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Luminance-Aware Pyramid Network for Low-Light
Image Enhancement

Jiaqian Li, Juncheng Li , Faming Fang , Fang Li , and Guixu Zhang

Abstract—Low-light image enhancement based on deep
convolutional neural networks (CNNs) has revealed prominent
performance in recent years. However, it is still a challenging
task since the underexposed regions and details are always
imperceptible. Moreover, deep learning models are always
accompanied by complex structures and enormous computational
burden, which hinders their deployment on mobile devices. To
remedy these issues, in this paper, we present a lightweight
and efficient Luminance-aware Pyramid Network (LPNet) to
reconstruct normal-light images in a coarse-to-fine strategy. The
architecture is comprised of two coarse feature extraction branches
and a luminance-aware refinement branch with an auxiliary subnet
learning the luminance map of the input and target images. Besides,
we propose a multi-scale contrast feature block (MSCFB) that
involves channel split, channel shuffle strategies, and contrast
attention mechanism. MSCFB is the essential component of our
network, which achieves an excellent balance between image
quality and model size. In this way, our method can not only
brighten up low-light images with rich details and high contrast
but also significantly ameliorate the execution speed. Extensive
experiments demonstrate that our LPNet outperforms state-of-the-
art methods both qualitatively and quantitatively.

Index Terms—Low-light image enhancement, luminance-aware
guidance, multi-scale contrast feature, pyramid structure.

I. INTRODUCTION

IMAGE with low illumination often suffers from severe
degradations like low contrast, unexpected noise, and ab-

sence of natural colors due to the equipment constraints and in-
appropriate configurations. These drawbacks not only result in

Manuscript received March 6, 2020; revised June 22, 2020 and August 13,
2020; accepted August 27, 2020. Date of publication September 3, 2020; date
of current version September 24, 2021. This work was supported in part by the
Key Project of the National Natural Science Foundation of China under Grant
61731009, in part by the National Natural Science Foundation of China under
Grant 61871185 and 11671002, in part by the “Chenguang Program” supported
by the Shanghai Education Development Foundation and Shanghai Municipal
Education Commission under Grant 17CG25, and in part by the Fundamental
Research Funds for the Central Universities, and Science and Technology Com-
mission of Shanghai Municipality (No. 19 JC1420102, No. 18dz2271000). The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Chang-Su Kim. (Jiaqian Li and Juncheng Li contributed
equally to this work.) (Corresponding author: Faming Fang.)

Jiaqian Li, Juncheng Li, Faming Fang, and Guixu Zhang are with the Shang-
hai Key Laboratory of Multidimensional Information Processing, East China
Normal University, Shanghai 200062, China, and also with the School of Com-
puter Science and Technology, East China Normal University, Shanghai 200062,
China (e-mail: 51184506021@stu.ecnu.edu.cn; cvjunchengli@gmail.com;
fmfang@cs.ecnu.edu.cn; gxzhang@cs.ecnu.edu.cn).

Fang Li is with the Shanghai Key Laboratory of PMMP, and School of Math-
ematical Sciences, East China Normal University, Shanghai 200241, China
(e-mail: fli@math.ecnu.edu.cn).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TMM.2020.3021243.

Digital Object Identifier 10.1109/TMM.2020.3021243

unpleasant visual effect, but also strongly affect high-level tasks
such as image segmentation and object detection. Consequently,
low-light image enhancement has great practical significance in
computer vision. Currently, more and more researchers have ex-
pressed their keen interest in handling the problem of low-light
image enhancement. Massive algorithms have been proposed to
facilitate the subjective and objective quality of low-light im-
ages. Roughly speaking, there are three categories of the exist-
ing methods: histogram equalization based, Retinex-based, and
learning-based approaches.

Histogram equalization (HE) [7] and its variants are the pi-
oneering algorithms that enhance image contrast by expanding
the dynamic range of pixels. However, these methods may lead
to over-enhancement since the dependency between neighbor-
ing pixels is not considered. To overcome the disadvantages of
global transformations based on HE, Wang et al. [8] proposed
a variational way to determine a local transformation so that
the histogram is redistributed locally and the brightness is pre-
served. Afterward, a generalized equalization model [9] integrat-
ing contrast enhancement and white balancing was established
and showed favorable performance. Although these methods are
relatively simple and fast, they are unfeasible to recover image
details or colors.

Other traditional methods [1], [4], [10]–[12] are based on
the Retinex theory [13] that decomposes an image into the
pixel-wise product of reflectance and illumination. Following
the common assumption, the reflectance component is often
treated as an approximation of the enhanced image, so we only
need to manipulate the estimated illumination map. Typically,
two early heuristic algorithms SSR [11] and MSRCR [10] were
devised to recover the illumination map assuming that there are
some regularities in the colors of natural objects viewed un-
der canonical illumination. However, these methods are prone
to halo artifacts in the strong shadow transition area and the
reflectance is in a limited range. To settle these issues, a natural-
ness preserved enhancement (NPE [1]) algorithm was employed
for non-uniform illumination images. A fusion-based method
MF [4] was proposed to blend multiple derivations of the ini-
tial illumination map, cooperated with different weights adapted
to weak illumination circumstances. One limitation of this ap-
proach is that it always lacks authenticity in rich texture regions.
Afterward, LIME [14] developed a structure-aware smoothing
model to estimate the illumination map. However, the mentioned
methods are challenging to apply for various scenarios due to
the hand-crafted manipulations on the illumination map and ex-
haustive parameter tuning.
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Fig. 1. An example of the enhanced images with state-of-the-art methods.
The result generated by RRM [3] exists some dark regions and RetinexNet [5]
is subjected to color distortion. The results in the second row (d)–(f) contain
different degrees of noise. KinD [2] suffers from a little smooth as shown in (g).
In contrast, the recovered image in (h) has rich details.

