these 
meaningful spatial constraint relations. Therefore, it is feasible 
to provide more supervision for each point, so as to further 
promote the hip landmark detection. 

In this work, we propose a novel weakly supervised learning-
based algorithm, namely TGCN-ICF, for hip landmark 
detection in ultrasound images. The TGCN-ICF consists of two 
subnetworks: an Improved Conformer (ICF) subnetwork to 
generate the related heatmaps and constraint vectors, and a 
Topological GCN (TGCN) subnetwork to further refine 
landmark detection with the guidance of class labels in the 
paradigm of weakly supervised learning. Moreover, a Mutual 
Modulation Fusion (MMF) module is developed to fully 
exchange and fuse features extracted from the CNN and 
Transformer branches in ICF. Furthermore, a Mutual 
Supervision Constraint (MSC) strategy is designed to model the 
constraint relationships among the hip landmarks to improve 
detection. The experimental results on two real DDH BUS 
datasets indicate the effectiveness of the proposed TGCN-ICF. 

The main contributions of this work are summarized as 
follows: 
1) A novel weakly supervised TGCN-ICF algorithm is 

proposed for hip landmark detection from BUS images. 
Different from the conventional heatmap generation-based 
detection approaches, the class labels are innovatively 
applied as the weakly supervised information to guide the 
learn of the specially designed TGCN subnetwork, which 
models the valuable topological relations among hip 
landmarks into a graph based on the inherent properties of 
landmarks in ultrasound images. Thus, the TGCN can further 
refine the generated heatmaps for effectively improving 
detection accuracy. 

2) A new MMF module is developed in the ICF subnetwork to 
fully exchange and fuse the local and global features that 
extracted from the CNN and Transformer branches, 
respectively. In particular, the local and global features are 
adaptively enhanced by learning information from each other 
in MMF, which then can effectively improve feature 
representation of the ICF subnetwork for subsequently 
generating related heatmap of each landmark. 

3) A novel MSC strategy is designed to explore the spatial 
constraints among different hip landmarks. Specifically, the 
MSC strategy imposes the relative position supervision and 
constraints on each hip point by the coordinate difference 
vectors, so as to implicitly correct the detection deviations 
by modeling the correlations among these landmarks during 
model training. 
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This paper is an extension of our work published in MICCAI 

2024 [18]. The MSC strategy is further proposed to be 
integrated into TGCN-ICF, which provides additional 
constraints for each landmark via the coordinate regression-
based approach, thereby enhancing the detection performance. 
In addition, more details are introduced about the proposed 
TGCN-ICF, and more experiments are conducted on two real-
world DDH datasets.  

II. RELATED WORKS 

A. DL-based Methods for BUS DDH Diagnosis 
The DL-based approaches have indicated their effectiveness 

for BUS-based CAD of DDH. According to the Graf’s method, 
existing CAD models are mainly developed based on 
measuring the α and β angels, which can be divided into two 
categories: the segmentation-based model and the landmark 
detection-based model. The former mainly segments the critical 
anatomical structures, while the latter directly detect the key 
points within BUS images. 

It is worth noting that most CADs for DDH focus on 
developing special segmentation algorithms for the anatomical 
structures to perform the followed angle measurement. For 
instance, Hu et al. [19] proposed a multi-task learning network 
by using the Mask R-CNN as the basic framework for the 
detection and segmentation of four anatomical structures in hip 
ultrasound images; Liu et al. [5] developed an attention-based 
segmentation network, named NHBS-Net, to segment seven 
key structures of the neonatal hip joint. All these works 
demonstrate the success of segmentation-based approaches. 

However, the training of segmentation-based CAD models 
requires professional and laborious annotation, and generally 
suffers from the issue of small sample size. On the contrary, the 
landmark detection-based method is more convenient, since it 
only needs to annotate several key points in the hip BUS images. 
Some works then have developed the effective point detection 
algorithms for diagnosis of DDH. For example, Xu et al. [7] 
proposed a Dependency Mining ResNet (DM-ResNet) to 
capture both short-range and long-range dependencies for 
detecting six hip landmarks from ultrasound images; Huang et 
al. [8] proposed an IT-UNet network that integrates involution 
operation into Transformer to capture both spatial-related and 
long-range information for detecting critical landmarks within 
BUS images. These previous works indicate the feasibility and 
effectiveness of hip landmark detection for DDH diagnosis. 

Existing hip landmark detection algorithms primarily focus 
on designing special DL detection models, and do not attach 
importance to the prior knowledge about the spatial 
relationships. In this work, we aim to explore the additional 
prior information, such as the topological relations and spatial 
constraints among hip landmarks, so as to further enhance the 
detection performance of hip landmarks. 

B. Topological Relations Guided GCN  
The topological relations (e.g., adjacency, inclusion, and 

exclusion) are the reliable and valuable information hidden in 
the images, which can be served as the additional guidance for 

DL models, so as to enhance their performance [20]. Some 
recent works have explored and modeled the topological 
interactions in images, and suggested the feasibility and 
effectiveness [21], [22]. Moreover, since the GCN has a strong 
ability in modeling and representing relational information [23], 
it is also considerable to integrate the topological information 
into a graph for learning graph representation. For example, 
Zhang et al. [24] proposed a new topological graph 
segmentation model for lung tumor segmentation, which 
integrated the topological features into the graph convolutional 
layers for improving the segmentation performance; Wang et al. 
[25] developed a novel topology-aware Transformer network 
for 3D hand pose estimation, which captured both the long-
range dependencies and local topology connection by deeply 
integrating Transformer and GCN layers; Shi et al. [26] 
introduced a novel topology-aware hybrid architecture that 
employed the Pool GNN module and Swin GNN module to 
learn both global and local topological representations for 
complex anatomical structures segmentation in medical images.  

It is worth noting that there are also some inherent relations 
among different landmarks within hip BUS images according 
to the Graf’s method [4]. Therefore, we propose an additional 
TGCN subnetwork to further learn the valuable topological 
graph representations with the guidance of class labels. 

C. Feature Fusion in Hybrid Model 
Recently, the CNN-Transformer based hybrid models have 

shown their effectiveness in the field of medical image analysis 
[27], since these models can effectively explore both the local 
and global information by combining the complementary 
strengths of these two architectures. However, it is still a 
challenging task to fully fuse and leverage the advantages of 
both CNN and Transformer branches. To this end, Zhang et al. 
[28] designed a BiFusion module that incorporated both self-
attention and multi-modal fusion mechanisms to efficiently fuse 
the multi-level features from both network branches; Dai et al. 
[29] proposed an attentional feature fusion module and an 
iterative attentional feature fusion module based on multi-scale 
channel attention to better fuse features of different network 
branches; Liu et al. [30] developed a feature super decoder to 
effectively fuse the multi-level features of both branches, and 
further designed a multi-scale feature aggregation module to 
complement the location and spatial information. These works 
demonstrate the importance of feature fusion in hybrid models. 

