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Abstract—Computer-aided diagnosis (CAD) can help 

pathologists improve diagnostic accuracy together with 

consistency and repeatability for cancers. However, the CAD 

models trained with the histopathological images only from a 

single center (hospital) generally suffer from the generalization 

problem due to the straining inconsistencies among different 

centers. In this work, we propose a pseudo-data based self-

supervised federated learning (FL) framework, named SSL-FT-

BT, to improve both the diagnostic accuracy and generalization of 

CAD models. Specifically, the pseudo histopathological images are 

generated from each center, which contain both inherent and 

specific properties corresponding to the real images in this center, 

but do not include the privacy information. These pseudo images 

are then shared in the central server for self-supervised learning 

(SSL) to pre-train the backbone of global mode. A multi-task SSL 

is then designed to effectively learn both the center-specific 

information and common inherent representation according to the 

data characteristics. Moreover, a novel Barlow Twins based FL 

(FL-BT) algorithm is proposed to improve the local training for 

the CAD models in each center by conducting model contrastive 

learning, which benefits the optimization of the global model in the 

FL procedure. The experimental results on four public 

histopathological image datasets indicate the effectiveness of the 

proposed SSL-FL-BT on both diagnostic accuracy and 

generalization.  

Index Terms—Histopathological image, federated learning, 

multi-center learning, self-supervised learning, Barlow twins 

contrastive learning  

 

I. INTRODUCTION 

ancers seriously threaten human health. Histopathological 

diagnosis is the “gold standard” for the diagnosis of 

cancers in clinical practice [1]. However, it generally 

suffers from the issues of low efficiency, consistency and 

repeatability [2]. To this end, computer-aided diagnosis (CAD) 

for histopathological images has attracted considerable 

attention in recent years [3][4]. As a classical deep learning 

method, convolutional neural network (CNN) and its variants 

have proved their effectiveness as the backbone for the CAD 

models of histopathological images [3][4][5][6][7][8]. 
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It is worth noting that even the most common and accessible 

type of stain, such as hematoxylin and eosin (H&E), will still 

produce different color intensities depending on the brand, 

storage time, and temperature [1]. It then results in 

inconsistencies in the stained histopathological images among 

different hospitals [9]. If the training samples are only acquired 

from one hospital, the generalization of a CAD model then will 

be degraded. To this end, a potential solution is to train the CAD 

model with the histopathological images from multiple 

hospitals (i.e., multi-centers). Some pioneering works have 

indicated the feasibility and effectiveness of multi-center 

learning for improving the generalization of CNN models [10]. 

Moreover, this manner also can alleviate the problem of small 

sample size (SSS), which is a common issue in the field of CAD 

[4].  

For multi-center learning, it is a popular way to gather data 

from all centers together to train a model [11][12]. However, 

this training strategy suffers from the issues of privacy 

protection, data security, and data ownership [13]. In fact, some 

hospitals strictly prohibit the use of medical data outside the 

hospital. Hence, the application of multi-center learning is 

greatly limited with shared data. Federated learning (FL) then 

emerges as a promising solution, which can jointly train the 

CAD models by sharing parameters of distributed local models 

instead of the local data in the conventional multi-center 

learning paradigm [14][15]. This new multi-center learning 

paradigm has gained considerable attention in the field of 

healthcare [13][16], and it has been successfully applied for the 

CAD tasks [17][18], including for histopathological images 

[19]. However, it still cannot guarantee that the distributed 

CAD models fully capture the specific properties of different 

centers’ data, because FL only shares the model parameters 

instead of data, and the distributed local models do not contain 

enough specific information.  

In recent years, image synthesis has achieved remarkable 

performances due to the fast development of generative 

adversarial network (GAN) and its variants [20][21][22]. Some 

works have adopted the synthesized images for data 

augmentation to train CNN models [23][24]. Thus, if some 

pseudo histopathological images are generated in each center, 

C 
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they can contain inherent and specific properties corresponding 

to the real histopathological images of the center, but do not 

include the privacy information. Thus, it is a feasible way to 

share these pseudo data to pre-train the backbone of CNN 

model in the central server, and then further conduct FL. This 

strategy can promote the CAD model to learn more specific 

properties of each center’s data and further improve the 

generalization ability. However, the pseudo histopathological 

images do not have corresponding labels for cancers, and 

therefore, they cannot be directly used in the same classification 

task as the real images to pre-train the backbone network of a 

CAD model.  

Self-supervised learning (SSL) then provides a feasible way 

to explore and learn inherent information from these pseudo 

histopathological images, because it generates supervision 

directly from the training samples themselves to design pretext 

tasks [25][26]. SSL can effectively improve the feature 

representation of a backbone network for the downstream task, 

and it has been successfully applied to various tasks in the field 

of medical image analysis [27][28]. Consequently, we can 

develop a multi-task SSL-based FL (SSL-FL) framework to 

make full use of the pseudo histopathological images. In 

particular, since the previous works have proved that the image 

restoration task can effectively learn the detailed contextual 

information [27][29], the inherent anatomical information [30], 

and other inherent knowledge from medical images, it can also 

be applied to learn these common properties of all multi-center 

pseudo histopathological images stored in the central server in 

this work. Moreover, since we know which center a pseudo 

image is generated from, it can be used as label information. 

Consequently, we specifically design a center classification 

task that discriminates the source of an image generated from. 

This SSL task can make the pre-trained backbone learn more 

individual data representation of different centers to improve 

model generalization. Overall, the abovementioned tasks 

perform simultaneously and effectively learn both inherently 

common representation across multiple centers and center-

specific knowledge. 

It is worth noting that although the proposed multi-task SSL 

with shared pseudo images under FL framework can effectively 

improve the generalization of CAD models, the FL still suffers 

from the issue of data heterogeneity due to the stain difference 

in different centers. In the conventional FL algorithms, the data 

heterogeneity will result in the drift of local models during 

training procedure, which then makes the objective functions of 

local models far from that of global model [16]. To this end, 

Model-Contrastive Federated Learning (MOON) has been 

proposed recently, which innovatively introduces contrastive 

SSL into FL for model-level contrast [31]. MOON adopts the 

similarity between model representations to correct the local 

training of individual centers, and it has achieved superior 

performance in handling the heterogeneity of local data 

distribution [31].  

Although MOON has the potential to alleviate the 

heterogeneity of histopathological images, when MOON 

maximizes the representation agreement between the local and 

global models, the contrastive operation is still inefficient due 

to the requirement of negative samples similar to SimCLR [32]. 

In fact, insufficient negative sample pairs in contrastive SSL 

will result in insufficient clustering, and cannot distinguish the 

sample difference between groups [33]. On the contrary, 

excessive negative sample pairs may lead to over-clustering, 

which makes the model difficult to learn common features for 

samples of the same class [33]. Moreover, in MOON, the 

positive pair is formed by the local model being updated and 

the global model, and the negative pair is formed by the local 

model being updated and the local model from the previous 

round [31]. However, the definition of positive and negative 

samples in MOON is somewhat unclear and inexplicable. In 

fact, the prior local model might also possess well-suited 

parameters for FL. If both the model presentations of the current 

model and the previous model are considered as negative pairs, 

the performance of the previous model is denied and cannot 

converge in local data [34]. On the other hand, due to the 

requirement of historical local models, MOON also introduces 

overheads in memory. Therefore, we try to eliminate the 

definition of negative pairs in the model contrastive learning 

based FL framework. 

As a new competitive contrastive SSL algorithm, Barlow 

Twins (BT) proposes a contrastive objective function based on 

the cross-correlation matrix by minimizing the redundancy 

between the components of the output vectors [35], and 

therefore, it eliminates the redundant information expression in 

the representation vector as much as possible. Compared to the 

contrastive operation in MOON, BT has the advantage of 

training without negative samples, and avoids the above-

mentioned problems. In addition, it is more robust to the 

training batch size and avoids other complex implementations, 

such as asymmetric mechanisms and momentum encoders [36]. 

On the other hand, the previous contrastive learning algorithms, 

such as MoCo and SimCLR, build the similarity matrix in the 

batch dimension, while BT performs it in the feature dimension 

to learn a feature representation with more information, since 

the dimension of each feature has an independent meaning [35]. 

Therefore, the idea of BT has the potential to be integrated into 

FL to conduct model-level contrast for improving local training 

of individual centers, and also save memory overhead. 

In this work, a novel SSL-FL framework is proposed to 

improve the performance of a CAD model for histopathological 

images. Specifically, the pseudo histopathological images are 

firstly generated in each center and then shared in the central 

server, which are fed to a specially designed multi-task SSL 

model to pre-train the backbone as the initial global model for 

further FL. The BT-based FL (FL-BT) algorithm is then 

developed to further effectively train this global CAD model 

with distributed data, which is finally applied for the diagnosis 

task in each center. The experimental results on four public 

histopathological image datasets indicate the effectiveness of 

the proposed SSL-based FL-BT (SSL-FL-BT). 