Recently, numerous learning-based methods have revealed
their dominant performance in image denoising [15], [16] and
image super-resolution [17], [18], as well as significantly fa-
cilitating the development of image enhancement [2], [5], [6],
[19]–[23]. For instance, LLNet [19] proposed a deep autoen-
coder to enhance the image without over-amplifying. Combin-
ing the effectiveness of Retinex theory with convolutional neu-
ral networks, Wei et al. [5] attempted to embed the Retinex
theory into CNN and devised the RetinexNet. Inspired by [5],
KinD [2] introduced a novel structure comprising layer decom-
position, reflectance restoration, and illumination adjustment to
adjust light levels flexibly. In addition, bilateral grid learning was
introduced by Gharbi et al. [22] for real-time evaluation. Simi-
larly, DeepUPE [20] attempted to learn an image-to-illumination
mapping and performed a bilateral grid in diverse lighting con-
ditions. However, these methods do not particularly take edge
information into account. By incorporating edge features, Ren
et al. [21] proposed a hybrid network with a content stream and
a salient edge stream to recover edge details when enhancing
the degraded images.

Though these off-the-shelf approaches obtain comparable re-
sults in certain instances, they still have some drawbacks as
shown in Fig. 1. Additionally, most of deep learning methods re-
quire sufficient computation resources and storage space, which
are inadequate for mobile devices. In other words, there is still
room for improvement in terms of performance and execution
efficiency. To remedy these issues, we design a lightweight and
efficient model for low-light image enhancement tasks. Specifi-
cally, we propose an innovative Luminance-aware Pyramid Net-
work (LPNet), which consists of a luminance-aware refinement
branch and two coarse feature extraction branches. To the best
of our knowledge, it is the first coarse-to-fine architecture ap-
plied to image enhancement. Moreover, we elaborately devise a
multi-scale contrast feature block (MSCFB), which is beneficial
for feature representation and contrast information learning.

The main contributions of this paper are listed as follows:
i) We explore a coarse-to-fine architecture and devise a

Luminance-aware Pyramid Network (LPNet) for low-
light image enhancement. Extensive experiments demon-
strate that our model can efficiently recover high-quality
images with natural colors and rich details.

ii) A lightweight and effective block MSCFB is proposed as
an essential component of our network, which can simul-
taneously extract image features at different scales and
exploit contrast information.

iii) We propose a luminance-aware strategy to manipulate
the illumination in the refinement branch progressively.
Concretely, we introduce auxiliary guidance to learn the
luminance between the input and target images gradually.

II. RELATED WORK

Efficient Network Structure: Deep convolutional networks
are always accompanied by numerous parameters, complex
computation, and high demands for equipment, which makes
them unfeasible to deploy on mobile devices. Lightweight struc-
ture design has gained increasing requirements and played an
important role in recent years. Inception V2 [24] employed var-
ious small convolutional kernels to replace big kernels, which
could lessen parameters and extract multi-scale features. Shuf-
fleNet [25] utilized pointwise group convolution and channel
shuffle that significantly alleviated the computational burden
while maintaining high accuracy. ShuffleNet V2 [26] introduced
channel shuffle and element-wise operations to speed up the
model. MSRN [27] adopted convolutional kernels with distinct
sizes to adaptively exploit the image features at different scales.
Inspired by these methods, we propose a lightweight and ef-
fective multi-scale contrast feature block (MSCFB). Explicitly,
MSCFB introduces channel split and shuffle strategies as well as
distinct numbers of convolutional layers in each detached chan-
nel, which can explore multi-scale context information while
averting unnecessary parameters.

Attention Mechanism: In recent years, a substantial number
of attention modules have been proposed to emphasize informa-
tive features and suppress less valuable ones. For instance, Hu
et al. [28] proposed a Squeeze-and-Excitation (SE) block that
performed feature recalibration by modeling interdependencies
between channels. Considering the positional relationship of
each pixel is significant and cannot be neglected, NLNet [29]
investigated a non-local operation to compute interactions
between any two positions regardless of their distance. Later,
GCNet [30] was proposed to simplify the NLNet utilizing a
query-independent attention map for all positions to mitigate
the computational complexity while preserving the accuracy.
Recently, Fu et al. [31] devised a dual attention network with
position and channel module in two branches to combine local
features with global dependencies.

All of these methods are beneficial for high-level tasks such
as object detection and scene segmentation, while they may have
little effect on low-level tasks like image enhancement. To ad-
dress this issue, Zheng et al. [32] first proposed the contrast-
aware attention mechanism for single image super-resolution
(SISR). However, SISR concentrates on the reconstruction of
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Fig. 2. The whole architecture of the proposed Luminance-aware Pyramid Network (LPNet). A coarse-to-fine framework that consists of two coarse feature
extraction branches (B1, B2) and a luminance-aware refinement branch B3.

high-frequency details rather than the improvement of contrast.
Accordingly, image enhancement, aiming at improving the vi-
sual effect of the image, highly emphasizes the contrast infor-
mation. Inspired by this idea, we introduce the contrast attention
module to MSCFB, which is the first attempt for low-light image
enhancement. Therefore, our proposed MSCFB can adaptively
explore the contrast information and recover the hidden details
in the dark regions.

