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Soft-Edge Assisted Network for Single Image
Super-Resolution

Faming Fang™, Juncheng Li, and Tieyong Zeng

Abstract— The task of single image super-resolution (SISR) is
a highly ill-posed inverse problem since reconstructing the high-
frequency details from a low-resolution image is challenging.
Most previous CNN-based super-resolution (SR) methods tend
to directly learn the mapping from the low-resolution image to
the high-resolution image through some complex convolutional
neural networks. However, the method of blindly increasing
the depth of the network is not the best choice because the
performance improvement of such methods is marginal but the
computational cost is huge. A more efficient method is to integrate
the image prior knowledge into the model to assist the image
reconstruction. Indeed, the soft-edge has been widely applied
in many computer vision tasks as the role of an important
image feature. In this paper, we propose a Soft-edge assisted
Network (SeaNet) to reconstruct the high-quality SR image with
the help of image soft-edge. The proposed SeaNet consists of
three sub-nets: a rough image reconstruction network (RIRN),
a soft-edge reconstruction network (Edge-Net), and an image
refinement network (IRN). The complete reconstruction process
consists of two stages. In Stage-I, the rough SR feature maps
and the SR soft-edge are reconstructed by the RIRN and
Edge-Net, respectively. In Stage-II, the outputs of the previous
stages are fused and then fed to the IRN for high-quality
SR image reconstruction. Extensive experiments show that our
SeaNet converges rapidly and achieves excellent performance
under the assistance of image soft-edge. The code is available
at https://gitlab.com/junchenglee/seanet-pytorch.

Index Terms—Edge assistance, soft-edge, convolutional neural
network, single image super-resolution, image restoration.

I. INTRODUCTION

INGLE image super-resolution (SISR) is an extremely
hot topic in the field of computer vision, which aims
to reconstruct a super-resolution (SR) image from a single
low-resolution (LR) one (Fig. 1). It has been widely used in
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computer vision tasks such as medical image enhancement [1],
[2], video super-resolution [3], [4], and facial illusion [5], [6].
Meanwhile, the quality of reconstructed images significantly
affects the accuracy of high-level tasks, such as image classifi-
cation, objective detection, and image segmentation. Although
SISR has a wide range of applications, it is still considered as
a highly ill-posed problem due to information loss.

Recently, convolutional neural networks (CNNs) have
achieved remarkable success in many computer vision tasks
and greatly promoted the development of SISR. To handle
the SISR problem, plenty of CNN-based models have been
investigated, including [7]-[17]. Among them, Dong et al. [7]
proposed the Super-Resolution Convolutional Neural Network
(SRCNN), which was the first successful model adopting CNN
to the SISR problem and achieved significant improvement.
Later, Kim et al. [10] extended the depth of the network and
addressed the VDSR with residual learning. The aforemen-
tioned models both used the preprocessed LR image as input
and amplify it to the HR dimension by a Bicubic interpolation.
However, it was argued that using the preprocessed LR image
as input will increase computational complexity and produce
visible artifacts [9]. Therefore, ESPCN [9] introduced an
efficient sub-pixel convolutional layer that can learn an array of
upscaling filters to directly upscale the final LR feature maps
into the SR image. FSRCNN [8] adopted a deconvolutional
layer at the end of the model to directly learn the mapping
between the original LR and SR images.

After that, CNN-based SR models have been blooming
and constantly refreshing the best results. For example,
Kim et al. [11] investigated a deeply-recursive convolutional
network for SISR, which introduced recursive-supervision
learning to reduce model parameters; Lai ef al. [13] proposed
a Laplacian pyramid network to progressively reconstruct the
sub-band residuals of HR images; Li et al. [16] considered
a multi-scale residual network to extract rich image features
for high-quality SR images reconstruction; He et al. [18]
used the residual blocks to build an extremely wide and
deep EDSR network, which achieved state-of-the-art results.
However, there are still two potential problems in the
aforementioned SR models: (1) Since all these methods
tend to use deeper networks, the training of these networks
becomes more difficult and requires more training data, time,
and memory. (2) Most CNN-based SR models directly learn
the mapping between LR and HR images by minimizing
some loss function. However, it is rather difficult for them to
reconstruct realistic high-frequency details due to the lack of
prior knowledge of natural images.
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Fig. 1.

An example SR result of our SeaNet (x4). (Lower left corner: LR
image; Left: SR image (SeaNet); Right: HR image (ground-truth).

Various previous works have pointed out that the application
of prior knowledge of images can effectively assist image
reconstruction. Accordingly, many image priors have been
proposed for image reconstruction, among which the total
variation (TV) prior [19], [20], sparse prior [21]-[23], and
edge prior [24], [25] are extremely popular. Inspired by these
studies, recent works [26]-[28] have attempted to introduce
TV or sparse priors into deep neural networks for SR image
reconstruction. However, the TV prior will smooth texture
details in the restored images and the sparse priors are usually
difficult to model because it requires other domain knowledge.
After that, Yang er al. [29] integrated the edge prior with
recursive networks and proposed the Edge Guided Recurrent
Residual Network for SISR. Although those methods have
introduced images priors into the deep networks, how to accu-
rately extract image priors and how to effectively use the image
priors to assist image reconstruction are still challenging.

It is universally acknowledged that an image can be divided
into two components: low-frequency and high-frequency ones.
The low-frequency component refers to the region where the
intensity of the image is varying gently, that is, where the
large color patches are located. The high-frequency component
refers to the region where the intensity of the image changes
drastically, that is, the edge of the image. Driven by these
facts, we aim to explore a unified framework that can auto-
matically extract and integrate the soft-edge prior for image
super-resolution. To achieve this, we build a Soft-edge assist
Network (SeaNet) for image super-resolution, which consists
of a rough image reconstruction network (RIRN), a soft-edge
reconstruction network (Edge-Net), and an image refinement
network (IRN). Specifically, the reconstruction process has
two stages. In Stage-I, we reconstruct the rough image feature
maps and the image soft-edge by the RIRN and Edge-Net,
respectively. Both sub-nets take the LR image as input and
obtain the corresponding maps in high-dimensional space. In
Stage-1II, we first fuse the reconstructed image feature maps
and the image soft-edge by a bottleneck layer. Then we send
the fused feature maps to the IRN for the final SR image
reconstruction. All of these subnets constitute the complete
Soft-edge assisted Network (SeaNet). Extensive experiments
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and ablation analysis demonstrate that under the assistance
of soft-edge prior, our SeaNet can converge quickly and
reconstruct realistic SR images with high-frequency details.
The main contributions are as follows:

(i). We propose a soft-edge reconstruction network (Edge-
Net), which is the first CNN model used to reconstruct the
image soft-edge directly from the LR image. The Edge-
Net can work independently for the image soft-edge recon-
struction, or be embedded as a subnet into any SR model
to provide image soft-edge prior for high-quality SR image
reconstruction.