The main contributions of this work are three-fold as follows: 

1) A novel SSL-based FL framework is proposed to improve 

the diagnostic accuracy and generalization of a CAD 

model for histopathological images. Different from the 

conventional FL paradigm that only shares the parameters 

of local models in multi-center learning, we suggest to 

generate pseudo histopathological images from each 

center and then share these images to pre-train a backbone 

network on the central server. Thus, the specially designed 
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SSL can capture and learn both the inherent and specific 

properties of data from different centers, which is 

beneficial to the generalization of CAD models. 

2) A dual-task SSL driven by properties of pseudo 

histopathological images is developed for pre-training the 

backbone of the CAD model. Specifically, the center 

classification task is designed to discriminate which center 

a pseudo image is generated from, and the image 

restoration task is applied to learn the common 

information of all centers. This strategy helps to capture 

both the specific and common inherent information from 

multi-center pseudo histopathological images.  

3) A new FL-BT algorithm is proposed to improve the 

performance of the global CAD model, in which the idea 

of BT is innovatively integrated into the FL framework. 

Since FL-BT eliminates the definition of negative pairs in 

the model contrastive learning, it is more clear and 

interpretable than MOON. In particular, FL-BT compares 

the representations generated by the local and global 

models instead of the different images in the original BT, 

and it integrates a cross-correlation matrix-based 

contrastive objective function into FL to conduct the 

model-level contrastive learning. FL-BT minimizes the 

representation gaps between the local and global models 

to correct the local training, and therefore, it can alleviate 

the issue of data heterogeneity.  

II. RELATED WORK 

A. SSL for CAD of Histopathological Images 

Over the last years, the fast development of deep learning has 

made breakthroughs in the field of CAD for histopathological 

images [3]. According to the size of histopathological images, 

the current works are developed for the whole-slide images 

(WSI) and patches from WSIs [4], respectively. Although lots 

of deep learning algorithms have been proposed in this field 

[37], they should be further improved due to the complexity of 

histopathological images and a variety of cancers. 

Since it is time-consuming to annotate a large number of 

histopathological images for CAD, SSL is a promising 

approach to alleviate this problem by pre-training the model 

under the supervision of the data itself. For example, Hu et al. 

proposed a unified generative adversarial network to learn 

robust cell-level representation for classification of 

histopathological images [38]; Stack et al. applied the 

contrastive predictive coding to histopathology datasets, 

indicating that the low-level features were more effective for 

tumor classification [39]; Ciga et al. utilized SimCLR to pre-

train the model on multiple histopathological datasets, which 

improved the performances on different downstream CAD 

tasks [40]. All these works demonstrate the effectiveness of 

SSL for CAD with limited histopathological images.  

It is worth noting that the application of SSL should not only 

retain the center-specific information, but also mine more 

inherent common features from the data of all centers for FL in 

our task. However, the single pretext task generally cannot well 

explore this information. To this end, the multi-task SSL has the 

potential to learn more comprehensive features from training 

samples. In the pioneering work, Koohbanani et al. proposed a 

multi-task SSL algorithm Self-Path for histopathological 

images, which included three pathology-specific tasks, i.e., 

magnification prediction, magnification Jigsaw puzzle and 

Hematoxylin channel prediction, to improve the model 

performance with limited annotations [41]. Since Self-Path can 

achieve superior performance over the single-task based 

approaches, we will also specifically design a multi-task SSL 

according to the data characteristics of multi-center 

histopathological images. 

B. Federated Learning 

FL is an emerging distributed learning method, which aims 

to share the local model parameters in a parallel manner instead 

of the conventional local data[13]. FedAvg is the first FL 

algorithm that aggregates the local models by averaging the 

model weights [42]. Thereafter, FL has been successfully 

applied to many fields [14], such as financial, smart retail and 

healthcare, due to the advantages of both privacy-preserving 

and distributed optimization.  

Recently, some variants of FedAvg have been proposed, 

which mainly include the following two methods: 1) Local 

training method, such as FedProx [43], SCAFFOLD [44] and 

MOON [31]; 2) Aggregation method, such as FedNova [45], 

FedMA [46], FedAvgM [47] and Auto-FedAvg [48]. FedProx 

introduced a proximal term in local training, which was 

calculated based on the Euclidean norm between the output of 

both current global model and local model [43]. FedBN was 

proposed to locally keep batch normalization parameters in 

order to mitigate feature variation in non-IID data [49]. MOON 

developed a model-level contrast learning strategy, whose key 

idea was to use the similarity between model outputs to rectify 

individual local training [31]. All these works show the 

effectiveness of FL for multiple center learning. 

FL is particularly attractive for CAD now [19]. It can not 

only improve the generalization of CAD models, but also 

alleviate the SSS issue by collecting multi-center data with 

privacy protection. Some pioneering works have been 

conducted. For example, Li et al. proposed an FL algorithm for 

diagnosing the autism spectrum disorders with multi-site fMRI 

data, in which decentralized iterative optimization and 

randomization mechanism were used [17]; Andreux et al. 

introduced a local statistical batch normalization layer in the 

model architecture of FL, which was applied to the diagnosis of 

breast tumor with multi-centric histopathology datasets [50]; 

Yang et al. proposed an FL algorithm using partial networks for 

COVID-19 diagnosis with multiple X-ray datasets [18]; Adnan 

et al. applied the FL framework to WSIs on the data from 

TCGA, and they adopted the multiple instance learning (MIL) 

method for classification of WSIs by extracting multiple 

patches from the WSIs [51]. These works indicate that FL can 

effectively improve the model performance in local servers 

together with privacy-preserving. 

However, the existing FL methods cannot sufficiently 

handle the gap between the local models and the central 

model, resulting in limited learning performance.  

C. GAN in Histopathological Images 

Due to the success of GAN in computer vision, it has also 

been widely used in different medical image tasks, such as 
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image reconstruction, image segmentation and lesion detection 

[52][53][54]. Moreover, they can help alleviate the problems of 

small sample size and limited annotation in medical imaging 

applications. For example, Madani et al. applied the GAN-

based data augmentation for the CAD model of Chest X-ray, 

and achieved superior performance over the traditional 

augmentation strategy [23]; Adar et al. used conditional GANs 

to generate synthetic CT images to improve the performance of 

liver lesion classification [24]; Elmas et al. proposed a FL-

based MRI reconstruction algorithm, which implemented 

cross-cite learning with generative MRI prior and the following 

prior adaptation to improve reconstruction performance [52]. 

These works demonstrate the effectiveness of GAN in different 

medical image processing tasks. 

Some works have applied GAN to the field of 

histopathological image processing, such as color 

normalization, image enhancement and data augmentation 

[55][56][57]. For example, CycleGAN was effectively used for 

color normalization of breast histopathological images, which 

then eliminated the selection of representative reference slides 

by pathologists [55]; SRGAN was applied to simultaneously 

increase image resolution and reduce image noise for breast 

histopathological images [56]; cGAN was adopted to 

synthesize realistic cervical histopathology images for 

augmenting the training dataset so as to improve the 

performance of trained model [57]. All these works indicate the 

emerging applications of GAN for histopathological images. 

Different from these previous works, we propose to adopt 

GAN to generate pseudo histopathological images in different 

centers, and then share these images in the central server for 

training the global model under the FL framework. This idea 

breaks through the limitation of traditional FL that only shares 

model parameters. The specially designed SSL can capture and 

learn both the inherent and specific properties of data based on 

the shared pseudo images to further improve the generalization 

of the global CAD model. 

III. METHODOLOGY 

 

Fig. 1. The pipeline of the proposed SSL-FL-BT, which includes two stages, 

i.e., SSL stage and FL stage. In the SSL stage, the specially designed multi-task 

SSL is performed on all the pseudo images to pre-train the backbone network. 

In the FL stage, the pre-trained backbone is used as the initialization network 

for the proposed FL-BT. 

Fig. 1 shows the overall pipeline of the proposed SSL-FL-

BT, which includes two stages, i.e., SSL stage and FL stage. In 

the SSL stage, the pseudo histopathological images are firstly 

generated in each center with a GAN. The specially designed 

multi-task SSL is then performed on all the pseudo images to 

pre-train the backbone network. Here, the center classification 

and image restoration tasks are designed as the dual pretext 

tasks, and both tasks share the backbone. The pre-trained 

backbone is then used as the initialization network in the 

subsequent FL stage, and it is trained by the proposed FL-BT 

with multi-center real histopathological images. In the testing 

stage, a histopathological image is fed to the corresponding 

CAD model in a center for cancer diagnosis.  