Coarse-to-fine Architecture: The coarse-to-fine architec-
ture has been widely used in image processing. Emily et al. [33]
proposed a cascade Laplacian pyramid generative adversarial
network breaking the generation into four levels for gradual
refinements. In [34], a novel cascaded deep auto-encoder
networks (CDAN) approach was utilized for face alignment,
which achieved superior alignment accuracy with real-time
speed. For dynamic scene deblurring, Seung et al. [35] imitated
the conventional coarse-to-fine optimization and presented a
multi-scale architecture to remove complicated motion blurs
without estimating blur kernels. Fu et al. [36] introduced the
mature Gaussian Laplacian image pyramid decomposition to the
neural network for image deraining with a low parameter count.
Similarly, Ren et al. [37] adopted a multi-scale approach to bet-
ter train the proposed gated fusion network for preventing halo
artifacts. All these methods favorably illustrate the effectiveness
of the coarse-to-fine strategy, which preserves fine-grained de-
tail information as well as a long-range dependency from coarser
scales. Given the above insight, we employ a pyramid architec-
ture in the low-light image enhancement task for the first time.

III. LUMINANCE-AWARE PYRAMID NETWORK

In this section, we describe the proposed Luminance-aware
Pyramid Network (LPNet) in detail. As shown in Fig. 2,
LPNet is essentially a coarse-to-fine framework, which consists
of two coarse feature extraction branches (B1, B2) and a

luminance-aware refinement branch B3. In the coarse feature
extraction branches, we utilize several multi-scale contrast
feature blocks (MSCFBs) to extract global features at different
scales. Since the input images of B1 and B2 obtain a lower res-
olution after downsampling, that is, a larger receptive field can
be achieved. Next, these features are incorporated into the upper
branch to exploit finer features. Finally, the extracted global
image features from B2 are delivered to the luminance-aware
refinement branch B3 for image enhancement. Similarly, we in-
troduce several MSCFBs inB3 to adaptively explore the contrast
information and recover the hidden local details in the low-light
images. Additionally, we propose a luminance-aware mecha-
nism in B3 for brightness adjustment by learning the luminance
mapping between the input and target images progressively.

Define Iin and Iout as the input and output of our LPNet, re-
spectively. Iilow and Iihigh are the corresponding input and output
of Bi branch where i ∈ {1, 2, 3}. To begin with, we gradually
carry out downsampling operation with a factor of 2 to Iin for
obtaining the Iilow, expressed as

Iilow = Ii+1
low ↓, i = 1, 2, (1)

where ↓ is the average pooling operation and I3low = Iin. Af-
ter receiving all levels of input images, we deliver them to the
corresponding branch for feature extraction. It is worth men-
tioning that the output of the previous branch is upsampled to
the identical size as the current input image. Then we concate-
nate them together in the current branch for more refined feature
extraction, i.e.,

Iihigh = FBi
([Fconv3(I

i
low), I

i−1
high ↑]), i = 2, 3, (2)

where FBi
(·) denotes the corresponding operation of Bi and

I1high = FB1
(I1low). Fconv3 is a 3 × 3 convolutional layer, ↑ is

a deconvolutional layer, and [·] is the concatenation operation.
Among them, I3high = Iout represents the enhanced image.
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Fig. 3. The structure of our proposed multi-scale contrast feature block (MSCFB), which is the essential component of the LPNet. Where 32, 8, and 2 all denote
the output channels of the corresponding convolutional layer.

During the training process, we propose a luminance-aware
loss function, which consists of content loss, luminance loss,
and perceptual loss. Therefore, given a collection of M image
pairs

{
Imin, I

m
gt

}M

m=1
, we aim to solve the following problem

θ̂ = argmin
θ

1

M

M∑
m=1

Ltotal(FLPNetθ (I
m
in), I

m
gt ), (3)

where Imin and Imgt denote the input image and ground truth,
respectively, θ is the parameter set and FLPNet(·) represents
our LPNet. Here, Ltotal(·) is the luminance-aware loss func-
tion adopted to minimize the difference between the enhanced
images and ground truth. Each module of the network will
be described in the following part, and the definition of the
luminance-aware loss will be introduced in Section III-D.

A. Multi-Scale Contrast Feature Block (MSCFB)

The receptive field plays an important role in the network
design. A large receptive field not only provides rich context
information but also learns the long-range relationship between
pixels. Dilated convolutions [38] and pooling are two repre-
sentative operations to expand the receptive field. However, the
former will result in gridding effects and irrelevant long-ranged
information. The latter will lack crucial details during the di-
mensionality reduction process. Based on the preceding insight,
we propose an efficient module named multi-scale contrast fea-
ture block (MSCFB), which can extract different scales of image
features and exploit contrast information. Besides, it is an inde-
pendent module that can be used as a drop-in replacement in
various networks flexibly.

Multi-scale Feature Extraction: Inspired by MSRN [27],
we are committed to exploring multi-scale features for image
enhancement. However, directly employing it will bring numer-
ous unnecessary parameters and substantial inference cost. To
lessen the model size and calculation burden, we introduce chan-
nel split and channel shuffle [25] into MSCFB.