(ii). We propose an efficient and accurate Soft-edge assisted
Network (SeaNet), which is a well-designed network that
introduces the Edge-Net to provide image soft-edge prior.

The rest of this paper is organized as follows. Related
works are reviewed in Section II. A detailed explanation of
the proposed SeaNet is given in Section III. The experimental
results and ablation analysis are presented in Section IV and V,
respectively. Finally, we draw a conclusion in Section VI.

II. RELATED WORKS
A. Single Image Super-Resolution

Image super-resolution, especially single image super-
resolution (SISR) has been extremely popular in the past sev-
eral decades. Thorough reports can be found in [30] and [31].
In this paper, we focus on the SISR task and all comparison
methods are based on SISR.

The development of SISR can be simply divided into two-
stages: (1) Earlier methods used the interpolation techniques
based on the sampling theory, such as linear or Bicubic meth-
ods, which were fast and flexible. However, these methods
failed to reconstruct high-frequency texture details, thus can
not reconstruct realistic SR images. (2) Later, more powerful
methods based on the learning techniques have been developed
to establish a complex mapping between LR and HR images.
The sparsity-based SR methods [32], [33] assume that any nat-
ural image can be sparsely represented in a dictionary learned
from a database. Neighborhood embedding methods [34], [35]
upsample a LR image patch by finding similar patches in a
low dimensional manifold and combining their corresponding
HR patches for the SR image reconstruction. In addition to
the methods mentioned above, other learning-based methods
have been proposed to learn the mapping between LR and HR
images, including the convolutional neural network (CNN) [7]
and random forest [36]. Among them, CNN-based methods
have shown outstanding performance and become the current
mainstream means. Most CNN-based methods tend to use
bigger and deeper network to reconstruct SR images. However,
these models often gain marginal improvement while they fail
to reconstruct high-frequency details and result in significant
resource overhead. To solve this problem, we aim to explore
an efficient and accurate SR model that can introduce image
priors for high-frequency feature learning.

B. Edge-Assisted Image Reconstruction

In the past few decades, image reconstruction based on
image priors has grown tremendously. Among all image priors,
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Fig. 2.

(a) The image soft-edge directly extracted from the HR image. (b) The image soft-edge extracted from the upsampled LR image. (c) The image

soft-edge reconstructed by the Edge-Net (ours). The SR soft-edge extracted by method (b) is blurred and carries lots of noise, while the soft-edge extracted

by method (c) is clear and sharp.

image edge prior is one of the most effective priors since
image edges are important image features. Extensive edge-
assisted or edge-guided image processing methods [24], [25]
have verified the feasibility and necessity of the image edge
prior. However, the implementation of these methods is com-
plex and exist certain limitations. For instance, Yang et al. [29]
introduced the image edges into the CNN model and proposed
the Edge Guided Recurrent Residual (DEGREE) Network. As
a ground breaking job, this method still has some shortcomings
resulting in sub-optimal performance, e.g. (a) DEGREE uses
Bicubic preprocessed LR images as input. This will bring
extra noise and produce visible artifacts; (b) DEGREE applies
an off-the-shelf edge detector (e.g. Sobel detector) on the
preprocessed LR image to get the image edges. This may intro-
duce additional noise and cause blurred image edges (Fig. 2
(b)); (c) DEGREE directly adds the learned image edge feature
to the LR image to obtain the final SR image; This is essen-
tially a residual learning and the addition method can not maxi-
mize the usage of image edge prior; (d) DEGREE is a recurrent
network. The recurrent mechanism can reduce model parame-
ters but can not reduce the execution time. In addition, training
a recurrent network needs more training tricks. In order to
solve the aforementioned issues and make full use of image
edge prior, we aim to explore an efficient edge reconstruction
network (Fig. 2 (c)) to directly reconstruct clear image edges
from the LR image and build a two-stage framework to fully
use image edge prior for SR image reconstruction.

C. Image Soft-Edge
The points where the brightness of an image changes
drastically are usually organized into a set of curve segments

called image edges. A variety of methods have been raised
to extract image edges, including Sobel, Prewitt, Roberts,
and Canny. However, we find that these methods have some
limitations and are difficult to apply to arbitrary images. Mean-
while, these off-the-shelf edge detectors use the binarization
measurement to convert all the values of the edges to 0 and 1,
which results in the loss of a great number of image features
and the appearance of false edges. To avoid these problems,
we suggest using image soft-edge instead of image edge. The
soft-edge is acquired by eliminating the binarization strategy
in order to retain accurate image edge information. Detailed
acquisition methods will be introduced in Section III-B.

III. SOFT-EDGE ASSISTED NETWORK

As shown in Fig. 3, our Soft-edge assisted Network
(SeaNet) includes a rough image reconstruction network
(RIRN), a soft-edge reconstruction network (Edge-Net), and
an image refinement network (IRN). Specifically, the SeaNet
can be divided into two stages. In Stage-I, we use RIRN
to extract low-frequency features from the LR image and
reconstruct rough SR feature maps. In addition, we build
an efficient Edge-Net to directly reconstruct clear and sharp
super-resolution soft-edge from the LR image. In Stage-
II, the outputs of Stage-I are concatenated and fused by a
bottleneck layer. Then the fused image features are sent to the
IRN for the final SR image reconstruction. We define I g and
Isr as the input and output of SeaNet, respectively. Besides,
frough and fedge represent the output of the RIRN and the Edge-
Net, respectively. Therefore, the rough SR image feature maps
extraction and the image soft-edge reconstruction in Stage-I
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Fig. 3. The complete architecture of SeaNet. The model can be divided into three parts: rough image reconstruction network (RIRN), soft-edge reconstruction
network (edge-net), and image refinement network (IRN). The blue block, green box, and gray box denote the convolutional layer, upsample module, and

bottleneck layer, respectively.

can be expressed as:

frough = Frirn (ILR), (1)
fedse = FEdge—Ner (ILR), (2)

where Frrrn (-) and Fggge—ner (-) denote the RIRN and Edge-
Net, respectively. The outputs frough and feqge represent the
low-frequency images features (the rough SR feature maps)
and the high-frequency image features (the image soft-edge),
respectively. They are merged through a fusion layer

ffusion = Ffusion([frough, fedge]), (3)

where [ ] is the concatenate operation and Fr,yi0n(-) denotes
the fusion layer. The fusion layer is essentially a bottleneck
layer, which can realize feature fusion and increase the non-
linear relationship between features. After that, the merged
image features are sent to the IRN for high-quality SR image
reconstruction in Stage-II

Isg = FIRN(ffusion), (4)

where Frry (-) denotes the IRN and Igg is the final SR image.