However, existing fusion strategies are mainly developed by 
the simple concatenation, redundant convolutions, or complex 
attention mechanisms. Different from these approaches, we 
design a MMF module to deeply exchange and fuse the features 
extracted from CNN and Transformer branches, which can 
adaptively enhance each branch’s information learning by 
another branch. 

III. METHOD 
As shown in Fig. 2, the proposed TGCN-ICF algorithm for 

hip landmark detection consists of two subnetworks, namely an 
ICF subnetwork and a TGCN subnetwork. Moreover, a MSC 
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strategy is designed for further improvement of landmark 
detection. The training pipeline of TGCN-ICF is as follows: 
1) The hip BUS images and the corresponding patches are first 

fed into the ICF subnetwork to generate heatmaps and 
constraint vectors. 

2) The generated heatmaps are then fed into the TGCN 
subnetwork for further refinement with the guidance of class 
labels. Moreover, the generated constraint vectors are 
utilized to constraint each landmark by the MSC strategy. 
The details of TGCN-ICF are then introduced in the 

following section, mainly including the ICF Subnetwork, the 
TGCN Subnetwork, the MSC Strategy, and the Loss Function. 

A. ICF Subnetwork 
In the ICF subnetwork, since U-Net is a commonly used 

encoder-decoder architecture for landmark detection task, we 
replace the conventional CNN branch in the original Conformer 
with the U-Net. Thus, the U-Net and Transformer branches can 
effectively capture both the local and global information in hip 
BUS images. Meanwhile, inspired by the works in [31], a MMF 

module is developed to deeply exchange and fuse the features 
extracted from these two branches. The MMF module can 
adaptively update and optimize each branch’s information by 
another branch, achieving highly effective fusion of local and 
global features. 

As shown in Fig. 3, define two feature maps 𝑓𝑓𝑙𝑙 ∈ ℝℎ×𝑤𝑤×𝑐𝑐 
and 𝑓𝑓𝑔𝑔 ∈ ℝℎ×𝑤𝑤×𝑐𝑐 that are extracted from the U-Net branch and 
Transformer branch, respectively. To fuse 𝑓𝑓𝑙𝑙  and 𝑓𝑓𝑔𝑔 , we 
specifically design two synchronous fusion routes: Local-to-
Global Fusion and Global-to-Local Fusion. 
1) Local-to-Global Fusion 

In this Local-to-Global Fusion route, the 𝑓𝑓𝑙𝑙 is updated by 𝑓𝑓𝑔𝑔 
in the pixel level. Specifically, a filter 𝐹𝐹𝑙𝑙𝑙𝑙(⋅)  is learned to 
update the local neighbor pixels (denoted as 𝐿𝐿(𝑖𝑖,𝑗𝑗)

𝑛𝑛2 ) in an 𝑛𝑛 × 𝑛𝑛 
neighborhood with the corresponding center pixel 𝐺𝐺(𝑖𝑖,𝑗𝑗) in 𝑓𝑓𝑔𝑔. 
The filter weight is defined as follows: 

𝝎𝝎(𝑖𝑖,𝑗𝑗)
0 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �� (𝐺𝐺(𝑖𝑖,𝑗𝑗)⨂𝐿𝐿(𝑖𝑖,𝑗𝑗)

𝑛𝑛2 )
𝑐𝑐

� (1) 

where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(⋅)  represents the normalized exponential 
function, ∑ (⋅)𝑐𝑐  denotes the summation along the channel 
dimension, and ⨂ is the matrix product. Therefore, the updated 
neighbor pixels can be calculated by: 

𝐿𝐿(𝑖𝑖,𝑗𝑗)
𝑛𝑛2 ′

= 𝐹𝐹𝑙𝑙𝑙𝑙 �𝐿𝐿(𝑖𝑖,𝑗𝑗)
𝑛𝑛2 � = � (𝐿𝐿(𝑖𝑖,𝑗𝑗)

𝑛𝑛2 ⨂𝝎𝝎(𝑖𝑖,𝑗𝑗)
0

𝑛𝑛2
) (2) 

where 𝐿𝐿(𝑖𝑖,𝑗𝑗)
𝑛𝑛2 ′

 denotes the updated local pixels in the 𝑛𝑛 × 𝑛𝑛 
neighborhood, and ∑ (𝑛𝑛2 ⋅) represents the summation along the 
neighborhood spatial dimension. Thus, all pixels in 𝑓𝑓𝑙𝑙  are 
updated by targeting the counterpart pixels in 𝑓𝑓𝑔𝑔, and then we 

Fig. 2. Overview of the proposed Topological GCN guided Improved Conformer (TGCN-ICF). (a) Improved Conformer (ICF) Subnetwork. (b) 
Topological GCN (TGCN) Subnetwork. (c) Mutual Modulation Fusion (MMF) module. (d) Mutual Supervision Constraint (MSC) module. 

Fig. 3. The detailed illustration of the MMF module. (a) Local-to-
Global Fusion route; (b) Global-to-Local Fusion route. 
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can obtain the fused local-to-global information 𝑓𝑓𝑙𝑙

′. 
2) Global-to-Local Fusion 

Similarly, the 𝑓𝑓𝑔𝑔  is updated by 𝑓𝑓𝑙𝑙  by the Global-to-Local 
Fusion. Specifically, a filter 𝐹𝐹𝑔𝑔𝑔𝑔(⋅)  is learned to update the 
global neighbor pixels (denoted as 𝐺𝐺(𝑖𝑖,𝑗𝑗)

𝑛𝑛2 ) by the corresponding 
center pixel 𝐿𝐿(𝑖𝑖,𝑗𝑗) in 𝑓𝑓𝑙𝑙. The weight of 𝐹𝐹𝑔𝑔𝑔𝑔(⋅) is calculated as: 

𝝎𝝎(𝑖𝑖,𝑗𝑗)
1 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �� (𝐿𝐿(𝑖𝑖,𝑗𝑗)⨂𝐺𝐺(𝑖𝑖,𝑗𝑗)

𝑛𝑛2 )
𝑐𝑐

� (3) 

Thus, the updated 𝐺𝐺(𝑖𝑖,𝑗𝑗)
𝑛𝑛2 ′

 can be obtained by: 

𝐺𝐺(𝑖𝑖,𝑗𝑗)
𝑛𝑛2 ′

= 𝐹𝐹𝑔𝑔𝑔𝑔 �𝐺𝐺(𝑖𝑖,𝑗𝑗)
𝑛𝑛2 � = � (𝐺𝐺(𝑖𝑖,𝑗𝑗)

𝑛𝑛2 ⨂𝝎𝝎(𝑖𝑖,𝑗𝑗)
1

𝑛𝑛2
) (4) 

Therefore, we can get the fused information 𝑓𝑓𝑔𝑔
′ by updating 

all pixels in 𝑓𝑓𝑔𝑔. Finally, the fused features 𝑓𝑓𝑙𝑙
′ and 𝑓𝑓𝑔𝑔

′ are further 
added to generate the final fused features 𝑓𝑓𝑚𝑚: 

𝑓𝑓𝑚𝑚 = 𝑓𝑓𝑙𝑙
′ ⨁ 𝑓𝑓𝑔𝑔

′ (5) 
where ⨁  represents the concatenation along the channel 
dimension. 