As shown in Fig. 3, it initially goes through a 1× 1 convo-
lutional layer. Next, we employ channel split operation on the
preceding feature maps, which are partitioned into four groups
with one-quarter channels. Different from [27], we utilize dis-
tinct numbers of 3 × 3 convolutional layers in each group to
extract multi-scale context information. Notice that two 3 × 3

kernels have the identical receptive field with a 5 × 5 kernel.
Compared with diametrically applying a 5 × 5 or 7 × 7 convo-
lutional kernel, this mode is capable of reducing the parameters
while preserving a larger receptive field. Nevertheless, the out-
puts from a fixed group are barely related to the inputs within
this group, which hinders information flow between each group
and weakens feature representation. To facilitate the feature ex-
change and cross-scale communications between groups, the
channel shuffle strategy is applied after the concatenation oper-
ation. According to the ShuffleNet [25], the channel shuffle oper-
ation is especially critical to the information routing among dif-
ferent channels. Furthermore, it contributes to enhanced learning
capability without additional parameters, which is in accordance
with the design principle of a lightweight module.

In general, our block achieves an excellent balance between
the computational burden and feature representation.

Contrast Attention Module: Low-light image enhancement
aims to eliminate the darkness and make the hidden contents vis-
ible. It is difficult to obtain texture details from a low-light image
diametrically using off-the-shelf feature extraction blocks, since
they may result in blur and noise in the reconstructed image. To
remedy this problem, we suggest evaluating the contrast of the
feature maps during feature extraction. It is known that the stan-
dard deviation reflects the dispersion degree of the pixel values
from the mean in a clear image. The larger the standard deviation
is, the higher the contrast of the image, so is the image quality.
Consequently, we further introduce the contrast attention mech-
anism [32] into MSCFB to promote the exploited multi-scale
information, which is beneficial for low-level vision tasks and
dramatically facilitates performance improvement. As depicted
inside the dotted box in Fig. 3, we first implement the standard
deviation based on the global average pooling.

Denote X = [x1, x2, . . . , xC ], X ∈ ΩC×H×W as a feature
map. We use the standard deviation σc of the c-th element to
evaluate the contrast degree, i.e.,

σc =

⎛
⎝ 1

HW

∑
(i,j)∈Ω

(xi,j
c −mean(xc))

2r

⎞
⎠

1
2

, (4)

where mean(xc) is the mean of xc, (i, j) denotes the position in
the feature map. Then, we utilize two 1× 1 convolutional layers
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that act as channel downscaling with a reduction ratio 16 to ag-
gregate the contrast features. Each convolutional layer is accom-
panied by a ReLU for activation. Afterward, a sigmoid function
is applied to calibrate the weight of each channel according to the
importance of candidate features. Moreover, all the calculated
weights are combined with the input features in element-wise
multiplication. At the tail of MSCFB, a1× 1 convolutional layer
is implemented for feature integration. Ultimately, we introduce
local residual learning into our MSCFB to further improve the
information flow.

Even though the contrast attention is similar to the common
channel attention [28] to some extent, their design intentions
are different. We conduct an interrelated ablation study of two
attention modules in Section V. In general, by taking advantage
of the contrast attention mechanism, our MSCFB can adaptively
learn the contrast information and reconstruct the enhanced im-
age with more high-frequency details.

B. Luminance-Aware Strategy

Currently, most low-light image enhancement algorithms di-
rectly learn the mapping between the input and target images.
However, these methods are difficult to accurately capture the
change of luminance, which often leads to overexposure or in-
sufficient brightness in the reconstructed image. Inspired by the
residual learning strategy presented in VDSR [39], we propose
a simple but effective luminance-aware mechanism. To begin
with, we calculate the difference between the input and target
images and define it as the luminance map. Next, we construct
a sub-network to manipulate the illumination and utilize it to
guide the reconstruction process progressively.

As shown in Fig. 2, the top branch (B3) is our proposed
luminance-aware refinement branch, which can be divided into
two parallel components. In the top part, we adopt N MSCFBs
to constitute the luminance-aware mechanism for brightness ad-
justment. Meanwhile, identical number of MSCFBs are utilized
to build up the bottom feature refinement part. As depicted in
B3, the feature maps are respectively delivered to two parts for
different purposes after two convolutional layers.

Define the input of the first top and bottom MSCFB as L0 and
R0 (L0 = R0), respectively. The output of each MSCFB in the
luminance branch can be written as

Ln = Fn
LUM (Ln−1), n = 1, 2, . . . , N, (5)

where Fn
LUM (·) denotes the operation of the n-th MSCFB in

the luminance part. Similarly, the output of each MSCFB in the
refinement branch can be defined as

Rn = Fn
REF (Rn−1), n = 1, 2, . . . , N, (6)

where Fn
REF (·) is the operation of the n-th MSCFB in the re-

finement branch. For luminance awareness, we utilize each in-
termediate output fromLn to progressively guide the refinement
stage by adding the corresponding Rn in an element-wise way.
So we modify Eq.(6) as

Rn = Fn
REF (Rn−1) + Fn

LUM (Ln−1), n = 1, 2, . . . , N. (7)

To take advantage of image features, we adopt a hierarchi-
cal information distillation strategy. Since these features contain
redundant information and significantly scale up the computa-
tional complexity, we first concatenate all the feature maps and
utilize a 1× 1 convolutional layer to aggregate them. Through
this scheme, we can maintain the integrity of hierarchical fea-
tures with fewer parameters. Finally, two 3× 3 convolutional
layers are applied to acquire the final RGB image.