Different from previous works which learn the mapping
between LR and HR images directly, we propose an edge-
assisted loss function. The edge-assisted loss function consists
of a content loss and an ed1§e loss. Therefore, given a training

dataset {IiR, I};IR, Iédge}izl, we need to solve

N

R 1 . .

0 = argmin 3 [ FUL) ~
i=

+ )’E(IiR) ~Ipgge ®)

where 1 is a hyperparameter, 6 denotes the parameter set of
our SeaNet, F(-) and E(-) denote the SeaNet and Edge-Net,
respectively. It is worth noting that the Edge-Net is served as a

1 >

subnet of the SeaNet and trained jointly with the whole model
in an end-to-end manner.

A. Rough Image Reconstruction Network (RIRN)

In Stage-I, we use RIRN for rough SR image feature maps
reconstruction. As we know, with the powerful representation
capabilities of CNN, the image low-frequency features can be
easily detected. Therefore, a shallow CNN model is sufficient
for this task. Similar to previous works, we first use a 3 x 3
convolutional layer to transform the image from the RGB
channel to a higher dimension. Then, five convolutional layers
are applied to extract low-frequency image features from the
LR image, each layer can be expressed as

fm = maX(O, Wm * fmfl + bm)a (6)

where f,_1 is the output of the previous layer and is also
considered as the input of the current layer. f;,, W,,, and
b, are the output, weight, and bias of the current layer,
respectively. Meanwhile, we set layer’s ID m = 1,2,---,5.
Finally, the extracted low-frequency features are upscaled into
HR dimension via an upsample module

frough = FUP(fS)» (7

where Fy p(-) denotes the upsample module which consists of
two convolutional layers and a sub-pixel layer [9]. The output
frough represents the reconstructed rough SR image features.
It contains three feature maps, essentially a representation of
low-frequency features in the SR space.

B. Soft-Edge Reconstruction Network (Edge-Net)

Image edge prior is one of the most widely used and
easily collected prior knowledge. As shown in Fig.5, directly
upsampling the image soft-edge extracted from the LR image
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into HR space or extracting the image soft-edge from the
upsampled LR image will cause blurred edges and introduce
additional noise. To settle this issue, we designed a soft-
edge reconstruction network (Edge-Net) to reconstruct super-
resolution image soft-edge from the LR image directly.

In Section II-C, we introduce the difference between the
image soft-edge and image edge. The image soft-edge can
retain more accurate image edge information, thus we use
the following curvature formula to obtain the corresponding
soft-edge /gqq. from Igg since it can accurately describe the
change in the gradient domain

®)

€ {x,y}, x and y represent

Igage = div(uy, uy)a

VilHr

—Ak
S1HvIgRE]

horizontal and vertical directions, respectively. Meanwhile,
v and div(-) denote the gradient and divergence operations,
respectively. Although there are other soft-edge detection
methods that can be used to construct the label of the training
dataset, extensive experiments show that the image soft-edge
detected by our proposed curvature formula is good enough
in this work.

For Edge-Net, we use a modified version of multi-scale
residual network (MSRN) [16] as its structure. MSRN is an
efficient network that can detect the image features at different
scales adaptively. This characteristic is beneficial for image
soft-edge extraction. However, we find that the original MSRN
is too complicated. In order to adapt MSRN to the soft-edge
reconstruction task, we make the following modifications: (1).
reducing M, the number of multi-scale residual blocks. (2).
learning the mapping between Ip g and Igge. instead of the
mapping between Iz g and IgR.

The Edge-Net can be used as part of any SR model to pro-
vide image soft-edge, or works independently to reconstruct
super-resolution image soft-edge from the LR image directly.
Its ultimate goal is to learn a reconstruction function that can
reconstruct a SR soft-edge from the corresponding LR input.
Thus, we define the edge loss as

Ledge = HE(ILR) - IEdge Hl > )

where E(-) denotes the Edge-Net, E(ILgr) represents the
reconstructed soft-edge, and /gqq. is the soft-edge detected
from the corresponding HR image. It is worth noting that,
the reconstructed image soft-edge has the same dimension as
the HR image since we also introduce an upsampling module
in the Edge-Net.

where u; =

C. Image Refinement Network (IRN)

In Stage-I, we use the RIRN and Edge-Net to reconstruct
the rough SR image features and image soft-edge, respec-
tively. The reconstructed rough SR image features contain
plenty of low-frequency features and the reconstructed soft-
edge contains rich high-frequency details. However, these two
subnets are independent and the outputs of these modules
cannot interact with each other. A common and simple method
is to add the outputs of these two parts directly to get the final
SR image. Although this method is feasible, we find that its
result is sub-optimal. In order to take full advantage of image
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features and achieve soft-edge guidance, an image refinement
network (IRN) is built for the final SR image reconstruction.
In detail, we apply a fusion layer to fuse the low and high-
frequency features, and then send the fused feature maps to
the IRN to reconstruct SR images.

The IRN is a well designed image refinement network which
contains two convolutional layers and N residual blocks. The
residual blocks [18] are widely used in a variety of computer
vision tasks, and the principle of the residual learning can be
explained as follows:

Remark 1: Consider H(x) as an underlying mapping to be
fitted by some stacked convolutional layers, x denotes the input
of this block. If multiple nonlinear layers can asymptotically
approximate complicated functions, we can also hypothesize
that they can asymptotically approximate the residual func-
tions, i.e., H(x)—x. Thus, rather than expecting stacked layers
to approximate H(x), we let these layers to approximate a
residual function F(x) = H (x)—x. Then the original function
can be defined as H(x) = F(x) + x.