In simple terms, the MMF module utilizes the weighted 
operation in local areas and the softmax-based homologous 
attention mechanism to fuse features, which effectively 
captures the correlations between the local and global feature 
maps. Therefore, the information extracted from both the U-Net 
and Transformer branches can be fully exchanged and fused, 
thereby improving the feature representation. 

B. TGCN Subnetwork 
The topological interaction of different landmarks is 

important to provide reliable prior information for improving 
detection performance. However, existing landmark detection-
based algorithms for DDH diagnosis ignore the topological 
information hidden in hip BUS images. Since each hip BUS 
image has been annotated with a class label (DDH patient or 
normal subject), a TGCN subnetwork is then proposed to 
effectively learn topology-aware graph representations by 
leveraging the image-level class labels as the weakly 
supervision information. This weakly supervised learning can 
further refine the generated heatmaps, because the label 
information can implicitly provide an additional constraint to 
correct the detected landmarks. 
1) Landmark Topological Relations 

As shown in Fig. 4(a), we model three groups of topological 
relationships from six hip landmarks inspired by the Graf’s 

method [4]. That is, three critical lines of the related structures 
are formed by 𝐿𝐿1  and 𝐿𝐿2 , 𝐿𝐿3  and 𝐿𝐿4 , and 𝐿𝐿5  and 𝐿𝐿6 , 
respectively, in Fig. 1(c). In order to make full use of this 
valuable topological information, a graph is then constructed 
for graph representation learning. 

A graph is denoted as 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 and 𝐸𝐸 represent 
the nodes and a set of edges in the graph, respectively. Since 
each heatmap generated by the ICF subnetwork represents a 
corresponding landmark, we take each heatmap as a node. Thus, 
a graph can be denoted as a feature matrix 𝐺𝐺𝑓𝑓 ∈ ℝ𝑘𝑘×𝑑𝑑, which 
has 𝑘𝑘 nodes, and each node has a 𝑑𝑑-dimensional feature vector 
(𝑑𝑑 = ℎ × 𝑤𝑤 represents the size of each heatmap). In this work, 
we set 𝑘𝑘 = 6, since our detection task will extract 6 landmarks. 
2) Adjacency Matrix Construction 

As shown in Fig. 4(b), we construct the adjacency matrix 
𝐴𝐴𝑖𝑖,𝑗𝑗 ∈ ℝ𝑘𝑘×𝑘𝑘  based on the above mentioned three groups of 
topological relations. The adjacency matrix can be denoted as 
follows: 

𝐴𝐴𝑖𝑖,𝑗𝑗 = �1,            �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� ∈ 𝐸𝐸
0,             𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(6) 

where (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) is an edge between vertex 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗. For example, 
since 𝐿𝐿1 and 𝐿𝐿2 are collinear, we define 𝐴𝐴1,2 = 𝐴𝐴2,1 = 1. Thus, 
six edges of the graph can be constructed from the three groups 
of hip landmark topological relations. 

In this way, the valuable topology information is then 
embedded into an adjacency matrix for further learning graph 
representations. Although the adjacency matrix is simple, it 
effectively represents the spatial relationships among the six 
landmarks. After modeling the additional spatial constraint 
relations, the subsequent GCN can well learn the graph 
representation with the help of image-level class labels in the 
weakly supervised learning paradigm, thus effectively 
enhancing the landmark detection performance. 

After obtaining 𝐺𝐺𝑓𝑓 ∈ ℝ𝑘𝑘×𝑑𝑑 and 𝐴𝐴𝑖𝑖,𝑗𝑗 ∈ ℝ𝑘𝑘×𝑘𝑘 , they are fed 
into a multi-layer GCN [16]. The operation is given by 

𝐺𝐺𝑓𝑓′ = 𝜎𝜎 �𝐷𝐷�−
1
2𝐴̃𝐴𝐷𝐷�−

1
2𝐺𝐺𝑓𝑓𝑾𝑾(𝑙𝑙)� (7) 

where 𝐺𝐺𝑓𝑓′ ∈ ℝ𝑘𝑘×𝑑𝑑 , 𝜎𝜎(⋅)  denotes an activation function, 𝐷𝐷�  is 
the degree matrix of 𝐴̃𝐴, 𝐴̃𝐴 = 𝐴𝐴𝑖𝑖,𝑗𝑗 + 𝐼𝐼𝑁𝑁, 𝐼𝐼𝑁𝑁 is the identify matrix, 
and 𝑾𝑾(𝑙𝑙)  is a trainable weight matrix. The graph 
representations are then fed into the liner projections to generate 
the final output: 

𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺 = (𝐺𝐺𝑓𝑓
′𝑾𝑾0)𝑾𝑾1 (8) 

where 𝑾𝑾0 ∈ ℝ𝑑𝑑𝑚𝑚×𝑑𝑑  and 𝑾𝑾1 ∈ ℝ𝑑𝑑𝑐𝑐×𝑑𝑑𝑚𝑚  are the weight matrix 
of linear projection, and 𝑑𝑑𝑚𝑚  and 𝑑𝑑𝑐𝑐  represent the middle 
dimensionality and final class number, respectively. 

Through above operations, the topological information in the 
hip ultrasound images can be effectively embedded into the 
GCN layers. That is, the graph representations contain valuable 
topological information, which are essential for improving the 
detection performance. 