In conclusion, based on the guidance of the luminance-aware
mechanism, our LPNet can reconstruct images with appropriate
brightness distribution.

C. Pyramid Architecture

The aforementioned luminance-aware refinement branch is
capable of generating an enhanced image with content and lu-
minance consistency. However, due to the impact of informa-
tion loss during the excessive convolutional process, the recon-
structed image is still lack of texture details. Thus, we adopt
a pyramid structure through multi-level learning in a coarse-
to-fine strategy as shown in Fig. 2. Different from previous
works [35], [36], [40], the proposed LPNet only compares the
enhanced image obtained at the finest scale with the ground truth
rather than calculating the loss for each scale.

Essentially, our LPNet is a dynamically scalable framework
that contains i levels, where we can select an appropriate value
according to the actual demands. In our experiment, we focus
on constructing a lightweight model and set i = 3. Different
from previous works that utilize the same architecture on each
branch, our LPNet contains three distinct branches. AlthoughB1

andB2 consist ofN MSCFBs with the same structure, they have
different receptive fields. Besides, B3 is designed to exploit the
local image features, while B1 and B2 are devised to capture
the global features since they allow a larger receptive field to
explore the whole patch. Moreover, information from the coarser
level is delivered to the next branch for more refined feature
reconstruction. After incorporating all the global features into
the finest branch B3, we utilize them to improve local features
and generate the final enhanced image. It should be pointed out
that these three branches (B1, B2, and B3) in our network are
connected sequentially, and the model is trained in an end-to-end
manner.

Generally speaking, fine-grained detail information as well as
a long-range dependency from coarser scales can be preserved
by the pyramid structure.

D. Loss Function

To improve the image quality both qualitatively and quanti-
tatively, we propose a luminance-aware loss function with the
following three components: 1) L1 loss used to reconstruct im-
age content; 2) Luminance loss adopted to learn the difference
of brightness between the low-light and target images; 3) VGG
loss utilized to enhance the perceptual quality.

Content Loss: We use MAE to measure the overall structural
similarity instead of MSE, which can avoid getting stuck in a
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local minimum. The L1 loss is formulated as follows:

Lcont =
1

M

M∑
m=1

∥∥FLPNet(I
m
in)− Imgt

∥∥
1
, (8)

where FLPNet(Iin) is the reconstructed image, Iin and Igt rep-
resent the input image and ground truth, respectively.

Luminance Loss: As described in Section III-B, we present a
luminance-aware strategy to guide image reconstruction, so that
a luminance loss is utilized to supervise the learning process. We
calculate the difference between each hierarchical luminance
map and the expected one, i.e.,

Llum =
1

MN

M∑
m=1

N∑
n=1

∥∥Fn
lum(Imin)− Imlum

∥∥
1
, (9)

where Fn
lum(Imin) denotes the predicted luminance map of the

n-th MSCFB and Imlum is the expected one.
Perceptual Loss: Inspired by [41], we introduce the VGG

loss as the perceptual measurement to utilize image semantic
information and facilitate the visual quality of the enhanced im-
age. We use the Euclidean distance to calculate the difference
between feature maps, formulated as below,

Lvgg =
1

CtHtWt

∥∥φt(FLPNet(Iin))− φt(Igt)
∥∥2
2
, (10)

where φt(·) is the activation feature map of the t-th convolu-
tional layer in VGG19. Here, Ct, Ht,Wt represent the dimen-
sions of the corresponding feature maps, respectively.

Total Loss: We define the total loss as a weighted sum of the
above-mentioned three components, i.e.,

Ltotal = Lcont + Llum + Lvgg. (11)

In the experiment, we empirically set the weight of each com-
ponent as 1. Moreover, our model is trained end-to-end with the
total loss until it converges.

IV. EXPERIMENTS

A. Datasets and Metrics

Datasets: In the experiment, we adopt LOL [5], MIT5K [42],
and SID [43] as our training datasets. Among them, LOL con-
sists of 500 low/normal-light image pairs captured in real scenes,
which is the first dataset used for low-light image enhancement.
We divide it into three sets, 450, 35, and 15 image pairs for
training, validation, and testing, respectively. As for the MIT5K
dataset, we use 4,500 images for training, with the remain-
ing 500 images for validation and testing by Expert C follow-
ing [20], [22]. SID dataset contains raw sensor images shot
by Sony and Fujifilm in both indoor and outdoor scenes. In
our study, we merely employ the Sony set including 2,697 raw
short-exposure images and 231 long-exposure images. The same
protocol in [43] is implemented to divide the data into training,
validation, and testing sets. Considering that models trained on
the raw domain cannot be applied to regular RGB images di-
rectly, we convert the dataset from raw data to png format in the
rawpy python package following the preprocessing pipeline in

[44]. To verify the robustness of our model, we train the network
utilizing the noisy low-light images without any post-processing.

Additionally, we further employ several benchmark datasets,
involving MEF [45], NPE [1], DICM [46], and VV [47] for test.
Among them, MEF is composed of 17 image sequences with
multiple exposure levels, and we select one of the poor-exposed
images from each multi-exposure set for evaluation. Since all
these images have no corresponding ground truth, they are often
utilized to verify the generalization of different methods in real-
world scenarios.