Our residual block contains two convolutional layers and
one ReLU function, the ReLU function is only applied in
the first layer. Different from the original residual block,
we remove all batch normalization layers to reduce memory
usage. Therefore, the output {3 of each residual block can be
defined as

B = (W ROWy #5514+ by) + bo) + 571,

where W; and W, denote the weights of the first and
the second convolutional layer, respectively. b1 and b, are the
corresponding biases, R denotes the ReLLU function, and f;{;l
is the output of the previous blocks which is also considered
as the input of current block.

In addition, except for using the residual block for local
residual learning, we also apply a long skip connection for
global residual learning. The long skip connection can solve
the problem of gradient disappearance while increasing the
flow of information and improving the model performance.
The global residual learning can be defined as

(10)

N
fout = frb + finput,

(1)

where finpue and erb represent the input of the first residual

block and the output of the last residual block, respectively.
During training, we use the L loss as the content loss to

minimize the difference between the SR and HR images

l:content = ”ISR - IHR”] . (12)

In summary, under the assistance of the image soft-edge,
SeaNet can efficiently reconstruct high-quality SR images
with sharp edges and rich texture details. Then RIRN, Edge-
Net, and IRN form the complete Soft-edge assisted Network
(SeaNet). The content loss Lsr and edge loss Lggg. form the
complete edge-assisted loss Lyoral,

»Ctotal = »Ccontent + Aﬁedge» (13)

where 1 is a hyper-parameter used to control the composition
of the edge loss. The special emphasis here is that although
SeaNet consists of three subnets, it can also achieve end-to-end
training.
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QUANTITATIVE COMPARISONS OF THE STATE-OF-THE-ART SR METHODS. ALL OF THESE METHODS ARE TRADITIONAL MATHEMATICAL MOD-

ELS OR MODELS THAT INTRODUCE IMAGE PRIORS INTO CNN FOR SR IMAGE RECONSTRUCTION. NOTICE THAT, DEGREE-MV USES THE
MULTI-VIEW TESTING STRATEGY TO IMPROVE PERFORMANCE. BEST RESULTS ARE HIGHLIGHTED

. Set5 [37] Setl4 [38] BSDS100 [39] .
Algorithm Scale Image Priors
PSNR / SSIM PSNR / SSIM PSNR / SSIM

Bicubic X2 33.69 / 0.9284 30.34 / 0.8675 29.57 1 0.8434 -
A+ [32] X2 36.60 / 0.9542 32.42 / 0.9059 31.24 / 0.8870 Neighbor embedding
SelfExSR [40] X2 36.60 / 0.9537 32.46 / 0.9051 31.20 / 0.8863 Transformed self-exemplars
CSCN-MV [27] x2 37.14 1 0.9567 32.56 / 0.9074 31.40 / 0.8840 Sparse prior
DEGREE-MV [29] X2 37.61 / 0.9589 33.11/0.9129 31.84 /0.8951 Edge prior
SeaNet (Ours) X2 38.08 / 0.9609 33.75 / 0.9190 32.27 / 0.9008 Edge prior
Bicubic %3 30.41 / 0.8655 27.64 1 0.7722 27.21 / 0.7344 -
A+ [32] X3 32.63 / 0.9085 29.25 7/ 0.8194 28.31/0.7828 Neighbor embedding
SelfExSR [40] x3 32.66 / 0.9089 29.34 / 0.8222 28.30 / 0.7839 Transformed self-exemplars
CSCN-MV [27] x3 33.26 / 09167 29.55/0.8271 28.50 / 0.7885 Sparse prior
DEGREE-MV [29] X3 33.70 / 0.9212 29.77 /1 0.8309 28.76 / 0.7956 Edge prior
SeaNet (Ours) X3 34.55 / 0.9282 30.42 / 0.8445 29.17 / 0.8071 Edge prior
Bicubic x4 28.43 / 0.8022 26.10 / 0.6936 25.97 /1 0.6517 -
A+ [32] x4 30.33 / 0.8565 27.44 1 0.7450 26.83 / 0.6999 Neighbor embedding
SelfExSR [40] x4 30.34 / 0.8593 27.55/0.7511 26.84 / 0.7032 Transformed self-exemplars
CSCN-MV [27] x4 31.04 / 0.8775 27.76 / 0.7620 27.11 /0.7191 Sparse prior
DEGREE-MV [29] x4 31.30 / 0.8968 27.92 7/ 0.7637 27.18 /1 0.7207 Edge prior
SeaNet (Ours) x4 32.33 / 0.8970 28.72 / 0.7855 27.65 / 0.7388 Edge prior

Overall speaking, we have designed a model called SeaNet
according to the fact that an image consists of low and high-
frequency features. Specifically, SeaNet is a well-designed
model that contains three subnets on the basis of specific
learning purposes. In addition, these subnets are well-defined
and work synergistically, which greatly improves the inter-
pretability of the proposed network.

IV. EXPERIMENTS
A. Datasets

The DIV2K [42] is a new high-quality dataset for image
restoration, which contains 800 training images, 100 val-
idation images, and 100 test images. Following previous
works [16], [17], we train all of our models and compared
models on DIV2K (1-800) dataset. For testing, we choose
Set5 [37], Setl4 [38], BSDS100 [39], Urbanl100 [40], and
Mangal09 [41] as our test datasets. All of them are the most
widely used test benchmark datasets, which contain a variety
of scenarios that can fully validate the model performance.

B. Implementation Details

1) Model Setting: In this work, we design three different
versions of SeaNet. The baseline SeaNet contains 3 multi-
scale residual blocks (MSRB) in the Edge-Net and 20 residual
blocks (RB) in the IRN, denoted as SeaNet (Baseline). The
final SeaNet contains 5 MSRBs in the Edge-Net and 40 RBs
in the IRN, denoted as SeaNet. We also introduce the self-
ensemble strategy to further improve our SeaNet and denote
the self-ensembled version as SeaNet+. The kernel size of all
convolutional layers is set to 3 x 3 except for the feature fusion
layer, whose kernel size is 1 x 1. Meanwhile, the input and
output channel of each MSRB and RB are set to 64.