A. Multi-task SSL for FL 

Since the stained histopathological images have 

inconsistencies among different centers, we propose to share 

the pseudo histopathological images without privacy 

information for FL, which can provide more heterogeneous 

center-specific information of each center for the CAD model, 

and further improve its generalization. Here, we specifically 

design a multi-task SSL to capture and learn both the center-

specific information and common inherent representation 

according to the data characteristics of multi-center pseudo 

histopathological images. The overall pipeline of our proposed 

multi-task SSL is shown in Fig. 2.  

 

Fig. 2. The pipeline of the proposed multi-task SSL. The pseudo data are shared 
in the central server to pre-train the backbone network by multi-task SSL. Two 

pretext tasks are designed, i.e., the center classification task and image 

restoration task. 

As shown in Fig. 2, the pseudo data are firstly generated in 

each center through the GAN model, which are then shared to 

the server for pre-training backbone network by SSL. Two 

pretext tasks are designed, i.e., the center classification task and 

image restoration task. The former pretext task predicts which 

center the synthetic data belong to. It can explore more specific 

properties of data in each center. While the latter pretext task 

restores the corrupted images to their original pseudo images, 

which can learn more inherent information of the data collected 

from different centers. 

Pseudo Image Generation: In order to generate high-

fidelity pseudo histopathological images, the multi-scale 

gradient generative adversarial network (MSG-GAN) 
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algorithm is adopted in this work, which provides high-quality 

synthesized images for the following multi-task SSL [58]. In 

particular, each center individually trains an MSG-GAN. 
MSG-GAN introduces a multiscale gradient technique that 

allows the gradients flow to propagate from the discriminator 

to the generator at multiple scales. This technique improves the 

stability of training for image synthesis on data with different 

sizes, resolutions and domains. Compared to other GANs and 

their variants, MSG-GAN can boost the performance in most of 

cases. The detailed information about the MSG-GAN can be 

referred to [58].  

In this work, the quality of the generated images is evaluated 

by frechet inception distance (FID) score, which is widely used 

in generative models for image quality evaluation by 

calculating the distance between the feature vectors of real and 

generated images [59]. The pseudo histopathological images 

with small FID score will be selected for the following SSL. 

The real histopathological images and generated pseudo 

examples are shown in Fig. 3. 

 

     

(a)                                 (b) 

Fig. 3. (a) Real histopathological images and their corresponding (b) Pseudo 
histopathological images, where the images of three rows in (a) are acquired for 

Center 1, Center 2, and Center 3, respectively. 

Dual Pretext Tasks: Two SSL pretext tasks are developed 

based on the characteristics of pseudo histopathological images 

for pre-training backbone, i.e., the center classification task and 

image restoration task.  

The center classification task tries to predict which center a 

pseudo image is generated from, and thus the center identity 

document (ID) is considered as the label. Since the pseudo 

images are generated based on each center’s data, these images 

contain center-specific information extracted from the real 

histopathological images of the corresponding center. Thus, this 

pretext task can effectively learn the heterogeneous 

characteristics pseudo images generated from each center.  

The SSL image restoration task is applied to learn detailed 

contextual information [27][29], the anatomical information 

[30], and other inherent knowledge in histopathological images, 

which contain the common characteristics across centers. 

Specifically, we randomly swap patches in the pseudo images 

to generate the corrupted ones [27]. These corrupted images are 

then fed to the backbone network to restore the original pseudo 

images as ground truths.  

To conduct two pretext tasks in a unified framework with a 

single shared network, the hard parameter sharing is utilized to 

construct a multi-task learning architecture [60]. In our 

implementation, the commonly used ResNet50 is used as the 

shared backbone in Fig. 2, followed by a classification branch 

and a reconstruction head [61]. 

For the center classification task, the cross-entropy (CE) loss 

𝐿𝐶𝐸  is utilized for the SSL classification task, which can be 

given as follows: 

 𝐿𝐶𝐸 = −
1

𝑀
∑  𝑘 ∑  𝑁

𝑛=1 𝑎𝑘𝑛log(𝑢𝑘𝑛) (1) 

where 𝑎𝑘𝑛 ∈ {0,1} is an indicator, which takes value 1 if and 

only if the label of 𝑘-th sample is 𝑛, 𝑢𝑘𝑛 denotes the probability 

of the 𝑘-th sample coming from the 𝑛-th center, and 𝑀 denotes 

the number of pseudo images. 

For the image restoration task, the mean squared error (MSE) 

is adopted as the objective function for the SSL image 

restoration task. Given a corrupted image 𝑄𝑘  and the 

reconstruction sub-network 𝐺(∙), the MSE loss is formulated as: 

 𝐿𝑀𝑆𝐸 =
1

𝑀
∑  𝑀
𝑘=1 ∥∥𝐺(𝑄𝑘) − 𝑉𝑘∥∥

2
 (2) 

where 𝐺(𝑄𝑘)  and 𝑉𝑘  denote the restored image and the 

corresponding ground truth, respectively. 

In order to effectively promote the feature representation in 

the shared backbone, the two tasks are simultaneously 

optimized with the following overall loss 𝐿𝑆𝑆𝐿: 

 𝐿𝑆𝑆𝐿 = 𝐿𝐶𝐸 + 𝐿𝑀𝑆𝐸  (3) 

Thus, this shared backbone naturally contains both the 

center-specific knowledge from the center classification task 

and the inherent information from the image restoration task. 

The pre-trained backbone is then used as the initialization for 

the followed FL stage. This multi-task SSL strategy can capture 

both the specific and common inherent information from the 

multi-center pseudo histopathological images. 

B. FL-BT for Histopathological Images 

The generalization of a CAD model for histopathological 

images is generally limited by the training samples only from a 

single center, because the stained images have different data 

distributions in different hospitals. FL can improve both the 

diagnostic accuracy and generalization ability of CAD models 

with multi-center histopathological images, while private 

information can also be protected [62].  

The existing FL methods cannot well handle the 

heterogeneity of multiple local data distribution. The MOON 

algorithm has been proposed to address this issue, which adopts 

the similarity among model representations to correct the local 

training of individual centers [31]. However, the robustness of 

MOON should be further improved, since the trivial 

implementations are applied in the local training process. To 

this end, we propose a novel FL-BT to train the global CAD 

model with multi-center histopathological images. 

Network Architecture of Local Model: The architecture of 

each local network for FL-BT is shown in Fig. 4, which consists 

of a base encoder, a projector network, and an output layer. The 

base encoder is the widely used ResNet50, which learns the 

feature representation from input real histopathological images. 

The projector network is then adopted to map the representation 

to a feature space with a fixed dimension. Finally, the output 

layer is used to predict the classification results for each cancer 

class. 
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Fig. 4: Flowchart of the FL-BT algorithm. FL-BT feeds the same image into 

the local model and the global model, respectively, and then calculates the 
cross-correlation matrix of the corresponding two features. FL-BT optimizes 

the statistical properties that make the cross-correlation matrix tend to be the 

identity matrix. 

Local Training: Suppose there are 𝑁  centers, which are 

denoted as 𝑃1 , …, 𝑃𝑁 . Center 𝑃𝑛  has a local dataset 𝒟𝑛  with 

histopathological images 𝑋𝑛  and the corresponding label 𝑌𝑛 , 

𝑛 = 1,2, … , 𝑁 . The proposed FL-BT aims to learn a global 

model 𝑊 over the local dataset 𝒟𝑛  with the help of a global 

model in the central server. 

To train the model 𝑊𝑛 in each center, the proposed FL-BT 

assumes that the pre-trained global model 𝑊 trained by multi-

task SSL is set as the initial model 𝑊𝑛  in center 𝑃𝑛 . The 

histopathological images 𝑋𝑛  are fed to the base encoders of 

both global model and local model to generate representations 

𝑧𝑔𝑙𝑜𝑏𝑎𝑙  and 𝑧𝑙𝑜𝑐𝑎𝑙 , respectively. The projector network then 

maps the 𝑧𝑔𝑙𝑜𝑏𝑎𝑙  and 𝑧𝑙𝑜𝑐𝑎𝑙  to the fixed feature dimension 𝐻. 

Finally, the classification result is predicted by the output layer. 

We further define 𝐹𝑤(∙) as the whole network, 𝑅𝑤(∙) as the 

network before the output layer with model weight 𝑤, and 𝑡 as 

the 𝑡-th communication round. We extract the representation of 

𝑋𝑛  from both the global model 𝑊𝑡 (i.e., 𝑧𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑅𝑤𝑡(𝑋𝑛) ) 

and the local model being updated 𝑊𝒏
𝒕 (i.e., 𝑧𝑙𝑜𝑐𝑎𝑙 = 𝑅𝑤𝒏𝒕 (𝑋𝑛)), 

respectively. 

The local objective function contains two parts: 𝐿𝑠𝑢𝑝  and 

𝐿FL-BT . The former part 𝐿𝑠𝑢𝑝  is a cross-entropy loss in the 

supervised learning manner, while the second part 𝐿FL-BT is the 

contrastive loss in our proposed FL-BT.  