C. MSC Strategy 
Existing landmark detection-based models mainly 

hypothesized that the landmarks are independent, and thus they 

Fig. 4. The principle of the adjacency matrix construction. (a) Three 
groups of topological relations among hip landmarks; (b) Constructed 
adjacency matrix from the topological relations. 
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only focus on regressing the coordinates or heatmaps of the 
landmarks, but ignore the spatial relationships among 
landmarks. In fact, each hip landmark is constrained by 
neighboring points in the spatial domain. To this end, inspired 
by [14], we propose a novel MSC strategy that provides 
additionally spatial constraint on both the horizontal and 
vertical axes for each landmark, thereby further enhancing the 
hip landmark detection accuracy. 

In the MSC strategy, each hip landmark is constrained by the 
former one and the latter one. For example, the 𝐿𝐿2 is associated 
with 𝐿𝐿1 and 𝐿𝐿3. Specifically, the supervision vector is defined 
to constrain each landmark on both horizontal and vertical axes 
by 

�𝑒𝑒𝑖𝑖 = (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖),         𝑖𝑖 = 1,2,⋅⋅⋅ ,5
𝑒𝑒6 = (𝑥𝑥1 − 𝑥𝑥6,𝑦𝑦1 − 𝑦𝑦6),                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (9) 

where 𝑒𝑒𝑖𝑖 represents the supervision vector of each hip landmark, 
and 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖  are the coordinates of each landmark on x and y 
axes, respectively. Therefore, the ground truth mutual-
supervision vector can be denoted as 

𝑣𝑣𝑚𝑚 = [𝑒𝑒1,𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4, 𝑒𝑒5, 𝑒𝑒6] (10) 
In addition, the predicted mutual-supervision vector is then 

generated in ICF subnetwork. As shown in Fig. 2 (d), the fully 
fused and exchanged features 𝑓𝑓𝑚𝑚 (according to Eq. (5)) are first 
fed into a global average pooling layer to generate the vectors. 
The subsequent reshape layer is used to reshape the vectors into 
the predicted mutual-supervision vector 𝑣𝑣𝑚𝑚′ as 

𝑣𝑣𝑚𝑚′ = 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎�𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓𝑚𝑚)� (11) 
Then, both the 𝑣𝑣𝑚𝑚  and 𝑣𝑣𝑚𝑚′  are final fed into the landmark 

mutual supervision constraint loss 𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  that is evaluated by 
smooth L1 loss [32]. 

Therefore, each hip landmark is constrained by the nearest 
two landmarks on both the horizontal and vertical axes, 
respectively. That is, the MSC strategy can effectively model 
the spatial constraint relationships among neighbor landmarks, 
so as to improve the detection performance. 

D. Loss Function 
As shown in Fig. 2, the TGCN-ICF is trained by three loss 

functions, including the 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , and 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, since 
various recent works indicated that using a joint loss is superior 
to using a single loss [33], [34]. Specifically, the 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is 
calculated by the following Mean Square Error (MSE) loss [35] 
between the ground truth heatmaps and predicted heatmaps 

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
1
𝑁𝑁
� (ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − ℎ𝑔𝑔𝑔𝑔)2

𝑁𝑁

𝑖𝑖=1
(12) 

where 𝑁𝑁 is the number of total landmarks, ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  denotes the 
heatmaps that generated by the ICF subnetwork, and ℎ𝑔𝑔𝑔𝑔  
represents the ground truth heatmaps. 

The 𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  is evaluated by a smooth L1 loss [32] between 
the predicted and ground truth mutual-supervision vectors 

𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �0.5(𝑣𝑣𝑚𝑚′ − 𝑣𝑣𝑚𝑚)2, 𝑖𝑖𝑖𝑖 |𝑣𝑣𝑚𝑚′ − 𝑣𝑣𝑚𝑚⌋ < 1
|𝑣𝑣𝑚𝑚′ − 𝑣𝑣𝑚𝑚⌋ − 0.5,                   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(13) 

where 𝑣𝑣𝑚𝑚′  and 𝑣𝑣𝑚𝑚  represent the predicted mutual-supervision 
vector (as shown in Eq. (11)) and the ground truth mutual-
supervision vector (as shown in Eq. (10)), respectively. 

The 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is evaluated by a Binary Cross Entropy (BCE) 

loss [36] between the ground truth labels and predicted classes, 
which is calculated by 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −
1
𝑀𝑀
� [𝑦𝑦𝑖𝑖 log(𝑝𝑝𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑝𝑝𝑖𝑖)]

𝑀𝑀

𝑖𝑖=1
(14) 

where 𝑀𝑀 is the number of total hip ultrasound images, 𝑦𝑦𝑖𝑖  is the 
class of 𝑖𝑖-𝑡𝑡ℎ  hip image (0 represents the abnormal, and 1 
represents the normal), 𝑝𝑝𝑖𝑖𝜖𝜖[0,1] denotes the predicted value of 
𝑖𝑖-𝑡𝑡ℎ sample. 

The final loss function 𝐿𝐿 is calculated by 
𝐿𝐿 =  𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜆𝜆 ∗ 𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝜇𝜇 ∗ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (15) 

where 𝜆𝜆 and 𝜇𝜇 are the hyperparameters to adjust the proportion 
of the three losses. By combining the above three loss functions, 
the proposed TGCN-ICF can be effectively trained for 
detecting the hip landmarks within BUS images.  

Algorithm 1 provides the pseudocode of the training process 
of our model. 

Algorithm 1 TGCN-ICF Training. 
Input: Images 𝑿𝑿 ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊; Adjacency matrix 𝑨𝑨 ∈ ℝ𝑘𝑘×𝑘𝑘. 
Output: Predicted heatmaps 𝑯𝑯𝑖𝑖 ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊 ; Predicted 

mutual-supervision vector 𝑽𝑽𝑖𝑖 ∈ ℝ𝑘𝑘×2 ; Predicted class 
𝒀𝒀𝑖𝑖 ∈ ℝ𝑙𝑙×1. 

  1: for each epoch do 
  2:     for each batch do 
  3:         𝑿𝑿𝐼𝐼 , 𝑿𝑿𝑃𝑃 ← Data Processing (𝑿𝑿) 
  4:         𝑓𝑓𝑙𝑙 ∈ ℝℎ×𝑤𝑤×𝑐𝑐 ← U-Net (𝑿𝑿𝐼𝐼) 
  5:         𝑓𝑓𝑔𝑔 ∈ ℝℎ×𝑤𝑤×𝑐𝑐 ← Transformer (𝑿𝑿𝑃𝑃) 
  6:         𝑓𝑓𝑚𝑚 ∈ ℝℎ×𝑤𝑤×2𝑐𝑐 ← MMF (𝑓𝑓𝑙𝑙, 𝑓𝑓𝑔𝑔) 
  7:         𝑯𝑯𝑖𝑖  ← Detection Head (𝑓𝑓𝑚𝑚) 
  8:         𝑽𝑽𝑖𝑖 ← MSC (𝑓𝑓𝑚𝑚) 
  9:         𝒀𝒀𝑖𝑖 ← TGCN Subnetwork (𝑯𝑯𝑖𝑖 , A) 
10:     end for 
11: end for 
12: return 𝑯𝑯𝑖𝑖 , 𝑽𝑽𝑖𝑖, 𝒀𝒀𝑖𝑖 

IV. EXPERIMENTS 

A. Datasets 
Two real-world BUS DDH datasets were utilized to evaluate 

the effectiveness of the proposed TGCN-ICF, which were 
acquired from the Shanghai Children’s Medical Center (SCMC 
DDH Dataset) and the Anhui Provincial Children’s Hospital 
(APCH DDH Dataset), respectively. 