2) Training Setting: In this work, we first apply the Equa-
tion (8) on 800 training images to obtain their corresponding
image soft-edge. Then, we generate LR images by applying
Bicubic interpolation to HR images. Finally, we use the RGB
image as input and augment the training data with random
horizontal flips and vertical. Following previous works [16],
[17], we randomly extract 16 LR patches with the size of
48 x 48 as input for SeaNet (32 x 32 for SeaNet (Baseline))
and 1,000 iterations of back-propagation constitute an epoch.
We implement our SeaNet with the PyTorch framework and
update it with Adam optimizer. The learning rate is initialized
as 10~* and halved every 200 epochs. Meanwhile, we set
A = 0.1 based on a lot of experience. Besides, to further
verify the performance of the Edge-Net, we also train the
independent Edge-Net for SR soft-edge reconstruction and
all of them use 3 MSRBs in this work. All the models are
implemented with the PyTorch framework and trained on
NVIDIA Titan Xp GPU.

C. Comparisons With the State-of-the-Art Methods

As shown in TABLEs I-III, we compare our SeaNet
with more than 14 SR methods to fully verify the model
effectiveness, including Bicubic, A+ [32], SelfExSR [40],
CSCN-MV [27], DEGREE-MV [29], SRCNN [7], ESPCN [9],
FSRCNN [8], VDSR [10], DRCN [11], LapSRN [13],
DRRN [12], MSRN [16], and EDSR [17]. These methods
include traditional mathematical models and CNN-based mod-
els. The CNN-based methods are further divided into methods
with and without image priors. Among them, EDSR [17] wins
the first place in NTIRE 2017 Super-Resolution Challenge [43]
and achieves the state-of-the-art results. All of the SR results
are evaluated with PSNR and SSIM on the Y channel of the
transformed YCbCr space.
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TABLE II

QUANTITATIVE COMPARISONS OF THE STATE-OF-THE-ART SR METHODS. ALL OF THESE METHODS ARE BASED ON CNN WITHOUT IMAGE PRIORS.
BEST RESULTS ARE HIGHLIGHTED AND SECOND BEST RESULTS ARE UNDERLINED

Algorithm Scale Set5 [37] Set14 [38] BSDS100 [39] Urban100 [40] MangalQ9 [41]
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

SRCNN [7] X2 36.71 / 0.9536 32.32/0.9052 31.36 / 0.8880 29.54 7 0.8962 35.74 1 0.9661
ESPCN [9] X2 37.00 / 0.9559 32.75 7 0.9098 31.51/0.8939 29.87 / 0.9065 36.21 / 0.9694
FSRCNN [8] X2 37.06 / 0.9554 32.76 /1 0.9078 31.53/0.8912 29.88 7 0.9024 36.67 / 0.9694
VDSR [10] X2 37.53 7/ 0.9583 33.05/0.9107 31.92 / 0.8965 30.79 / 0.9157 37.22/0.9729
DRCN [11] X2 37.63 /0.9584 33.06 / 0.9108 31.85/0.8947 30.76 / 0.9147 37.63 /09723
LapSRN [13] X2 37.52/0.9581 33.08 / 0.9109 31.80 / 0.8949 30.41 /09112 37.27 1 0.9855
DRRN [12] X2 37.74 1 0.9590 33.23/0.9140 32.05 /7 0.8970 31.23/0.9190 37.92 7 0.9760
SeaNet (Ours) X2 38.08 7 0.9609 33.75/0.9190 32.27 7 0.9008 32.50/0.9318 38.76 / 0.9774
SeaNet+ (Ours) X2 38.15 / 0.9611 33.86 / 0.9198 32.31/0.9013 32.68 / 0.9332 38.97 / 0.9779
SRCNN [7] x3 32.47 / 0.9067 29.23 / 0.8201 28.31/0.7832 26.25/0.8028 30.59 7 0.9107
ESPCN [9] x3 33.02 /09135 29.49 1 0.8271 28.50 / 0.7937 26.41 /0.8161 30.79 / 0.9181
FSRCNN [8] x3 33.20/0.9149 29.54 1 0.8277 28.55/0.7945 26.48 / 0.8175 30.98 /0.9212
VDSR [10] x3 33.68 7 0.9201 29.86 / 0.8312 28.83 / 0.7966 27.1570.8315 32.01/0.9310
DRCN [11] x3 33.85/0.9215 29.89 7/ 0.8317 28.81 /0.7954 27.16 / 0.8311 32.31/0.9328
LapSRN [13] x3 33.82 /7 0.9207 29.89 / 0.8304 28.82/0.7950 27.07 / 0.8298 3221709318
DRRN [12] x3 34.03 7/ 0.9240 29.96 / 0.8350 28.95 /7 0.8000 27.53 7 0.7640 32.74 7 0.9390
SeaNet (Ours) x3 34.55 /1 0.9282 30.42 / 0.8444 29.17 / 0.8071 28.50 / 0.8594 33.73 / 0.9463
SeaNet+ (Ours) x3 34.65 / 0.9290 30.53 / 0.8461 29.23 / 0.8081 28.68 / 0.8620 34.02 / 0.9478
SRCNN [7] x4 30.50 / 0.8573 27.62 /1 0.7453 26.91 / 0.6994 24.53 7 0.7236 27.66 / 0.8505
ESPCN [9] x4 30.66 / 0.8646 27.71 1 0.7562 26.98 /0.7124 24.60 / 0.7360 27.70 / 0.8560
FSRCNN [8] x4 30.73 / 0.8601 27.71 1 0.7488 26.98 / 0.7029 24.62 7/ 0.7272 27.90/ 0.8517
VDSR [10] x4 31.36 / 0.8796 28.11 /7 0.7624 27.29 1 0.7167 25.18 /1 0.7543 28.83 / 0.8809
DRCN [11] x4 31.56 / 0.8810 28.15 7/ 0.7627 27.24 7 0.7150 25.15/70.7530 28.98 /0.8816
LapSRN [13] x4 31.54/0.8811 28.19 / 0.7635 27.32/0.7162 25217 0.7564 29.09 / 0.8845
DRRN [12] x4 31.68 / 0.8888 28.21/0.7722 27.38 /1 0.7240 25.44 1 0.7640 29.46 / 0.8960
SeaNet (Ours) x4 32.33/0.8970 28.72 / 0.7855 27.65/0.7388 26.32 /0.7942 30.74 / 0.9129
SeaNet+ (Ours) x4 32.44 / 0.8981 28.81 / 0.7872 27.70 / 0.7399 26.50 / 0.7976 31.05 / 0.9154

1) Objective Evaluation: TABLE 1 shows the quantita-
tive comparison between the SeaNet and other SR methods.
All the report methods are traditional mathematical-based
models or the models introducing image priors into CNN.
Obviously, our SeaNet achieves the best results among these
methods. It is worth noting that, the DEGREE-MV [29] also
introduces image edge prior into CNN model and uses the
multi-view testing strategy to improve the model performance
while the results of DEGREE are still unsatisfactory. The main
reasons may lie in the following: (i) DEGREE uses Bicubic
interpolated LR image as input; (ii) DEGREE applies an oft-
the-shelf edge detector for edge detection; (iii) the network
structure of DEGREE is sub-optimal. In order to solve these
shortcomings, we propose the SeaNet. Extensive experiments
demonstrate that the performance of our SeaNet is better than
the DEGREE.