Specifically, the supervision loss 𝐿𝑠𝑢𝑝 in FL-BT can be given 

as: 

 𝐿𝑠𝑢𝑝 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝐹𝑤𝑛𝑡 (𝑋𝑛), 𝑌𝑛)  (4) 

While the contrastive loss 𝐿FL-BT designed in FL-BT can be 

formulated as: 

 𝐿𝐹𝐿−𝐵𝑇 = ∑ (1 − 𝐶𝑖𝑖)
2 + 𝜆𝑖 ∑ ∑ 𝐶𝑖𝑗

2
𝑗≠𝑖𝑖  (5) 

where 𝜆 is the weight to trade off the importance of the first and 

second terms; 𝐶 denotes the cross-correlation matrix computed 

between the outputs of the two branches along the batch 

dimension, which is a square matrix with size the 

dimensionality of the network’s output; and both 𝑖 and 𝑗 are the 

vector dimensions of the network outputs. More specifically, 

𝐶𝑖𝑗 can be calculated by: 

 𝐶𝑖𝑗 =
∑ 𝑧𝑙𝑜𝑐𝑎𝑙

𝑏,𝑖
𝑏 𝑧𝑔𝑙𝑜𝑏𝑎𝑙

𝑏,𝑗

√∑ (𝑧𝑙𝑜𝑐𝑎𝑙
𝑏,𝑖 )2𝑏 √∑ (𝑧𝑔𝑙𝑜𝑏𝑎𝑙

𝑏,𝑗
)2𝑏

 (6) 

where the superscript 𝑏 denotes batch samples. When 𝑖 = 𝑗, we 

can get 𝐶𝑖𝑖 . The loss of FL-BT includes two parts, i.e., the 

invariance term and the redundancy reduction term. Among 

them, the invariance term makes the positive examples closer 

to each other in the representation space, and the redundancy 

reduction term decorrelates the different components of the 

embedding vector by making the off-diagonal elements of the 

cross-correlation matrix to 0. This decorrelation reduces the 

redundancy between outputs, make the outputs only contain 

non-redundant information about the samples. Therefore, it 

eliminates the redundant information expression in the 

representation vector as much as possible, making FL-BT can 

effectively optimize the FL procedure. 

The definition of the whole loss function can be given by: 

 𝐿𝑛 = 𝐿𝑠𝑢𝑝(𝑤𝑛
𝑡 ; (𝑋𝑛 , 𝑌𝑛)) + 𝜇𝐿𝐹𝐿−𝐵𝑇(𝑤𝑛

𝑡; 𝑤𝑡; 𝑋𝑛) (7) 

where 𝜇 is the factor to balance the weight of contrastive loss 

𝐿FL-BT. 

The local objective is to minimize: 

min
𝑤𝑛
𝑡
𝔼(𝑋𝑛,𝑌𝑛)~𝒟𝑛[𝐿𝑠𝑢𝑝(𝑤𝑛

𝑡 ; (𝑋𝑛,𝑌𝑛)) + 𝜇𝐿𝐹𝐿−𝐵𝑇(𝑤𝑛
𝑡 ; 𝑤𝑡;𝑋𝑛))] (8) 

In each round, the server sends the global model to the 

centers, receives the local model from the centers, and updates 

the global model using weighted averaging. In local training, 

each model uses stochastic gradient decent to update the 

parameters with the local data, the objective is shown in Eq. (8). 

The model-contrastive loss compares representations learned 

by different models, and the contrastive loss compares 

representations of different images in FL-BT. It is worth noting 

that the conventional BT calculates the cross-correlation matrix 

of the two representations after inputting two views of an image 

into the same network, while it calculates the cross-correlation 

matrix between the two features of one image, which are 

generated from the local model and the global model, 

respectively. 

Global Aggregation: After the local training in each center, 

the updated model parameters 𝑤𝑛, which 𝑛 = 1,… ,𝑁, in local 

models are then sent to the central server to implement the 

model aggregation. 

FL-BT seeks to minimize the following objective function 

for model training: 

 𝑚𝑖𝑛𝐿(𝑤)
𝑤

= ∑ α𝑛𝐿𝑛
𝑁
𝑛=1  (9) 

where 𝑁  denotes the number of the centers, 𝛼𝑛  represents 

the importance of the n-th center with ∑  𝑛 𝛼𝑛 = 1.  
In this work, we adopt the classical FedAvg as the 

aggregation method [42], in which 𝑤𝑛
𝑡  are averaged as the 

global model. In communication round 𝑡 , the updated 

parameters for the global model can be formulated as the 

follows: 

 𝑤𝑡+1 ← ∑
𝑚𝑛

𝑀

𝑁
𝑛=1 𝑤𝑛

𝑡  (10) 

where 𝑚𝑖  denotes the number of images in center 𝑃𝑛 , and 𝑀 

denotes the total number of images. 

Then, the updated parameters of the global model are 

deployed to all the local servers for the local models, which can 

be formulated as: 
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 ∀𝑛𝑤𝑛
𝑡 ← 𝑤𝑛

𝑡 − 𝜂𝑔𝑛 (11) 

where 𝜂 denotes the learning rate for model optimization and 

𝑔𝑖 denotes the gradients at each local model. The final model is 

obtained after several communication rounds. 

 

The detailed scheme of FL-BT is shown in Algorithm 1. 

 
 

Comparisons with MOON: MOON is a simple and 

effective approach for FL. Inspired by MOON, we propose FL-

BT that performs the model-level contrastive learning in FL. 

The FL-BT and MOON have the following differences: 

1) MOON requires negative sample pairs for model-level 

contrastive learning, while our FL-BT does not require 

negative sample pairs for model contrastive learning. 

Therefore, FL-BT avoids under-clustering and over-

clustering problems.  

2) The mathematical principle of FL-BT is different from that 

of MOON. MOON directly optimizes the geometric 

properties of feature space. It pulls the positive samples 

closer and pushes the negative samples farther, allowing 

the feature space to be clustered by classes. While FL-BT 

optimizes statistical properties, and favors the cross-

correlation towards the identity matrix rather than the 

geometric properties of the feature space. 

3) The similarity matrix of MOON is developed based on the 

batch-wise, while that of FL-BT is developed based on the 

sample-wise. Since each sample has its own characteristics, 

the sample-wise learning criterion of FL-BT helps to learn 

superior representations for the classification. 

 

IV. EXPERIMENTS 

A. Datasets and Data Preprocessing 

The proposed algorithm was evaluated on four public breast 

histopathological datasets: the 2015 Bioimaging Challenge 

Dataset [63], the 4th Symposium in Applied Bioimaging 

Dataset [64], the ICIAR 2018 Grand Challenge on Breast 

Cancer Histology Images Dataset [65] and the Databiox Dataset 

[66], which were introduced as follows:  

1) The 2015 Bioimaging Challenge Dataset [63] 

The 2015 Bioimaging Challenge Dataset 

(https://rdm.inesctec.pt/dataset/nis-2017-003) includes high-

resolution (2048×1536 pixels), uncompressed, and annotated 

hematoxylin and eosin (H&E) stained images. All the images 

were digitized with the magnification of 200× and pixel size of 

0.42μm×0.42μm. These images were labeled by two 

pathologists, and the disagreement cases between pathologists 

were discarded. 

2) The 4th Symposium in Applied Bioimaging Dataset [64] 

The 4th Symposium in Applied Bioimaging Dataset has 140 

high-resolution (2048×1536 pixels) annotated HE-stained 

images. The images were all digitized under the same 

acquisition conditions with a magnification of 200x. The 

dataset has been assembled and annotated by two pathologists. 

The dataset is publicly available at 

http://www.bioimaging2015.ineb.up.pt/challenge_overview.ht

ml. 

3) The ICIAR 2018 Grand Challenge on Breast Cancer 

Histology Images Dataset [65] 

This dataset includes microscopy images annotated by two 

expert pathologists. The images with divergence between 

normal and benign classes were then discarded. The remaining 

doubtful cases were confirmed via imunohistochemical 

analysis. The provided images had the same size of 2048 × 1536 

pixels and a pixel scale of 0.42 μm × 0.42 μm. The data is 

publicly available from the BACH challenge website: 

https://iciar2018- challenge.grand-challenge.org/. 

4) The Databiox Dataset [66] 

The Databiox dataset is a histopathological image dataset for 

grading breast invasive ductal carcinoma (IDC) into three 

categories: grade I, grade II, and grade III. It includes 922 

images in four magnification levels, i.e. 4×, 10×, 20×, and 40×. 

We then selected the high-magnification 40× images (131 with 

grade I, 180 with grade II, and 143 with grade III) for 

experiments, since this subset had the largest number of 

samples with clearer structure and morphology about tissues. 