The SCMC DDH Dataset consists of 700 hip ultrasound 
images from 413 infants, which was collected between June 
2022 and October 2023. These images were scanned by two 
ultrasound imaging devices, namely LOGIO E9 (GE 
HealthCare, Milwaukee, WI) and SIEMENS OXANA 2 
(SIEMENS, Chicago, IL, USA). Moreover, there were three 
sizes of image resolution, including 368×390, 440×480, and 
480×480 pixels. All landmarks were marked by two 
experienced sonologists. This study was approved by the 
Research Ethics Board of Shanghai Children's Medical Center 
(No. SCMCIRB-K2023027-1), and informed consent was 
signed by all guardians of the infants. 

The APCH DDH Dataset includes 1769 hip ultrasound 
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images, which were scanned by a Philips EPIQ 5 ultrasound 
system between December 2018 to November 2019 [7]. All 
images had the same resolution of 445×715 pixels. In addition, 
the landmarks were labeled and cross-validated by four 
professional sonologists, who have engaged in DDH diagnosis 
for more than five years. 

B. Experimental Settings 
1) Comparison Experiment 

To evaluate the performance of the proposed TGCN-ICF, we 
compared it with the following classical and state-of-the-art 
(SOTA) landmark detection algorithms on both DDH datasets: 
1) U-Net [37]: The classical U-Net model was applied for hip 

landmark detection. 
2) DM-ResNet [7]: It was a specially proposed model for the 

hip landmark detection task in ultrasound images, which 
adopted a simple ResNet as the backbone with a novel 
dependency mining module to enhance feature 
representation for improving detection accuracy. 

3) TransUNet [38]: It was a representative CNN-Transformer 
hybrid model, which adopted Transformer as strong 
encoders and employed U-Net to recover localized spatial 
information that enhanced details. 

4) Conformer [13]: It was the original Conformer model but 
with the U-Net instead of CNN branch, which was 
compared as a baseline in this work. 

5) FAT-Net [39]: It was a representative dual-branch network 
that utilized the CNN and Transformer as a dual encoder 
with three feature adaptation modules for fusing features. 

6) FARNet [40]: This model was a novel encoder-decoder 
architecture for anatomic landmark detection that fused 
multi-scale features from the encoder to achieve high 
resolution heatmap regression. 

7) DA-TransUNet [41]: It was a SOTA U-shape architecture, 
which utilized the Transformer and dual attention blocks to 
integrate both global and local features together with the 
image-specific positional and channel features. 

8) SCUNet++ [42]: It was another SOTA network with 
multiple fused dense skip connections between the encoder 
and decoder, which aimed to fuse features of different 
scales to enhance feature representation. 

9) AAU-Net [43]: It was an effective U-Net variant for 
ultrasound image segmentation, which designed a hybrid 
adaptive attention module to enhance feature 
representation in both the channel and space dimensions. 

10) C-Net [44]: This model was a novel cascaded convolutional 
neural network that incorporated a bidirectional attention 
guidance network to capture the context between global 
and local features. 

11) NU-Net [45]: It was an unpretentious nested U-Net for 
segmenting breast tumors in ultrasound images, which 
utilized U-Nets with different depths and shared weights to 
improve feature representation. 

12) ESKNet [46]: This model employed an enhanced selective 
kernel convolution module to construct a novel deep 
supervised U-Net for adaptively capturing features from 
the channel and spatial dimensions. 

13) IT-UNet [8]: It was a novel hip landmark detection 
algorithm, which integrated the involution operation into 
Transformer to capture both spatial and long-range 
information for hip landmark detection. 

2) Ablation Study 
We also conducted an ablation experiment on the SCMC 

DDH Dataset to compare the developed MMF module with the 
following fusion strategies: 
1) Addition [47]: This variant used the simple addition 

strategy to fuse the features extracted from the CNN and 
Transformer branches of Conformer model. 

2) Concatenation [48]: This variant employed the 
conventional concatenation strategy to fuse the features of 
U-Net and Transformer branches in Conformer. 

3) BiFusion [28]: This variant utilized the BiFusion module 
from TransFuse model to fuse features, which incorporated 
both self-attention and multi-modal fusion mechanisms to 
efficiently fuse the multi-level features from both branches. 

4) Attentional Feature Fusion (AFF) [29]: This variant 
employed the attentional feature fusion module to fuse the 
two branches’ features. 

5) Fusion [49]: This variant utilized the simple calculations 
(e.g., multiplication and addition) and convolutional 
operations to fuse the features from the two branches. 

6) Collection Information Module (CIM) [50]: This variant 
employed a novel collection information module with 
excellent learning and generalization abilities to fuse the 
features. 

 In addition, we conducted another ablation experiment on 
the SCMC DDH Dataset to further verify the proposed TGCN 
subnetwork and the MSC strategy: 
1) Conformer with MMF (Conformer-MMF): This variant 

only adopted the MMF module within Conformer model, 
without the proposed TGCN subnetwork and MSC strategy, 
which was also served as the baseline in this ablation 
experiment. 

2) TGCN-ICF without TGCN (TGCN-ICF w/o TGCN): This 
variant removed the proposed TGCN subnetwork in the 
proposed TGCN-ICF, and then directly applied the 
improved Conformer subnetwork for detecting hip 
landmarks. 

3) TGCN-ICF without MSC (TGCN-IC w/o MSC): This 
variant removed the proposed MSC strategy in the 
proposed TGCN-ICF. 