In TABLE II, we show the performance comparison
between the SeaNet and some classical CNN-based SR mod-
els. All of these CNN-based models use a well-designed
network to learn the mapping function between LR and HR
images directly and all of them achieve the best results at the
time. However, they ignore the importance of image priors
for image reconstruction. Therefore, the reconstructed SR

images often lack texture details. Different from these models,
we design an Edge-Net for image soft-edge reconstruction and
embed the Edge-Net as part of the SeaNet to provide image
soft-edge prior. With the assistance of the image soft-edge
prior, the SeaNet achieves the best results in all test datasets.

Recently, a series of large SR models have been proposed,
including but not limited to MSRN [16] and EDSR [17].
Among them, the EDSR is one of the most famous large-scale
SR model and MSRN is the prototype network of our Edge-
Net. In TABLE III, we show the comparison of MSRN, EDSR,
EDSR+, SeaNet (baseline), SeaNet and SeaNet+. Obviously,
the performance of SeaNet(+) and EDSR(+) are close. It
is worth noting that the parameter quantity of EDSR are
40121k, 42481k and 45430k in x2, x3, and x4, respectively.
While the parameter quantities of SeaNet are only 7102k,
7471k and 7397k in x2, x3, and x4 respectively, which is
about one-sixth (1/6) of that of EDSR. Besides, compared
with MSRN, SeaNet has achieved better results on different
upsampling factors. Considering the parameter quantities of
our SeaNet are more than that of MSRN, we show the
comparison between SeaNet (Baseline) and MSRN to further
verify the performance. SeaNet (baseline) only has 3 MSRBs
and 20 RBs, its parameter quantity is about two-thirds (2/3)
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TABLE III
QUANTITATIVE COMPARISONS OF MSRN, EDSR, EDSR+, SEANET (BASELINE), SEANET (FINAL), AND SEANET+ (FINAL)

. Set5 [37] Set14 [38] BSDS100 [39] Urban100 [40] Mangal09 [41]
Algorithm Scale Parameters
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
MSRN [16] x2 5926k 38.08/0.9605 33.74/0.9170 32.23/0.9013 32.22/0.9326 38.82/0.9868
SeaNet (Baseline, Ours) X2 4194k 37.99/0.9607 33.60/0.9174 32.18/0.8995 32.08/0.9276 38.48/0.9768
CEDSR[17] x2 | 40121k | 38.110.9602  33.92/0.9195 3232009013 329309351 39.1000.9773
EDSR+ [17] X2 40121k 38.20/0.9606 34.02/0.9204 32.37/0.9018 33.10/0.9363 -/ -
SeaNet (Final, Ours) X2 7102k 38.08/0.9609 33.75/0.9190 32.27/0.9008 32.50/0.9318 38.76/0.9774
SeaNet+ (Final, Ours) X2 7102k 38.15/0.9611 33.86/0.9198 32.31/0.9013 32.68/0.9332 38.97/0.9779
MSRN [16] x3 6110k 34.38/0.9262 30.34/0.8395 29.08/0.8041 28.08/0.8554 33.44/0.9427
SeaNet (Baseline, Ours) x3 4563k 34.36/0.9280 30.34/0.8428 29.09/0.8053 28.17/0.8527 33.40/0.9444
CEDSR (17 x3 | 42481k | 34.65/0.9280  30.52/0.8462 29.25/0.8093  28.80/0.8653 | 34.17/0.9476
EDSR+ [17] %3 42481k 34.76/0.9290 30.66/0.8481 29.32/0.8104 29.02/0.8685 -/ -
SeaNet (Final, Ours) %3 7471k 34.55/0.9282 30.42/0.8444 29.17/0.8071 28.50/0.8594 33.73/0.9463
SeaNet+ (Final, Ours) x3 7471k 34.65/0.9290 30.53/0.8461 29.23/0.8081 28.68/0.8620 34.02/0.9478
MSRN [16] x4 6073k 32.07/0.8903 28.60/0.7751 27.52/0.7273 26.04/0.7896 30.17/0.9034
SeaNet (Baseline, Ours) x4 4224k 32.18/0.8948 28.61/0.7822 27.57/0.7359 26.05/0.7896 30.44/0.9088
CEDSR[17] x4 | 45430k | 32.46/0.8968  28.80/0.7876 2771007420 26.64/0.8033 31.02/0.9148
EDSR+ [17] x4 45430k 32.62/0.8984 28.94/0.7901 27.79/0.7437 26.67/0.8041 -/ -
SeaNet (Final, Ours) x4 7397k 32.33/0.8970 28.72/0.7855 27.65/0.7388 26.32/0.7942 30.74/0.9129
SeaNet+ (Final, Ours) x4 7397k 32.44/0.8981 28.81/0.7872 27.70/0.7399 26.50/0.7976 31.05/0.9154

of MSRN. Obviously, SeaNet (Baseline) achieves competitive
results with fewer parameters. In addition, compared with
MSRN, SeaNet achieves better results on large scale (x3, x4).
This further demonstrates the importance of image edge prior
on large scale SR problem.

2) Subjective Evaluation: In Fig. 4, we show the visual
comparisons on x2, x3, and x4, respectively. We can clearly
see that most SR methods cannot recover clean and right image
edges. However, with the image soft-edge assistance, our
SeaNet can reconstruct high-quality SR images with sharper
and more accurate image edges. All the reconstructed SR
images can be downloaded from http://t.cn/EUnPgu6.

V. ANALYSIS AND DISCUSSION
A. Effectiveness of the Edge-Net

According to our knowledge, the Edge-Net is the first
CNN model used to directly reconstruct the image soft-edge
from the LR image. The Edge-Net can be used inde-
pendently or embedded as a part of SR models to pro-
vide image soft-edge prior. In this part, we provide a
series of ablation analysis to illustrate the effectiveness of
the Edge-Net.