Evaluation Metrics: In order to quantitatively evaluate the
performance of our network, we select two commonly used met-
rics (i.e., PSNR and SSIM) to measure the content and structural
similarity between the enhanced images and ground truth. Gen-
erally speaking, higher PSNR and SSIM values indicate better
results and authentic human perception. Besides, we further uti-
lize Natural Image Quality Evaluator (NIQE) [48] to assess the
image quality, where a lower value indicates better performance.

B. Implementation Details

Our network is implemented in the Pytorch framework and
trained on NVIDIA RTX 2080Ti GPU with ADAM optimizer
for 200 epochs. We respectively utilize the learning rate of 10−5

as the initialized value on the LOL dataset and 10−4 for the
MIT5K and SID datasets with halving every 100 epochs. During
training, we augment the training data with rotation, flipping
horizontally and vertically to promote the generalization of the
network. In addition, we randomly extract 16 patches, each with
a size of 96× 96 as inputs. In the final model, we allocateN = 4
and the channel of each feature map is set as 32 to construct a
lightweight network. Specifically, no additional training tricks
are employed.

C. Comparisons With State-of-the-Art Methods

We compare our model with various state-of-the-art methods,
and all the results are assessed with PSNR and SSIM. To be spe-
cific, we compare RRM [3], NPE [1], MF [4], RetinexNet [5],
GLAD [6], and KinD [2] on the LOL [5] dataset, White-
Box [49], D & R [50], HDRNet [22], DPE [51], and Deep-
UPE [20] on the MIT5K [42] dataset. Meanwhile, LIME [14],
RetinexNet [5], KinD [2], GLAD [6], and LTS [43] are compared
on the SID [43] dataset. For all the methods, we either implement
the codes provided by the authors or show the results that are
public on the websites. Furthermore, all the deep learning algo-
rithms are trained and tested with the recommended parameter
settings and implementation details for a fair comparison.

Quantitative Comparisons: Table I reflects the quantitative
comparisons with state-of-the-art methods on the LOL, MIT5K,
and SID datasets. Among them, the final PSNR/SSIM results
denote the average value of the corresponding test datasets and
the best results are highlighted in bold. We can perceive that
our LPNet achieves favorable performance on both LOL and
MIT5K datasets and outperforms other methods by a large mar-
gin. When comparing to the SID dataset, we retrain all the deep
learning algorithms with the converted RGB images after pre-
processing the raw data for comparison fairness. In this work,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 10,2022 at 01:36:10 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: LUMINANCE-AWARE PYRAMID NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT 3159

TABLE I
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART IMAGE

ENHANCEMENT METHODS ON THE LOL [5], MIT5K [42], AND SID [43]
DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD OR IN RED

we mainly concentrate on the enhancement of low-light RGB
images since raw data is usually unavailable due to the lack of
expertise or unknown protocols. From Table I, we can observe
that the average PSNR and SSIM achieved by our method are
higher than other results, which sufficiently demonstrates the
superiority and generalization ability of our approach.

Efficiency Investigation: In addition to the image quality,
efficiency is a crucial indicator to measure the performance of
an algorithm as well. Though massive deep learning methods
have been proposed and achieved prominent performance, most
of them are accompanied by excessive parameters or long exe-
cution time, which are unsuitable for small electronic devices.
Due to the limited memory and resources of the equipment,
it is necessary to design a lightweight and efficient model for
image enhancement. Table I reports the performance of our
method considering parameters, FLOPs (FLoating-point OP-
erations), and running time. Notice that the FLOPs are calcu-
lated with a patch size of 48× 48. The running time is tested
with the resolution of 600× 400, 500× 333, and 2128× 1424
corresponding to the LOL, MIT5K, and SID datasets, respec-
tively. It should be pointed out that RRM [3], NPE [1], MF [4],
and LIME [14] are traditional algorithms implemented on Intel
i5-9400 CPU. Meanwhile, other learning-based methods (in-
cluding our LPNet) are tested on NVIDIA RTX 2080Ti GPU.
Obviously, our model achieves better or similar performance
over all state-of-the-art methods with few parameters and less
running time. It demonstrates the LPNet is an efficient and
lightweight model that achieves a balance among model size,
execution time, and performance.

Subjective Evaluation: We present several visual compar-
isons against the aforementioned methods on three datasets. Ac-
cording to Fig. 4, we can clearly observe the enhanced image

reconstructed by RetinexNet [5] suffers from different degrees
of color distortion. While the recovered images produced by
NPE [1] and MF [4] contain numerous noise that is especially no-
ticeable in the zoomed areas. As shown inside the red rectangle
of GLAD [6], there exists some noise in dark regions. Although
the result of KinD [2] is comparable, it remains slightly dark
and smooth, which leads to missing subtle details. In contrast,
our LPNet can recover realistic colors and obtain more texture
details without noise compared with other methods. Addition-
ally, Fig. 5 demonstrates some representative comparisons with
several competing approaches on the MIT5K dataset which in-
cludes a fraction of underexposed images. As depicted, though
most methods can brighten up the input image, they still contain
obstinate noise or exist color distortion due to unsatisfactory
adjustments. For instance, the little girl’s face from (b) to (f) is
either underexposed or over-magnified while the result produced
by our network looks more natural and conforms to human aes-
thetics. It indicates that our model plays a role of retouching and
beautifying when it is run on a non-low-light image. We com-
pare the visual quality of the results on the SID dataset in Fig. 6.
It can be observed that although methods such as LIME [14]
and RetinexNet [5] improve the illuminance to a certain extent,
the enhancement results are subjected to color shift. KinD [2]
suffers from relatively dark and smooth as shown in (d). The
GLAD [6] algorithm can remove the unfavorable illuminance
and promote the global contrast. However, the enhanced image
still contains inevitable noise in some regions. The image gener-
ated by LTS [43] is comparable while it requires more resources
and execution time. Compared to others, our method efficiently
improves the image quality while preserving the natural colors
and rich details.