Finally, after removing the surrounding non-tissue regions, all 

images were then cropped into the size of 2048×1536. 

The detailed information about the four datasets is given in 

Table I. All the histopathological images were stained by 

hematoxylin and eosin (H&E). Fig. 5 shows some example 

images from four datasets. 

Since the former three datasets, namely the 2015 Bioimaging 

Challenge Dataset, the 4th Symposium in Applied Bioimaging 

Dataset, the ICIAR 2018 Grand Challenge on Breast Cancer 

Histology Images Dataset, had the same classes, i.e., normal 

tissues, benign lesions, in situ carcinomas, and invasive 

carcinomas, these datasets were then used as three centers for 

FL in this work, which were denoted as Center 1 (C1), Center 

Algorithm 1: The FL-BT framework 

Input: local datasets, number of communication 

rounds 𝑇, number of local epochs 𝐸,number of classes, 

number of centers 𝑁, learning rate 𝜂 

Output: The final model 𝑊𝑇 

1: Server executes: 

2: initialize 𝑤0 

3: for 𝑡 = 0,1,⋯ , 𝑇 − 1 do 

4:  for 𝑛 = 1,2,⋯ ,𝑁 in parallel do 

5:   send the global model 𝑤𝑡 to 𝑃𝑛 

6:   𝑤𝑛
𝑡 ←PartyLocalTraining(𝑛, 𝑤𝑡) 

7:  𝑤𝑡+1 ← ∑
𝑚𝑛

𝑀

𝑁
𝑛=1 𝑤𝑛

𝑡  

8: return 𝑤𝑇  

9: PartyLocalTraining(𝑛, 𝑤𝑡): 
10:𝑤𝑛

𝑡 ← 𝑤𝑡 

11: for epoch 𝑒 = 1,2,⋯ , 𝐸 do 

12:  for each batch b ={𝑿𝒏, 𝒀𝒏} of 𝑫𝒏 do 

13:   𝐿𝑠𝑢𝑝 ← 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝐹𝑤𝑛𝑡 (𝑋𝑛), 𝑌𝑛) 

14:   𝑧 ← 𝑅𝑤𝑛𝑡 (𝑋𝑛) 

15:   𝑧𝑔𝑙𝑜𝑏 ← 𝑅𝑤𝑡(𝑋𝑛) 

16:   𝐿𝐹𝐿−𝐵𝑇 ← ∑  𝑗 (1 − 𝒞𝑖𝑖)
2 + 𝜆∑  𝑖 ∑  𝑗≠𝑖 𝒞𝑖𝑗

2  

17:   𝐿𝑛 ← 𝐿𝑠𝑢𝑝 + 𝜇𝐿𝐹𝐿−𝐵𝑇  

18:   𝑤𝑛
𝑡 ← 𝑤𝑛

𝑡 − 𝜂𝑔𝑛 

19: return 𝑤𝑛
𝑡  to server 

 

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3323540

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on November 05,2023 at 03:13:46 UTC from IEEE Xplore.  Restrictions apply. 

https://rdm.inesctec.pt/dataset/nis-2017-003
http://www.bioimaging2015.ineb.up.pt/challenge_overview.html
http://www.bioimaging2015.ineb.up.pt/challenge_overview.html


8 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2023 

 

2 (C2) and Center 3 (C3), respectively. The Databiox dataset 

was adopted as an Additional Center (AC) to verify the 

generalization of the model, and the final global model was 

used as the initialization model for training.  
 

TABLE I 

DETAILED INFORMATION ABOUT THE FOUR DATASETS 

Datasets Classes/Numbers Center 

2015 Bioimaging 
Challenge Dataset 

Normal Tissues:64   

Benign Lesions:78 
In Situ Carcinomas:72 

Invasive Carcinomas:71 

Center 1 

The 4th Symposium 

in Applied 
Bioimaging Dataset 

Normal Tissues:30   
Benign Lesions:30 

In Situ Carcinomas:30 

Invasive Carcinomas:30 

Center 2 

ICIAR 2018 Grand 

Challenge 

Normal Tissues:100   
Benign Lesions:100 

In Situ Carcinomas:100 

Invasive Carcinomas:100 

Center 3 

Databiox Dataset 

Grade I: 131 

Grade II:180 

Grade III:143 

Additional 
Center 

 

Fig. 5: The example histopathological images from four datasets. 

B. Experimental Setup 

To validate the effectiveness of the proposed SSL-FL-BT, 

the following related algorithms were compared: 

1) ResNet50 [61]: The ResNet50 was directly trained only 

with the histopathological images from one center, which 

was a single-center based CAD without FL.  

2) FedAvg [42]: FedAvg was selected for comparison as a 

classical FL algorithm, which utilized fixed weights to 

average the local models for the optimization of the global 

model. 

3) FedProx [43]: FedProx was also selected for comparison as 

a classical FL algorithm, which added a proximal term in 

the aggregation method proposed by FedAvg to stabilize 

the convergence. 

4) FedBN [49]: FedBN was compared as a stage-of-the-art FL 

algorithm, which aggregated the local models without 

sharing parameters in BN layers to obtain the global model. 

5) MOON [31]: MOON was compared as the contrastive 

learning-based FL algorithm, which adopted contrastive 

learning to reduce the gaps between the local models and 

the global model. 

It is worth noting that all the compared algorithms adopted 

ResNet50 as the backbone. 

On the other hand, an ablation experiment was conducted to 

evaluate the effectiveness of the multi-task SSL in SSL-FL by 

comparing SSL-FL-BT with the following variants: 

1) FL-BT: FL-BT directly trained the CAD models of all 

centers without the pre-trained backbone by multi-task 

SSL. 

2) SSL-C-FL-BT: This variant conducted the SSL-based FL-

BT, but it only designed the center classification task as the 

pretext task for SSL. 

3) SSL-R-FL-BT: This variant also conducted the SSL-based 

FL-BT, but it only designed the restoration task as the 

pretext task for SSL. 

4) SSL-Fed-R: This variant conducted a two-stage training 

strategy. In particular, it first performed the SSL on the 

original images in each center individually in the first stage, 

and then the pre-trained models from different centers were 

used as the initialized models for the followed FL training 

in the second stage. Here, we adopted the image restoration 

as the SSL pretext task. 

5) SSL-Fed-S: This variant has the same training strategy as 

SSL-Fed-R, but we adopted a typical contrastive learning 

task, namely SimCLR, instead of the image restoration as 

the SSL pretext task. 

6) FedSSL-R: This variant was conducted based on the newly 

proposed divergence-aware federated SSL algorithm [67]. 

It performs another two-stage training strategy that was 

different from the SSL-Fed-R. In [67], for the first stage, 

the federated SSL (FedSSL) was performed on the original 

images, which included three key steps: (1) pre-training 

local models in each center; (2) aggregating pre-trained 

model on the central server; and (3) communicating models 

(upload and update) between the server and centers. These 

three steps were iterated until the training was completed. 

In the second stage, these pre-trained models were used as 

the initialized modes for the following FL training. Here, 

we adopted image restoration task as the SSL pretext task. 

7) FedSSL-S: This variant has the same training strategy as 

FedSSL-R, but we adopted a typical contrastive learning 

task, named SimCLR, instead of the image restoration as 

the SSL pretext task. 

8) SSL-L-FT: This variant conducted the same self-

supervised pretext task as the SSL-FL-BT in the central 

server with all the pseudo images, and then the pre-trained 

global model was fine-tuned on each center to generate the 

local model. It is worth noting that the local models in 

different centers were directly used for diagnosis, and the 

FL did not further perform on these local models. 

9) SSL-FL: This variant conducted the same self-supervised 

pretext task as the SSL-FL-BT, but it performed the 

FedAvg instead of the FL-BT during the FL training. 

In each round of FL, the updated local models of different 

centers were transferred to the server to further update the 

global model. After training the global model, each center 

adopted this global model for the diagnosis task. Therefore, for 

each algorithm, we reported the performance of the global 

model on the three centers as the final result.  

The classification accuracy, precision, recall, and F1-score 

were used as evaluation indices, which were computed as 

follows: 
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{
 
 

 
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃


𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁


𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙


 (12) 

where TP is the number of true positive, TN is the number of 

true negative, FP is the number of false positive and FN is the 

number of false negative. The precision-recall (PR) curve and 

average precision (AP) were also used to evaluate the 

performance. 

To verify the generalization of the global model, the value of 

global test average (GTA) was further used to quantitatively 

measure the generalization ability of the global model [48], 

which computed the average accuracy, precision, recall and F1-

score values on the results of three centers, respectively. 

In addition, the additional fourth dataset (Databiox Dataset) 

in AC was further used to verify the generalization of the global 

model. In particular, since the former three datasets have 

different disease classes from that of the fourth dataset, the 

global model trained through the FL paradigm under three 

centers was used as the pre-trained model for the last dataset. 