(1). We train an Edge-Net alone to observe its abil-
ity to reconstruct image soft-edge from the LR image. In
Fig. 5, we show the visual comparisons of three different
soft-edge reconstruction methods, including ‘Bicubic+Eq.(8)’,
‘Eq.(8)+Bicubic’, and our Edge-Net. The ‘Bicubic+Eq.(8)’
represents that we adopt Eq.(8) to extract soft-edge from
the preprocessed LR which is upsampled to HR space using
Bicubic. ‘Eq. (8)+Bicubic’ means that we adopt Bicubic to
upsample the soft-edge which is extracted from the original LR
using Eq.(8). The ‘Edge-Net’ represents using our proposed
Edge-Net to directly reconstruct the SR soft-edge from LR

image and the ‘Ground Truth’ denotes using Eq. (8) to directly
detect the soft-edge from the HR image. One can see that the
edge extracted by ‘Bicubic+Eq.(8)’ and ‘Eq.(8)+Bicubic’ have
been severely damaged and contain a lot of noise while our
Edge-Net can reconstruct clean and accurate soft-edge with
more texture details.

(2). In this work, we embed the Edge-Net as part of
the SeaNet to provide image soft-edge for SR image recon-
struction. To further verify the effectiveness of Edge-Net,
we build a new model named SRN, which removes the
Edge-Net from the SeaNet. Considering the difference in the
amount of parameters between these two models, we use
the SeaNet (Baseline) as the benchmark model because it
contains only a few parameters in Edge-Net. TABLE IV
and Fig.6 present the performance comparison of SRN and
SeaNet (Baseline). According to the experimental results,
we can find that SRN is inferior to the SeaNet (Baseline)
both qualitatively and quantitatively. Especially, as shown
in Fig.6, with the help of the Edge-Net, our SeaNet (Base-
line) can build high-quality SR images with sharp image
edges.

(3). We proposed an Edge-Net to learn the mapping between
LR images and the soft-edge of HR images, thus our Edge-Net
can directly reconstruct the SR soft-edge from the LR image.
In TABLE V, we show the PSNR comparison of model effect
under the guidance of different soft-edge provide by ‘Bicu-
bic+Eq.(8)’, ‘Eq.(8)+Bicubic’, and the Edge-Net. Obviously,
when the Edge-Net is embedded as a part of the SeaNet to
provide the image soft-edge prior, the model achieves the best
results.

Therefore, the aforementioned experiments fully demon-
strate the effectiveness of the Edge-Net. Meanwhile, exper-
iments show that high-quality image soft-edge is useful for
image reconstruction.
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Fig. 4. Visual comparison for x2, x3, and x4 SR images. Our SeaNet can reconstruct more realistic SR images with sharper edges.

B. Effectiveness of the Image Soft-Edge Prior

Most CNN-based SR models tend to use deep and wide
models to directly learn the mapping between LR and HR
images. However, blindly increasing the depth of the network
is not the best choice because each model has its performance
bottleneck. Furthermore, increasing the depth of the network
will increase model parameters, execution time, and memory.
Therefore, we aim to explore a SR framework guided by image
priors. To achieve this, we suggest using the image soft-edge
to assist SR images reconstruction.

To evaluate the effectiveness of the proposed image soft-
edge assistance, a classical SR model, ESPCN [9], is adopted
as our benchmark model. The ESPCN is a shallow model
that contains only 5 convolutional layers. We here build a
new model termed ‘ESPCN+ISE’ that using ESPCN as the
backbone and introducing the image soft-edge as additional
prior knowledge. For a fair comparison, we retrain the ESPCN
model because we need to make slight adjustments to the
network structure when adding the image soft-edge. The
detailed experimental design is as follows: (a) We pre-trained
a simplified version of Edge-Net, which has 3 MSRBs and

Authorized licensed use limited to: East China Normal University. Downloaded on February 28,2020 at 03:22:09 UTC from IEEE Xplore. Restrictions apply.



FANG et al.: SeaNet FOR SISR

x3: Bicubic + Eq.(8)

: Bicubic + Eq.(8)

x3: Bicubic + Eq.(8)

x4: Bicubic + Eq.(8)

x3: Bicubic + Eq.(8)

x4: Bicubic + Eq.(8)
Fig. 5.

\ :
N KM
+ Bicubic

4665

Edge-Net (Ours)

gt (Ground Truth)

Visual comparison of different soft-edge extraction methods. The ‘Bicubic+Eq. (8)’ represents that we adopt Eq. (8) to extract soft-edge from the

preprocessed LR which is upsampled to HR space using Bicubic. ‘Eq. (8)+Bicubic’ means that we adopt Bicubic to upsample the soft-edge which is extracted
from the original LR using Eq. (8). The ‘Edge-Net’ represents using our proposed Edge-Net to directly reconstruct the SR soft-edge from LR image and the
‘Ground Truth’ denotes using Eq. (8) to directly detect the soft-edge from the HR image. Obviously, our SeaNet can reconstruct clear and accurate soft-edge.

the input and output channels of each MSRB are set to 16.
(b) In ‘ESPCN+ISE’ we introduce a fusion layer at the end
of the model to fuse the feature maps reconstructed by the
ESPCN and the image soft-edge provided by the Edge-Net.
(c) During training, the parameters of the Edge-Net are fixed.
This means that the Edge-Net is only used to provide the
soft-edge without participating in model training. Therefore,
compared to ESPCN (20k parameters), the ‘ESPCN+ISE’
only increase a fusion layer (18 parameters). The PSNR
results of ESPCN and ‘ESPCN+ISE’ are presented in the
TABLE VI. Obviously, with the image soft-edge assistance,
the performance of ‘ESPCN+ISE’ has been greatly improved
compared to ESPCN.

Therefore, we can draw a conclusion that the soft-edge prior
provided by the Edge-Net is effective and the introduction of
additional information can greatly improve the performance
of the existing SR models. The soft-edge prior can be flexibly
introduced into any SR model to assist high-quality SR image
reconstruction. All these experiments fully demonstrate the
validity of the soft-edge prior.