C. Evaluation Metrics 
We performed the five-fold cross-validation strategy, which 

was the same split in [8], to evaluate the effectiveness of all 
algorithms. All results were given in the format of mean ± SD 
(standard deviation). The mean radial error (MRE) and 
successful detection rate (SDR) were commonly adopted as the 
two evaluation indices in landmark detection [8]. Specifically, 
the MRE represents the mean radial error between the predicted 
and ground truth landmark, which is defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 = �𝐿𝐿𝑛𝑛
𝑝𝑝 − 𝐿𝐿𝑛𝑛

𝑔𝑔�2 (16) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
� 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛

𝑁𝑁

𝑛𝑛=1
(17) 
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where 𝐿𝐿𝑛𝑛
𝑝𝑝 ∈ (𝑥𝑥𝑛𝑛

𝑝𝑝,𝑦𝑦𝑛𝑛
𝑝𝑝)  and 𝐿𝐿𝑛𝑛

𝑔𝑔 ∈ (𝑥𝑥𝑛𝑛
𝑔𝑔,𝑦𝑦𝑛𝑛

𝑔𝑔)  represent the 𝑛𝑛-𝑡𝑡ℎ 
predicted and ground truth landmarks, respectively. The 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 
represents the 𝑛𝑛-𝑡𝑡ℎ landmark’s detection error, and the 𝑀𝑀𝑀𝑀𝑀𝑀 
denotes the average radial errors of all hip landmarks. 

The SDR is the metrics to evaluate the distribution of MRE, 
which is calculated by 

𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
#{𝑚𝑚:𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑}

𝑀𝑀
× 100% (18) 

where #  is the count symbol, 𝑚𝑚  represents the number of 
landmarks that the mean radial error is less than 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
denotes the scope of successful detection, and 𝑀𝑀 is the total 

number of landmarks in the hip ultrasound image. In this work, 
we set the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 into 0.5mm, 1.0mm, and 1.5mm, respectively. 

D. Implementation Details 
In our implementations, the input ultrasound images were 

resized to 256×256. Meanwhile, the Adam optimizer was used 
for network optimization with an initial leaning rate of 1e-4, and 
the TGCN-ICF was trained for 300 epochs with a batch size of 
2. Moreover, we set the hyperparameter σ to 10, which 
determined the Gaussian distribution when generating the 
ground truth heatmap of each hip landmark. The balance loss 
factors λ and μ were set to 1e-4 and 1e-5, respectively. All the 
landmark detection algorithms were implemented by PyTorch 
with two GTX 3090 GPUs. 

V. EXPERIMENTAL DETAILS 

A. Results of Comparison Experiment 
Fig. 5 shows the visualization results of landmark detection 

from hip BUS images by different algorithms on both the 
SCMC and APCH DDH Dataset. The left red boxes are the 
areas of critical anatomical structures. Moreover, the red dots 
represent the ground truth landmarks, the green dots denote the 
predicted results, and the yellow lines between the red dots and  
green dots show the detected errors. It can be found that the 
predicted landmarks are closer to the ground truth landmarks by 
the proposed TGCN-ICF, which indicate that our detection 
algorithm achieves the best detection performance. It is worth 
noting that despite the variations across different imaging  
devices and medical institutions, the TGCN-ICF still achieves 

Fig. 5. Visualization examples by several representative landmark detection algorithms on two BUS DDH datasets. 

TABLE Ⅰ 
QUANTITATIVE RESULTS OF DIFFERENT ALGORITHMS FOR HIP LANDMARK 

DETECTION ON THE SCMC DDH DATASET 

Algorithms MRE (mm) ↓ SDR (%) ↑ 
0.5mm 1.0mm 1.5mm 

U-Net  0.4923±0.0255 67.12±1.62 92.48±0.83 97.14±0.71 
DM-ResNet  0.4861±0.0262 68.64±2.13 91.14±1.41 96.29±0.59 
TransUNet  0.5056±0.0258 67.57±1.25 91.79±0.98 96.45±0.62 
Conformer  0.4828±0.0136 68.88±1.87 92.45±0.97 97.26±0.63 
FAT-Net  0.4670±0.0219 69.41±0.60 93.17±0.76 97.45±0.76 
FARNet  0.4706±0.0172 68.29±0.65 92.62±0.89 97.12±0.71 
DA-TransUNet 0.4682±0.0213 69.60±0.92 92.17±0.61 96.71±0.84 
SCUNet++  0.4742±0.0216 69.43±2.82 92.74±1.49 96.52±0.49 
AAU-Net 0.4732±0.0133 68.86±1.34 92.10±0.69 96.75±0.74 
C-Net 0.4663±0.0180 69.10±1.03 93.02±1.24 96.94±1.07 
NU-Net 0.4604±0.0087 69.45±1.78 93.11±0.62 97.07±0.56 
ESKNet 0.4549±0.0139 70.25±0.88 92.94±0.23 97.38±0.68 
IT-UNet  0.4494±0.0155 71.19±1.76 93.45±1.07 97.31±0.56 
TGCN-ICF 0.4349±0.0148 72.62±1.37 94.86±0.44 98.45±0.78 
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the best detection accuracy. These superior visualization results 
demonstrate the effectiveness and robustness of the TGCN-ICF.  

Table Ⅰ shows the comparison results on the SCMC DDH 
Dataset. It is observed that the proposed TGCN-ICF 
outperforms all the compared algorithms on both metrics, with 
the best MRE of 0.4349±0.0148mm and SDRs of 72.62±1.37% 
(0.5mm), 94.88±0.44% (1.0mm), and 98.45±0.78% (1.5mm), 
respectively. Compared to the specially designed landmark 
detection algorithms (DM-ResNet, FARNet, IT-UNet), the 
TGCN-ICF declines at least 0.0145mm (approximately 3.23%) 
on MRE, and also improves at least 1.43%, 1.41%, and 1.00% 
on SDR of 0.5mm, 1.0mm, and 1.5mm, respectively. Moreover, 
the TGCN-ICF also surpasses all the representative CNN-
Transformer hybrid models, including TransUNet, Conformer, 
FAT-Net, and DA-TransUNet, on both MRE and SDRs. It also 
outperforms the specially designed ultrasound image analysis 
algorithms, including AAU-Net, C-Net, NU-Net, and ESKNet. 
In addition, Fig. 6 shows the comparison of detection 
performance for each hip landmark with several representative 
algorithms. The proposed TGCN-ICF achieves the best 
detection accuracy for almost all landmarks, with the exception 
of the landmark 6. All these superior results demonstrate the 
effectiveness of TGCN-ICF in detecting hip landmarks from 
BUS images. 

 
Fig. 6. Comparison of MRE results for each hip landmark with several 

representative algorithms on SCMC DDH Dataset. 
 