That is, the network structure before the last layer of the pre-

trained model remained unchanged, and the output number of 

the final fully connected layer was changed from four to three. 

This backbone was then fine-tuned with the training set of the 

fourth dataset. 

The resource usages, including communication and 

computation costs, were further evaluated for the proposed 

SSL-FL-BT based the Reference [69]. The number of 

communication rounds and the number of parameters 

communicated per round were calculated as the communication 

cost, and the number of parameters and the floating-point 

operations (FLOPs) were computed as the computation cost. It 

is worth noting that we independently calculated the resource 

usage of the proposed SSL-FL-BT algorithm according to the 

two training stages, namely the SSL stage (named SSL-FL-BT-

S1) and the FL-BT stage (named SSL-FL-BT-S2). 

The five-fold cross-validation strategy was applied to all 

algorithms. That is, three folds were used as the training set, one 

fold as the verification set, and the last fold as the testing set 

[68]. In particular, we first randomly divided the samples in 

each center into 5 groups, respectively, and then randomly 

selected one group from each center to form a new fold. In this 

way, we obtained the five-fold dataset across the centers, which 

was used for performing the 5-fold cross-validation across 

centers. The results were reported in the format of mean ± SD 

(standard deviation). 

C. Implementation Details 

All histopathological images were resized to 256×256 for 

model training. MSG-GAN was used for pseudo images 

generation. The learning rate for the generator and 

discriminator was 0.003, while the number of epochs for 

training was 100. Each center generated 1000 images with the 

size of 256×256. Data augmentation was conducted on all 

datasets for all algorithms, including rotation (90º, 180º, 270º) 

and horizontally flipping.  

ResNet50 was adopted as the backbone for multi-task SSL 

and FL. For each FL algorithm, the model was trained for 300 

rounds of 1 local epoch using a batch size of 4. The weight 𝜇 

for contrastive loss in Eq. (4) was set to 0.01, while the trade-

off weight 𝜆 in Eq. (7) was set to 0.005. The stochastic gradient 

descent (SGD) was used for the optimization of each algorithm 

with the learning rate of 0.001. All algorithms were 

implemented on Pytorch. 

V. EXPERIMENTS RESULTS 

A. Results on Multi-Center Datasets 

Table II to IV show the results of different algorithms on C1, 

C2 and C3 datasets, respectively. It can be found that all the FL 

algorithms achieve superior performances to ResNet50, which 

is a single-center based approach, indicating that FL algorithms 

can effectively improve the performances of a CAD model with 

multi-center data. Moreover, the proposed SSL-FL-BT 

outperforms all the compared FL algorithms with statistical 

significance on all indices in all three datasets, while FL-BT 

also gets significantly improvements over the compared 

ResNet50, FedAvg, FedProx, FedBN, and MOON algorithms. 

In particular, SSL-FL-BT achieves the best mean 

classification accuracy of 96.06±0.57%, precision of 

96.21±0.46%, recall of 96.15±0.53%, and F1-score of 

96.03±0.56% on C1. It improves at least 3.82%, 3.33%, 3.65%, 

and 3.73% on the corresponding indices compared to FedAvg, 

FedProx, FedBN, and MOON, suggesting that both multi-task 

SSL and FL-BT effectively improve the performance. On the 

other hand, it also can be observed that the proposed FL-BT 

achieves the second-best results, and gets the improvements of 

1.18%, 1.16%, 1.14% and 1.17% on the corresponding indices, 

respectively, compared to other FL algorithms except for our 

proposed SSL-FL-BT, which demonstrates the effectiveness of 

BT in the proposed FL-BT.SSL-FL-BT also gains the best 

results of 96.66±1.86%, 97.14±1.60%, 96.66±1.86%, and 

96.64±1.88% on the accuracy, precision, recall, and F1-score, 

respectively, on C2 dataset, which improves at least 4.16%, 

3.03%, 4.16%, and 4.39%, on the corresponding indices, 

respectively, compared to other FL algorithms. The FL-BT 

again achieves the second-best performance by improving at 

least 1.67%, 1.25%, 1.67%, and 1.80% on the accuracy, 

precision, recall, and F1-score, respectively, over other 

compared FL algorithms. Moreover, SSL-FL-BT obtains the 

best results of 94.50±0.68%, 94.85±0.83%, 94.50±0.68%, and 

94.46±0.69% on the accuracy, precision, recall, and F1-score, 

respectively, on C3 dataset, which improves 3.25%, 3.64%, 

3.25% and 3.21% on the corresponding indices, respectively, 

compared to FedAvg, FedProx, FedBN, and MOON. Besides, 

The FL-BT is second to SSL-FL-BT and outperforms all the 

other compared FL algorithms. We can see that FL-BT 

improves of 1.25%, 1.81%, 1.25%, and 1.22% on the accuracy, 

precision, recall, and F1-score on C3. All these results suggest 

the effectiveness of our proposed SSL-FL-BT. 

Fig. 6 shows the PR curves and the corresponding AP values 

for different algorithms. The proposed SSL-FL-BT achieves the 

best AP value of 0.9864 on C1, 0.9703 on C2, and 0.9591 on 

C3, which again indicates its effectiveness. 

 
TABLE II 
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CLASSIFICATION RESULTS OF DIFFERENT ALGORITHMS ON C1 (UNIT: %) 

Algorithms Accuracy Precision Recall F1-score 

ResNet50 89.26±2.33†* 90.31±2.68†* 89.21±2.08†* 89.26±2.24†* 

FedAvg 90.83±1.50†* 91.84±1.79†* 90.83±1.56†* 90.73±1.65†* 

FedProx 91.50±1.65†* 92.14±1.86†* 91.75±1.55†* 91.58±1.78†* 

FedBN 91.84±1.42†* 92.48±1.55†* 92.08±1.41†* 91.92±1.56†* 

MOON 92.24±1.70†* 92.88±1.66†* 92.50±1.56†* 92.30±1.84†* 

FL-BT 93.42±1.33* 94.04±1.52* 93.64±1.22* 93.47±1.46* 

SSL-FL-BT 96.06±0.57 96.21±0.46 96.15±0.53 96.03±0.56 

 

TABLE III 
CLASSIFICATION RESULTS OF DIFFERENT ALGORITHMS ON C2 (UNIT: %) 

Algorithms Accuracy Precision Recall F1-score 

ResNet50 85.83±3.73†* 87.27±3.34†* 85.83±3.73†* 85.65±3.76†* 

FedAvg 90.84±1.86†* 92.15±2.81†* 90.84±1.86†* 90.60±1.97†* 

FedProx 91.67±2.95†* 93.39±2.24†* 91.67±2.95†* 91.41±3.03†* 

FedBN 92.50±3.48†* 93.52±3.75†* 92.50±3.48†* 92.31±3.65†* 

MOON 92.50±1.86†* 94.11±1.35†* 92.50±1.86†* 92.25±1.99†* 

FL-BT 94.17±1.86* 95.36±1.47* 94.17±2.28* 94.05±2.39* 

SSL-FL-BT 96.66±1.86 97.14±1.60 96.66±1.86 96.64±1.88 

 

TABLE IV 

CLASSIFICATION RESULTS OF DIFFERENT ALGORITHMS ON C3 (UNIT: %) 

Algorithms Accuracy Precision Recall F1-score 

ResNet50 89.75±2.05†* 90.45±1.88†* 89.75±2.05†* 89.74±2.14†* 

FedAvg 90.00±2.65†* 91.11±2.46†* 90.00±2.65†* 90.00±2.58†* 

FedProx 90.25±2.05†* 90.98±1.82†* 90.25±2.05†* 90.18±2.08†* 

FedBN 90.75±2.88†* 91.54±2.50†* 90.75±2.88†* 90.78±2.77†* 

MOON 91.25±1.53†* 91.21±1.37†* 91.25±1.53†* 91.25±1.41†* 

FL-BT 92.50±0.88* 93.02±1.11* 92.50±0.88* 92.47±0.88* 

SSL-FL-BT 94.50±0.68 94.85±0.83 94.50±0.68 94.46±0.69 

 
Noting: the † and * denote the improvements achieved by FL-BT and SSL-FL-

BT, respectively, are statistically significant.  

 

(a) C1 

 

(b) C2 

 

(c) C3 
Fig. 6. PR curves of the compared algorithms with the corresponding AP values 

on the datasets of (a) C1, (b) C2 and (c) C3. 

B. Results of Ablation Experiments  

Table V to VII show the results of ablation experiments on 

C1, C2 and C3 datasets, respectively. These experiments 

evaluate the effectiveness of the performance of multi-task SSL 

in SSL-FL-BT compared to SSL-C-FL-BT and SSL-R-FL-BT. 