All the results manifest that our method not only enhances the
dark area without over-exposed artifacts, but also maintains the
texture details with high contrast. In summary, with the impact of
pyramid architecture, luminance-awareness guidance, and con-
trast attention mechanism, our LPNet can predict reasonable
adjustments and reconstruct high-quality images.

Generalization Ability: To further assess the robustness of
our LPNet, we utilize the pre-trained model on the LOL to
test some real-world low-light benchmarks including MEF [45],
NPE [1], DICM [46], and VV [47]. We adopt blind image quality
assessment NIQE [48] to appraise the performance with several
representative methods for verifying the naturalness of the en-
hanced image. As presented in Table II, our LPNet shows its
clear advantage against other methods on the whole. Specifi-
cally, LPNet outperforms all the competitors on the LOL, NPE,
MEF, and DICM datasets. For the VV dataset, our results have
marginal performance gaps between MF [4] and KinD [2]. This
is a fairly remarkable demonstration of the relationship between
quantified image authenticity and perceptual image quality. Fur-
thermore, Fig. 7 shows a challenging case of a low-light image
on the MEF dataset, where the original input is extremely dark
with the imperceptible trace of texture in most regions. It is ev-
ident that the enhanced images from (b) to (g) contain some
noise or artifacts, while our result has better visual effects. In
other words, our method is robust for real-world extremely dark
image enhancement.
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Fig. 4. Visual comparisons with state-of-the-art low-light image enhancement methods on the LOL [5] dataset.

Fig. 5. Visual comparisons with state-of-the-art image enhancement methods on the MIT5K [42] dataset.

Fig. 6. Visual comparisons with state-of-the-art low-light image enhancement methods on the SID [43] dataset.
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Fig. 7. Visual comparisons with state-of-the-art low-light image enhancement methods on the MEF [45] dataset.

TABLE II
INVESTIGATIONS OF IMAGE NATURALNESS WITH NIQE METRIC ON SOME

BENCHMARK DATASETS. THE BEST RESULT IS HIGHLIGHTED IN BOLD

V. ABLATION STUDY

In order to explore the effectiveness of the proposed method,
we conduct a series of controlled experiments from different
perspectives in this section. It is worth noting that we regard the
result of our LPNet as the baseline.

A. Effectiveness of the MSCFB Module

MSCFB is the essential unit of our LPNet, which efficiently
implements multi-scale feature extraction and contrast informa-
tion learning. In this subsection, we provide the verification of
the MSCFB module from two aspects: 1) evaluate the compo-
nents within the MSCFB; 2) compare the MSCFB with several
representative blocks.

1) Investigation of the Components within MSCFB: The
MSCFB module is composed of channel split, channel shuffle,
and contrast attention mechanism. In this part, we carry out a
series of ablation studies to verify their necessity.

Study of Contrast Attention Module: In Table III, we show
quantitative comparison results with (case 6) and without (case
3) the contrast attention module in MSCFB. It is evident that the
model with high intensity contrast contributes to performance
improvement of PSNR and SSIM on all the datasets. Meanwhile,

TABLE III
ABLATION STUDY OF EACH COMPONENT IN OUR LPNET.

√
AND × DENOTE

WHETHER TO USE IT DURING TRAINING, RESPECTIVELY. WE TEST THE

ENHANCED IMAGES WITH PSNR/SSIM METRICS

Fig. 8. Ablation study of each component in our LPNet training on the LOL
dataset, where “W/o” denotes without the corresponding component.

we visualize the performance of each component during training
in Fig. 8. Obviously, the purple curve is much lower than the blue
curve during the entire training process. In other words, our net-
work can steadily improve the performance with the assistance
of the contrast attention module, especially low-level computer
vision tasks, such as image enhancement and super-resolution.

Study of Channel Shuffle Operation: To validate the ef-
fectiveness of channel shuffle, we analyze the performance of
removing it from MSCFB. As shown in Table III, the PSNR
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TABLE IV
COMPARISONS WITH SEVERAL REPRESENTATIVE BLOCKS AND COMMON

CHANNEL ATTENTION MODULE WITH PSNR/SSIM METRICS

and SSIM values of case 4 are slightly lower than that of case
6 on all the datasets. Correspondingly, it can be observed from
the blue and red curves in Fig. 8, the performance of the model
without channel shuffle operation is marginally inferior to the
baseline. This is mainly because our network has a small num-
ber of feature channels, the difference of cases 4 and 6 is not
palpable. With a large number of channels or groups, channel
shuffle operation is more beneficial to promote the quality of
enhanced image without additional parameters.