Table Ⅱ further shows the quantitative results of different 

algorithms on the APCH DDH Dataset. It can be fund that the 
quantitative results exhibit a similar trend to those in Table Ⅰ. 
Our TGCN-ICF again achieves the best detection performance 
on the MRE and three SDR metrics. Specifically, it obtains the 
best MRE of 0.4133±0.0236mm, which decreases at least 
0.0149mm (about 3.48%) in comparison to other algorithms. 
Additionally, the TGCN-ICF also gets the highest scores on the 
SDR at 0.5mm, 1.0mm and 1.5mm, with values of 
73.09±1.03%, 94.80±0.10%, and 98.49±0.20%, respectively. 
Moreover, Fig. 7 illustrates the MRE results of each hip 
landmark with some representative algorithms. It can be found 
that the TGCN-ICF still outperforms all the compared 
algorithms for each point in BUS images. 

 
Fig. 7. Comparison of MRE results for each hip landmark with several 

representative algorithms on APCH DDH Dataset. 

B. Results of Ablation Study 
Fig. 8 illustrates the visual comparison of two ablation 

studies on the SCMC DDH Dataset. Specifically, compared 
with other feature fusion variants, the developed MMF variant 
obtains the most superior visual detection performance. This 
observation suggests the effectiveness of the MMF. Moreover, 
the variants TGCN-ICF w/o TGCN and TGCN-ICF w/o MSC 
show visualized decline compared to the TGCN-ICF, indicating 
the importance of the proposed TGCN and MSC. 

Table Ⅲ gives the quantitative ablation results of different 
fusion methods on the SCMC DDH Dataset. The developed 
MMF variant achieves the best detection accuracy, with the 
MRE value of 0.4682±0.0254mm and three SDR values of 
69.60±0.90% (0.5mm), 93.31±1.19% (1.0mm), and 97.52±0.73% 
(1.5mm), respectively. In comparison to other conventional and 
effective fusion strategies, it reduces the  MRE by at least 
0.0061mm (approximately 1.29%). Additionally, it also 
demonstrates improvements at least 0.91% on SDR at 
thresholds of 0.5mm. Compared to the more recent fusion 

TABLE Ⅱ 
QUANTITATIVE RESULTS OF DIFFERENT ALGORITHMS FOR HIP LANDMARK 

DETECTION ON THE APCH DDH DATASET 

Algorithms MRE (mm) ↓ SDR (%) ↑ 
0.5mm 1.0mm 1.5mm 

U-Net  0.4661±0.0266 67.72±0.92 93.56±0.35 98.10±0.21 
DM-ResNet  0.4567±0.0253 70.24±0.62 93.16±0.39 97.69±0.41 
TransUNet  0.4685±0.0261 69.25±1.32 92.42±0.31 97.44±0.19 
Conformer  0.4442±0.0240 70.86±0.45 94.01±0.21 98.20±0.11 
FAT-Net  0.4388±0.0215 71.07±1.45 94.23±0.17 98.19±0.26 
FARNet  0.4470±0.0193 70.22±1.18 93.85±0.33 98.29±0.18 
DA-TransUNet  0.4426±0.0270 71.13±1.37 93.77±0.46 98.12±0.18 
SCUNet++  0.4406±0.0243 70.08±0.66 93.80±0.33 98.09±0.25 
AAU-Net 0.4459±0.0188 69.39±1.73 93.37±0.80 98.05±0.24 
C-Net 0.4382±0.0132 70.93±1.98 93.59±0.14 97.86±0.19 
NU-Net 0.4357±0.0155 70.84±1.97 93.50±0.50 97.94±0.22 
ESKNet 0.4307±0.0164 71.49±2.24 94.03±0.18 98.16±0.17 
IT-UNet  0.4282±0.0206 72.19±1.60 94.25±0.43 98.14±0.24 
TGCN-ICF 0.4133±0.0236 73.09±1.03 94.80±0.10 98.49±0.20 

 

TABLE Ⅲ 
ABLATION STUDY OF DIFFERENT FEATURE FUSION METHODS ON THE SCMC 

DDH DATASET 

Methods MRE (mm) ↓ SDR (%) ↑ 
0.5mm 1.0mm 1.5mm 

Addition  0.4884±0.0288 67.93±2.42 92.54±0.65 97.14±0.61 
Concatenation  0.4828±0.0136 68.58±1.87 92.45±0.97 97.26±0.63 
BiFusion  0.4743±0.0278 68.52±1.63 92.48±1.05 97.24±0.71 
AFF  0.4854±0.0204 67.98±1.76 92.31±0.75 97.25±0.59 
Fusion 0.4806±0.0250 67.97±2.79 92.47±1.39 97.20±1.20 
CIM 0.4783±0.0202 68.69±1.49 92.66±0.45 97.31±0.56 
MMF (Ours) 0.4682±0.0254 69.60±0.90 93.31±1.19 97.52±0.73 
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module CIM, the developed MMF variant also achieves better 
detection performance on both MRE and SDRs. These 
quantitative results suggest the effectiveness of the MMF in 
deeply fusing and exchanging information extracted from U-
Net and Transformer branches. 

Table Ⅳ further shows the quantitative results of ablation 
study to evaluate the proposed TGCN and MSC. It is notable 
that after removing the TGCN from the TGCN-ICF, the variant 
TGCN-ICF w/o TGCN exhibits an increase of 0.0232mm 
(about 5.06%) on MRE, and a reduction of 1.79% on SDR at 
0.5mm. Additionally, the variant TGCN-ICF w/o MSC that still 
has TGCN declines 0.0118mm (approximately 2.52%) on MRE, 
and improves 1.90% on SDR (0.5mm) compared to Conformer-
MMF (Baseline in this ablation experiment). It demonstrates 
the effectiveness of TGCN subnetwork to learn topological 
graph representations with the guidance of class labels. 
Moreover, the variant TGCN-ICF w/o MSC increases 
0.0215mm on MRE, approximately 4.71% compared to the 
TGCN-ICF. In comparison to the Conformer-MMF, the variant 
TGCN-ICF w/o TGCN that still has MSC shows a reduction of 
0.0101mm (about 2.16%) on MRE. These results prove the 
importance of MSC strategy to exploit the constraint 
relationships among different hip landmarks. 