Both the SSL-C-FL-BT and SSL-R-FL-BT improve their 

performances compared to FL-BT, indicating that the single 

pretext task, namely center classification task or image 

restoration task, effectively promotes the feature representation 

of backbone for final classification task. Moreover, SSL-C-FL-

BT achieves a little better improvement compared to SSL-R-

FL-BT, suggesting that the specific and heterogeneous 

information provided by the center-source classification task 

can further assist the diagnosis. Besides, our proposed SSL-FL-

BT improvs at least 1.65%, 1.22%, 1.62%, and 1.61% on the 

accuracy, precision, recall, and F1-score, respectively, on C1 

dataset, 1.66%, 1.78%, 1.66%, and 1.72% on C2 dataset, 

respectively, on C2 dataset, and 0.75%, 0.55%, 0.75%, and 

0.77%, respectively, on C3 dataset on the corresponding indices 

over other compared algorithms. It demonstrates the 

effectiveness of the multi-task SSL framework in FL. 

Tables Ⅷ to Ⅹ show the results of SSL-FL-BT and SSL-

FL compared to other SSL algorithms, including SSL-L-FT, 

SSL-Fed-R, SSL-Fed-S, FedSSL-R, and FedSSL-R. SSL-FL 

improves of 1.06%, 0.68%, 1.06%, and 1.08% on accuracy, 

precision, recall, and F1-score on CI in Table Ⅷ. It promotes 

the classification accuracy, precision, recall, and F1-score by at 

least 1.67%, 0.89%, 1.67%, and 1.69% on C2, respectively, and 

also gets at least 1.00%, 0.93%, 1.00%, and 1.01% 

improvements over FedSSL-S on C3. Moreover, the SSL-FL-

BT still achieves significantly improvements over SSL-FL, 

suggesting the effectiveness of the proposed FL-BT algorithm. 

 
TABLE V 

ABLATION EXPERIMENT RESULTS ON C1 (UNIT: %) 

Algorithms Accuracy Precision Recall F1-score 

FL-BT 93.42±1.33* 94.04±1.52* 93.64±1.22* 93.47±1.46* 

SSL-C-FL-BT 94.41±1.55* 94.99±1.32* 94.53±1.22* 94.42±1.58* 

SSL-R-FL-BT 94.16±2.29* 94.75±2.19* 94.36±2.18* 94.20±2.36* 

SSL-FL-BT 96.06±0.57 96.21±0.46 96.15±0.53 96.03±0.56 

TABLE VI 

ABLATION EXPERIMENT RESULTS ON C2 (UNIT: %) 

Algorithms Accuracy Precision Recall F1-score 

FL-BT 94.17±1.86* 95.36±1.47* 94.17±2.28* 94.05±2.39* 

SSL-C-FL-BT 95.00±1.86* 95.36±1.20* 95.00±1.86* 94.92±1.95* 

SSL-R-FL-BT 95.00±3.48* 96.07±2.57* 95.00±3.48* 94.89±3.60* 

SSL-FL-BT 96.66±1.86 97.14±1.60 96.66±1.86 96.64±1.88 
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TABLE VII 

ABLATION EXPERIMENT RESULTS ON C3 (UNIT: %) 

Algorithms Accuracy Precision Recall F1-score 

FL-BT 92.50±0.88* 93.02±1.11* 92.50±0.88* 92.47±0.88* 

SSL-C-FL-BT 93.75±1.53* 94.30±1.37* 93.75±1.53* 93.69±1.49* 

SSL-R-FL-BT 93.50±1.85* 93.91±1.94* 93.50±1.85* 93.42±1.84* 

SSL-FL-BT 94.50±0.68 94.85±0.83 94.50±0.68 94.46±0.69 

 

TABLE Ⅷ 

ABLATION EXPERIMENT RESULTS ON C1 (UNIT: %) 

Algorithms Accuracy Precision Recall F1-score 

ResNet50 89.26±2.33†* 90.31±2.68†* 89.21±2.08†* 89.26±2.24†* 

SSL-L-FT 92.28±2.10†* 92.81±1.73†* 92.31±2.25†* 92.06±1.90†* 

FedAvg 90.83±1.50†* 91.84±1.79†* 90.83±1.56†* 90.73±1.65†* 

SSL-Fed-R 91.84±1.42†* 92.48±1.55†* 92.08±1.41†* 91.92±1.56†* 

SSL-Fed-S 92.58±1.26†* 93.20±1.11†* 92.83±1.19†* 92.65±1.41†* 

FedSSL-R 93.55±2.29†* 94.20±2.13†* 93.75±2.19†* 93.59±2.42†* 

FedSSL-S 93.94±2.04†* 94.70±1.70†* 94.03±2.03†* 93.99±2.18†* 

SSL-FL 94.94±0.98* 95.38±0.98* 95.09±1.02* 95.07±1.01* 

SSL-FL-BT 96.06±0.57 96.21±0.46 96.15±0.53 96.03±0.56 

 

TABLE Ⅸ 

ABLATION EXPERIMENT RESULTS ON C2 (UNIT: %) 

Algorithms Accuracy Precision Recall F1-score 

ResNet50 85.83±3.73†* 87.27±3.34†* 85.83±3.73†* 85.65±3.76†* 

SSL-L-FT 91.67±2.95†* 93.39±2.24†* 91.67±2.95†* 91.50±3.04†* 

FedAvg 90.84±1.86†* 92.15±2.81†* 90.84±1.86†* 90.60±1.97†* 

SSL-Fed-R 91.67±2.95†* 92.99±3.41†* 91.67±2.95†* 91.44±3.08†* 

SSL-Fed-S 92.50±3.48†* 93.52±3.75†* 92.50±3.48†* 92.31±3.65†* 

FedSSL-R 92.50±1.86†* 94.29±1.20†* 92.50±1.86†* 92.30±1.95†* 

FedSSL-S 93.33±2.28†* 94.82±1.47†* 93.33±2.28†* 93.18±2.39†* 

SSL-FL 95.00±1.86* 95.71±1.61* 95.00±1.86* 94.87±2.08* 

SSL-FL-BT 96.66±1.86 97.14±1.60 96.66±1.86 96.64±1.88 

 

TABLE Ⅹ 

ABLATION EXPERIMENT RESULTS ON C3 (UNIT: %) 

Algorithms Accuracy Precision Recall F1-score 

ResNet50 89.75±2.05†* 90.45±1.88†* 89.75±2.05†* 89.74±2.14†* 

SSL-L-FT 91.50±1.37†* 92.03±1.40†* 91.50±1.37†* 91.58±1.34†* 

FedAvg 90.00±2.65†* 91.11±2.46†* 90.00±2.65†* 90.00±2.58†* 

SSL-Fed-R 91.00±1.63†* 91.72±1.50†* 91.00±1.63†* 90.98±1.72†* 

SSL-Fed-S 91.75±1.43†* 92.27±1.41†* 91.75±1.43†* 91.74±1.35†* 

FedSSL-R 92.50±0.88†* 93.03±1.09†* 92.50±0.88†* 92.48±0.87†* 

FedSSL-S 92.75±1.05†* 93.25±1.23†* 92.75±1.05†* 92.70±1.01†* 

SSL-FL 93.75±0.88* 94.18±0.87* 93.75±0.88* 93.71±0.91* 

SSL-FL-BT 94.50±0.68 94.85±0.83 94.50±0.68 94.46±0.69 

Noting: the * denotes that SSL-FL-BT gets statistically significant 

improvement on this result and the † denotes that SSL-FL gets statistically 

significant improvement on this result. 

C. Generalization and Robustness Analysis 

Fig. 7 shows the GTA results of different algorithms. It can 

be found that all the FL algorithms achieve superior GTA 

values to ResNet50, suggesting that the FL strategy can 

effectively improve the generalization of CAD models with 

multi-center data. Moreover, the proposed SSL-FL-BT 

algorithm achieves the best GTA values with the mean accuracy 

of 95.74±1.43%, precision of 96.06±0.96%, recall of 

95.77±1.02%, and F1-score of 95.71±1.44%. It improves at 

least 3.75%, 3.33%, 3.69%, and 3.78% on the corresponding 

indices, respectively, over FedAvg, FedProx, FedBN, and 

MOON. Moreover, as shown in Fig. 7, the proposed SSL-FL-

BT achieves the lowest standard deviation on all indices, 

indicating SSL-FL-BT has better robustness and generalization. 

 

Fig. 7. Histogram chart of the GTA for the compared algorithms. 

We performed additional generalization experiments, which 

trained the global model on C1, C2 and C3, and then fine-tuned 

the backbone using the Databiox Dataset on AC for 

generalization verification. 