C. Study of 1

The 4 is a hyper-parameter used to control the composition
of the edge loss. According to our experience, SeaNet is robust
to the choice of 4 and the best performance is provided by
setting 0 < 4 < 1. In Fig. 7, we show the impact of different
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TABLE IV
QUANTITATIVE COMPARISONS OF SRN AND SEANET (BASELINE)

Dataset Scale SRN SeaNet (Baseline)
X2 37.78/0.9597 37.99/0.9607
Set5 [37] x3 34.11/0.9249 34.36/0.9280
PSNR/SSIM x4 32.01/0.8919 32.18/0.8948
X2 33.42/0.9158 33.60/0.9174
Set14 [38] %3 30.12/0.8378 30.34/0.8428
PSNR/SSIM x4 28.42/0.7771 28.61/0.7822
X2 32.04/0.8974 32.18/0.8995
BSDS100 [39] x3 28.95/0.8006 29.09/0.8053
PSNR/SSIM x4 27.43/0.7304 27.57/0.7359
X2 31.56/0.9223 32.08/0.9276
Urban100 [40] X3 27.74/0.8415 28.17/0.8527
PSNR/SSIM x4 25.74/0.7718 26.05/0.7896
X2 37.98/0.9756 38.48/0.9768
Mangal09 [41] %3 32.98/0.9405 33.40/0.9444
PSNR/SSIM x4 30.00/0.9022 30.44/0.9088

g
\ /4 ‘!l 7
[] 7

SeaNet (Baseline)  Ground Truth

x4: SRN

Fig. 6. Visual comparison of SRN and SeaNet (baseline) for x2, x3, and
x4 SR images. SRN is a simplified model obtained by removing the Edge-Net
from the SeaNet (baseline).

A on the model performance. The result shows that the model
achieves best results when 4 = 0.1. Therefore, we set A = 0.1
in our final model.

D. Study of Model Size

In Fig. 8, we show the comparison of model performance
and parameters between SeaNet and other SR models. The
blue dots represent classical SR models with fewer parameters,
the green dot represents EDSR [17], and the red dots represent
our 3 different versions of SeaNet: SeaNet (Baseline) (M=3,
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TABLE V

PSNR COMPARISON OF MODEL EFFECT UNDER THE GUIDANCE OF
DIFFERENT IMAGE SOFT-EDGE PROVIDED BY ‘BICUBIC+EQ.(8),
‘EQ.(8)+BICUBIC’, AND THE EDGE-NET, RESPECTIVELY

Method Setl4 Urban100
X 2 ‘ X 3 ‘ X 4 X 2 ‘ X 3 ‘ X 4
’Bicubic + Eq.(8)" | 33.33 | 30.15 | 28.45 | 31.60 | 27.77 | 25.76
‘Eq.(8) + Bicubic’ | 33.35 | 30.18 | 28.49 | 31.70 | 27.84 | 25.82
Edge-Net 33.60 | 30.34 | 28.61 | 32.08 | 28.17 | 26.05
TABLE VI

QUANTITATIVE COMPARISONS OF ESPCN [9] AND ‘ESPCN+ISE’

Dataset Scale ESPCN ESPCN+ISE

X2 37.00/0.9559 37.50/0.9580

Set5 [37] X3 33.02/0.9135 33.63/0.9190
PSNR/SSIM x4 30.66/0.8646 31.32/0.8780
X2 32.75/0.9098 33.01/0.9100

Setl4 [38] X3 29.49/0.8271 29.78/0.8291
PSNR/SSIM x4 27.71/0.7562 28.07/0.7600
X2 31.51/0.8939 31.88/0.8956

BSDS100 [39] x3 28.50/0.7937 28.77/0.7960
PSNR/SSIM x4 26.98/0.7124 27.20/0.7156
X2 29.87/0.9065 30.66/0.9145

Urban100 [40] X3 26.41/0.8161 27.09/0.8299
PSNR/SSIM x4 24.60/0.7360 25.08/0.7430
X2 36.21/0.9694 37.18/0.9711

Mangal09 [41] X3 30.79/0.9181 31.89/0.9288
PSNR/SSIM X4 27.70/0.8560 28.78/0.8756

Study on A (x3)

PSNR (dB)

o 25 50 75 100 125 150 175 200
Epoch

Fig. 7. Study on A. When 4 = 0.1, the model achieves best results.

N=20), SeaNet (M=5, N=40), and SeaNet+ (M=5, N=40). It is
clear seen that the parameter quantity of SeaNet is only 1/7 of
EDSR, but their performances are rather close. Meanwhile,
SeaNet (Baseline) achieves the same performance as MSRN
with fewer parameters. All of these studies show that SeaNet is
an efficient and accurate SR model that strikes a good balance
between model complexity and performance.

E. Limitations and Future Works

The proposed SeaNet performs well in SISR. However,
it also has some limitations: (1) During training, we use
Equation (8) to extract soft-edge from HR images as labels.

Authorized licensed use limited to: East China Normal University. Downloaded on February 28,2020 at 03:22:09 UTC from IEEE Xplore. Restrictions apply.



FANG et al.: SeaNet FOR SISR

Model Size, Setl4 (x3)
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Fig. 8. Study of model size on the test dataset Setl4 (x3). SeaNet strikes a
good balance between model size and performance.

Equation (8) is a curvature formula, which is an efficient
method but maybe not the best. (2) At the beginning of State-
II, we use a fusion layer to fuse the reconstructed image fea-
tures and soft-edge provided by Stage-1. Extensive experiments
have shown that it is an effective method. However, we believe
that there exists some better way to integrate image features
which can make the soft-edge play a bigger effect. We will
discuss those in future works. Moreover, our Edge-Net can
be used in many applications, such as image denoising and
deblurring. We also leave it as our future work.

VI. CONCLUSION

In this paper, we proposed a new edge-guided image restora-
tion framework and developed an efficient and accurate Soft-
edge assisted Network (SeaNet) for image super-resolution.
The SeaNet consists of three sub-nets: a rough image recon-
struction network (RIRN), a soft-edge reconstruction network
(Edge-Net), and an image refinement network (IRN). In State-
I, we use the RIRN and Edge-Net for the rough SR image
features and image soft-edge reconstruction, respectively. In
State-II, we first fuse the reconstructed image feature maps and
soft-edge by a bottleneck layer and then send the fused feature
maps to the IRN for the final SR image reconstruction. Among
them, the Edge-Net is the first CNN model that can directly
reconstruct super-resolution soft-edge from the LR image.
Furthermore, the Edge-Net is a flexible model that can work
independently for image soft-edge reconstruction or embed-
ded as a part of any SR model to provide soft-edge prior.
Extensive benchmark evaluations well demonstrated that with
the assistance of image soft-edge prior, our SeaNet achieves
competitive results with fewer parameters.
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