TABLE Ⅳ 
ABLATION STUDY OF TGCN AND MSC ON THE SCMC DDH DATASET 

Methods MRE (mm) ↓ SDR (%) ↑ 
0.5mm 1.0mm 1.5mm 

Conformer-
MMF 0.4682±0.0254 69.60±0.90 93.31±1.19 97.52±0.73 

TGCN-ICF 
w/o TGCN 0.4581±0.0219 70.83±1.05 94.06±1.00 97.80±0.87 

TGCN-ICF 
w/o MSC 0.4564±0.0221 71.50±0.80 94.23±0.87 97.87±0.83 

TGCN-ICF 0.4349±0.0148 72.62±1.37 94.86±0.44 98.45±0.78 

C. Computational Complexity 
As shown in Fig. 9, we further present the comparison of the 

computational complexity for different models. The horizontal 
axis in the figure represents the model parameters, and the 
vertical axis denotes the floating point operations (FLOPs). The 
proposed TGCN-ICF has a parameter count of 177.074M and a 
computational cost of 65.127G FLOPs. Compared to other 
algorithms, the TGCN-ICF increases the network parameters 

but without significantly increasing the computational cost. 
Thus, the TGCN-ICF achieves superior detection performance, 
indicating a better trade-off between the landmark detection 
accuracy and the computational complexity. On the other hand, 
the proposed TGCN-ICF does not significantly increase either 
the parameters or FLOPs compared with the backbone 
Conformer, but achieves much higher landmark detection 
accuracy than Conformer, as shown in Table Ⅰ and Table Ⅱ. It 
demonstrates the effectiveness and efficiency of the proposed 
TGCN subnetwork, MMF module, and MSC strategy in 
TGCN-ICF. 

 
Fig. 9. Comparison of the computational complexity for different 

models. 

VI. DISCUSSION 
In this work, we propose a novel TGCN-ICF to detect six hip 

landmarks within BUS images, which then can be further used 
to calculate the α and β angles for diagnosis of DDH based on 
the Graf’s method. The experimental results on two real-world 
DDH datasets demonstrate the effectiveness of the proposed 
TGCN-ICF, indicating its potential applications in the CAD of 
DDH for clinical practice. 

It is worth noting that the hip ultrasound images are affected 
by speckle noise, making it a challenging task to accurately 
detect the critical landmarks. According to the Graf’s method 

Fig. 8. Visualization results of two ablation experiments on SCMC DDH Dataset. 
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in clinical practice for diagnosis of DDH [4], there exist special 
topological relations among the six hip landmarks. Besides, the 
class labels of each ultrasound image can also provide 
additional supplementary information to refine the detection. 
However, the previous landmark detection based works for 
DDH diagnosis do not pay attention to these important prior 
information. To this end, we model three groups of topological 
relations among the six hip landmarks by constructing a special 
adjacency matrix, and then innovatively design a TGCN 
subnetwork with the guidance of class labels. The experimental 
results indicate that the additional TGCN subnetwork can 
effectively learn graph representations to refine the generated 
heatmaps from the ICF subnetwork. 

On the other hand, most of the landmark detection 
approaches generally hypothesize that each point is 
independent. In fact, besides the inherent topological relations 
among different hip landmarks, these points also exhibit 
positional relations in the spatial domain of hip ultrasound 
images. Although previous works have attempted to construct 
spatial relations by defining edges among landmarks [14], it is 
still limited in supervising every point. To this end, we propose 
a new MSC strategy to provide spatial constraint for each hip 
landmark. In MSC, all six hip landmarks can form supervisions 
and constraints in positional relationships. Both quantitative 
and visualized results of the ablation experiment demonstrate 
the effectiveness of the proposed MSC. 

Existing feature fusion methods can be approximately 
divided into three categories: simple fusion (e.g., Addition [47], 
Concatenation [48]), convolution-based fusion (e.g., AFF [29]), 
and attention-based fusion (e.g., BiFusion [28]). Instead of 
these feature fusion approaches, we design a novel modulation-
based fusion module, namely MMF, inspired by [31]. The 
MMF initially modulates and optimizes each branch’s 
information by another one, and subsequently fuses them 
together. In this way, the features that extracted by CNN and 
Transformer branches can be fully exchanged and fused, so as 
to enhance the feature representation performance in the 
proposed TGCN-ICF. 

According to the experimental results presented in Table Ⅰ 
and Ⅱ, it is evident that the proposed TGCN-ICF outperforms 
all the compared algorithms on both the MRE and SDRs 
metrics in the hip landmark detection task. Considering the 
complexity of clinical scenarios, we evaluate the TGCN-ICF on 
two real-world DDH datasets acquired from two hospitals with 
three different ultrasound devices. The visualization results 
shown in Fig. 5 further illustrate that the TGCN-ICF achieves 
the superior detection performance. Moreover, as shown in Fig. 
9, the proposed TGCN-ICF exhibits the medium FLOPs 
compared to other comparison algorithms, which indicates its 
strong performance in model inference. All these experimental 
results demonstrate the effectiveness and efficiency of the 
proposed TGCN-ICF. After accurately detecting the anatomical 
hip points in ultrasound images, the detected landmarks serve 
as the key points to form three critical lines, which are then used 
to calculate the α and β angles for DDH diagnosis. Thus, this 
CAD can assist sonologists to improve diagnosis accuracy, 

reduce workload and promote efficiency. That is, the proposed 
TGCN-ICF demonstrates its effectiveness in the hip landmark 
detection task, indicating its significant clinical potential for 
DDH diagnosis. 

Although the proposed TGCN-ICF achieves superior 
performance to the compared algorithms, it still has room for 
improvement. For example, the TGCN-ICF is developed for 
detecting critical landmarks from static ultrasound images, and 
it cannot be directly applied to detect points from ultrasound 
videos. In fact, it is subjective and time-costing for sonologists 
to select an image as the standard plane of the infantile hip for 
angle measurement during the scanning process. Therefore, we 
will focus on developing the fast landmark detection models for 
real-time calculation of α and β angles from ultrasound videos 
in future, so as to make it really work for DDH diagnosis in 
clinical practice. 

Moreover, the effectiveness of the proposed TGCN-ICF has 
not been investigated for detecting structures from other 
medical images, such as breast cancer or skin lesion detection, 
which are very challenging due to different imaging techniques 
and noise [51], [52]. In future work, we will further develop our 
TGCN-ICF model, adapting and applying it to medical image 
detection tasks, thereby enhancing its potential for broader 
application in clinical settings. 

VII. CONCLUSION 
In summary, we propose a novel weakly supervised TGCN-

ICF algorithm for hip landmark detection from B-mode 
ultrasound images. Different from conventional heatmap 
regression-based approaches for landmark detection, we 
develop an additional TGCN subnetwork to explore the 
topological relations among different hip points for the 
refinement of the generated heatmaps. Moreover, a new MMF 
feature fusion module is designed in the ICF subnetwork, which 
aims to fully fusing and exchanging the information that 
extracted by the U-Net and Transformer branches. Meanwhile, 
we also propose a novel MSC strategy for providing spatial 
constraints of each detected landmark, so as to further enhance 
the detection accuracy. The experimental results on two real-
world DDH datasets demonstrate the effectiveness and 
robustness of the TGCN-ICF, indicating its potentially clinical 
application.  
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