In Table Ⅺ, our proposed SSL-FL-BT achieves the best 

results by improving at least 1.27%, 0.78%, 1.10%, and 1.23% 

on the accuracy, precision, recall, and F1-score, respectively. 
TABLE Ⅺ 

CLASSIFICATION RESULTS OF DIFFERENT ALGORITHMS ON AC (UNIT: %) 

Algorithms Accuracy Precision Recall F1-score 

ResNet50 77.68±3.36†* 78.11±3.28†* 78.03±3.28†* 77.56±3.58†* 

FedAvg 78.00±3.21†* 78.15±3.20†* 78.03±3.21†* 77.86±3.22†* 

FedProx 78.62±3.48†* 79.26±3.34†* 78.68±4.18†* 78.52±3.86†* 

FedBN 78.77±2.66†* 78.94±3.21†* 78.92±2.81†* 78.76±2.78†* 

MOON 79.29±2.95†* 79.08±3.62†* 78.75±2.63†* 78.52±3.04†* 

FL-BT 80.21±2.59* 80.86±3.02* 80.42±2.46* 80.22±2.48* 

SSL-FL-BT 81.48±2.51 81.64±2.41 81.52±2.62 81.45±2.53 

D. Communication and Computation Costs 

As shown in Table XII, we set the number of communication 

rounds to 300 for all the FL-based algorithms. Since the 

FedAvg, FedProx, and FedBN have the same backbone 

network of global CAD model, the number of parameters and 

FLOPs of these algorithms are the same for each center. 

Similarly, the MOON, FL-BT, and SSL-FL-BT-S2 algorithm 

also have the same numbers of parameters and FLOPs for each 

center, which are slightly more than those of FedAvg, FedProx, 

and FedBN. On the hand, the number of communication 

parameters of MOON, FL-BT, and SSL-FL-BT-S2 are also 

slightly more than those of FedAvg, FedProx, and FedBN. 

However, the proposed FL-BT and SSL-FL-BT achieve 

superior performance over other compared algorithms. 
TABLE Ⅻ 

COMMUNICATION AND COMPUTATION COST OF DIFFERENT ALGORITHMS 

Algorithms 
# of Comm 

Rounds 

# of Comm 

Params 
Params FLOPs 

ResNet50 0 0 23.52M 5.397G 

FedAvg 300 70.55M 23.52M 5.397G 

FedProx 300 70.55M 23.52M 5.397G 

FedBN 300 70.39M 23.52M 5.397G 

MOON 300 83.89M 27.97M 5.401G 

FL-BT 300 83.89M 27.97M 5.401G 

SSL-FL-BT-S1 0 0 37.64M 13.932G 

SSL-FL-BT-S2 300 83.89M 27.97M 5.401G 
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VI. DISCUSSION 

In this work, a novel SSL-FL-BT framework is proposed to 

promote both the diagnostic accuracy and generalization ability 

of the CAD model for histopathological images. The 

experimental results on four public datasets have validated the 

effectiveness of the proposed SSL-FL-BT. 

The immense diversities of straining result in the 

inconsistencies of histopathological images across different 

hospitals. It then degrades the generalization ability of the CAD 

model, if this model is only trained with the data acquired from 

a single center. On the other hand, it is generally time-

consuming and expensive to collect large amounts of annotated 

data in one center, and therefore, the SSS problem is common 

in the field of CAD. The FL-based multi-center learning is an 

effective way to alleviate both issues, and it is more feasible to 

meet the clinical requirement than the single-center based 

approach for improving both the diagnostic accuracy and 

generalization ability.  

However, existing FL paradigm only shares the model 

parameters of different centers, and it cannot guarantee that the 

distributed CAD models well capture the specific properties of 

data from different centers. Therefore, we break through this 

limitation by sharing not only the model parameters in the 

central server, but also the pseudo histopathological images 

generated from each center, because they contain inherent and 

specific properties corresponding to the real images in this 

center, but do not include the privacy information. Therefore, 

these pseudo images can be shared in the central server. 

For the pseudo histopathological images without disease 

labels, the SSL is a feasible and effective solution to explore the 

inherent feature representation from the unlabeled data. Thus, 

two data-driven SSL pretext tasks are then designed based on 

the characteristics of pseudo images for pre-training the 

backbone. Since the pretext dual tasks are optimized 

simultaneously to improve the overall performance of the 

model, the shared backbone of the model naturally contains 

both the center-specific knowledge generated by the center 

classification task and the inherent comment information 

generated by the image restoration task. In the ablation 

experiments, the SSL-L-FT outperforms the ResNet50 and 

FedAvg, indicating that the pre-trained network by SSL can 

effectively improve the performance of the followed 

downstream classification task. Moreover, the classification 

task can better promote the performance compared to the 

restoration task. It seems that the center-specific information is 

more helpful for the generalization of a CAD model. Besides, 

the combination of two tasks achieves significant improvement 

compared with the single task, demonstrating the effectiveness 

of dual-task SSL driven by the properties of multi-center data 

themselves. 

As shown in Table Ⅷ to Ⅹ, both the FedSSL-R and 

FedSSL-S algorithms achieve superior performance over the 

corresponding SSL-Fed-R and SSL-Fed-S. In the first stage, the 

FedSSL-based variants conduct the SSL in the FL framework, 

and thus well train the initial models of different centers for the 

following FL, while the SSL-Fed-based variants only 

implement SSL once to initialize the model of each center for 

the following FL. Therefore, the FedSSL-based approaches can 

learn more information from other centers than the SSL-Fed-

based variants to initialize the model. Moreover, although the 

proposed SSL-FL and SSL-FL-BT also only implement the 

SSL once, they still outperform both the FedSSL- and SSL-Fed-

based variants, because of the following two reasons: 1) the 

SSL is directly conducted in the central server on all the pseudo 

images from different centers; and 2) the proposed dual-task 

SSL further promotes the model to learn the common 

representations and specific properties. On the other hand, we 

conduct the centralized SSL on the pseudo images before the 

proposed FL-BT process, since this manner is more efficient. In 

particular, the SSL is only conducted once on the server before 

the following FL process. Therefore, our proposed SSL strategy 

can effectively reduce the computational complexity, but still 

achieves superior performance. 

In addition, we propose an effective algorithm, namely FL-

BT, to improve the classification performance of local training. 

FL-BT utilizes the similarity between model representations to 

minimize the representation redundancy of the local model, 

which benefits the optimization of the global model in the FL 

procedure. Since our FL-BT does not require negative samples, 

it not only performs more clear and interpretable model 

contrastive learning than MOON, but also avoids these 

problems caused by negative pairs in MOON. Moreover, the 

learning criterion of FL-BT tries to obtain a feature 

representation that contains more information, so that the 

dimension of each feature preferably has an independent 

meaning. On the other hand, as shown in Eq. (5), the loss 

function in FL-BT consists of two parts, i.e., the invariance term 

and redundancy reduction term. The former plays a role in 

bringing the positive examples closer to each other in the 

representation space, while the latter enhances the 

independence of each element of the vector. Compared with the 

conventional contrastive SSL algorithms, which require 

positive and negative samples to conduct contrastive learning, 

the proposed FL-BT eliminates the redundant information 

expression in the representation vector as much as possible. 

Therefore, FL-BT achieves superior performance. 

As shown in Table XII, the proposed SSL-FL-BT has an 

additional computation overhead compared to FL-BT without 

SSL. We think that this overhead is acceptable, since the SSL 

training only performs once on the central server, which has 

sufficient computing resources. Moreover, during testing, the 

trained ResNet50 backbone network in SSL-FL-BT has a 

similar computation cost to other compared algorithms. In fact, 

we can use a more lightweight network as the backbone of the 

CAD model in practical applications, which can further reduce 

the computational cost. 

Although the results on four public datasets indicate the 

superior performance of the proposed SSL-FL-BT framework, 

it still has room for improvement. For example, the proposed 

framework performs the patch-level diagnosis for 

histopathological images in this work, while the WSI-based 

CAD has attracted considerable attention in recent years, which 

is more difficult due to the SSS problem. In fact, MIL is a 

commonly used method for the classification task of WSIs. 

Specifically, each WSI is regarded as a bag and the numerous 

cropped patches in this WSI are used as instances. Therefore, 

MIL is also the patch-based method for WSIs [51]. 

Consequently, it is also feasible to further extend the proposed 
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framework to the MIL-based CAD for WSIs, which is our 

future work. On the other hand, the current pseudo-data based 

SSL is performed on the central server, and it can be further 

improved with the SSL training manner by combining both the 

central server and distributed centers.  

VII. CONCLUSION 

In this work, a novel pseudo-data based SSL-FL-BT 

framework is proposed to improve both the diagnostic accuracy 

and generalization of the CAD model for histopathological 

images. The self-generated pseudo images contain inherent and 

center-specific properties corresponding to the real 

histopathological images of each center without privacy 

information, while the self-designed multi-task SSL captures 

both the representation from these pseudo images for the pre-

trained backbone network. The experimental results on four 

public histopathological image datasets indicate the 

effectiveness of the proposed SSL-FL-BT. 
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