Study of Channel Split Scheme: In addition, we carry out
an ablation experiment about removing both the channel split
and shuffle schemes from our model. It is worth noting that
directly discarding the split scheme will scale up a large number
of parameters. In order to ensure a fair comparison, we utilize
a 1× 1 convolutional layer for dimension reduction in lieu of
the split operation. From cases 5 and 6 in Table III, it is obvious
that the PSNR and SSIM values degrade when we dismantle
the split and shuffle operations in our LPNet. Besides, as shown
in Fig. 8, the pink curve is generally below the blue and red
curves during the steady stage of training. It demonstrates the
superior capacity of the channel split scheme, which mitigates
the number of parameters as well.

The preceding investigations illustrate the importance and ef-
ficiency of the proposed contrast attention mechanism, chan-
nel split, and shuffle operations in the MSCFB module. Conse-
quently, the MSCFB can extract valuable features that contribute
to enriching the texture information of the image.

2) Comparisons with Several Representative Blocks: In
order to validate the effectiveness of our MSCFB, we compare it
with the core feature extraction blocks proposed in ResNet [53],
ShuffleNet [25], and Res2Net [54]. Moreover, we replace it with
common channel attention to illustrate the superiority of contrast
attention.

Compare with Feature Extraction Blocks: As we know,
ResNet [53] has been widely used and revealed remarkable
performance in various tasks. Considering the residual block is
not a lightweight structure, we design a novel feature extraction
block (MSCFB). Take the input channel of 32 as an example; a
residual block has 18,432 parameters while our MSCFB merely
contains 6,656 parameters. Besides, we make a comparison with
two lightweight networks: ShuffleNet [25] and Res2Net [54]. To
ensure an impartial experiment, we employ the same backbone
as the infrastructure and only replace the block in the network.
Furthermore, we make the total parameters of the models close
by adjusting the number of channels or blocks. According to
Table IV, we can perceive that our MSCFB achieves better

Fig. 9. Ablation study of the MSCFB module training on the LOL dataset.

results than other blocks with a smaller model size. In addition,
as the performance curves displayed in Fig. 9, the results of
other blocks are always below that of our MSCFB module. The
main reason is that other blocks have no attention mechanism
while our block cooperates with contrast attention, which can
facilitate performance improvement. When comparing the
results without contrast attention as shown in Table III, the
proposed MSCFB is still comparable.

Compare with Channel Attention Module: The idea of
channel attention mechanism has been frequently employed in
multiple previous works [28], [31], [55] and achieved tremen-
dous performance improvements. We make a comparison with
channel attention and adopt it to take the place of contrast at-
tention module in our LPNet. As displayed in Table IV, the
results of channel attention are inferior to that with the con-
trast attention mechanism. Accordingly, the performance of the
red and purple curves in Fig. 9 is consistent with the results in
the table. The main reason is that channel attention primarily
concentrates on the activated high-value areas of a feature map,
which is instructive to some high-level tasks such as classifica-
tion, recognition, and detection. Conversely, low-level tasks not
only focus on global information but also require local details
to guide image reconstruction. Generally speaking, the contrast
attention mechanism is more suitable for low-level computer
vision tasks.

The above ablation studies and analyses indicate that the
proposed MSCFB module achieves more superior performance
with fewer parameters compared to other blocks.

B. Investigation of the Number of MSCFB

The number of MSCFB will significantly influence the num-
ber of parameters and performance of our LPNet. As shown in
Fig. 10, we can observe that the result of our model performs
worse when the number of MSCFB (N) decreases. However, the
parameter quantity will increase as the block scales up. Mean-
while, the execution time will become longer when N gradually
enlarges. In view of the trade-off between performance and ef-
ficiency, the number of MSCFBs should be selected according
to the actual demand. It is worth noting that the performance
gap becomes small between the results of N = 5 and N = 4.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 10,2022 at 01:36:10 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: LUMINANCE-AWARE PYRAMID NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT 3163

Fig. 10. Investigation of the number of MSCFB (N) on the LOL dataset, where
“K” represents one thousand.

Therefore, in this paper, we set N = 4 for keeping in line with
the design principle of a lightweight module, which can achieve
favorable results with an acceptable number of parameters.

C. Effectiveness of Network Architecture

In this part, we verify the effectiveness of each component
proposed in our LPNet on the LOL, MIT5K, and SID datasets,
including the pyramid structure and luminance-aware strategy.

Study of Luminance-aware Strategy: We evaluate the va-
lidity of the luminance-aware mechanism by directly discarding
it. At the same time, we remove the luminance loss in Eq.(11)
for training. As shown in Table III, cases 2 and 6 denote the
comparisons of these two methods. Obviously, the PSNR de-
clines significantly once the luminance-aware part is removed.
We find that the PSNR varies drastically on the LOL (1.30 dB)
and SID (0.96 dB) datasets whereas it is not obvious on the
MIT5K (0.35 dB) dataset. The main reason is that LOL and
SID are low-light image datasets whose input images are ex-
tremely dark while the MIT5K dataset has a limited number
of underexposed images. In other words, our luminance-aware
guidance is specifically beneficial for low-light image enhance-
ment. Accordingly, from the blue and green curves in Fig. 8, the
PSNR value of the network without luminance-aware is below
the baseline excluding the first a few epochs. This shows the
effectiveness of our proposed strategy.

Study of Pyramid Structure: To assess the effectiveness of
the pyramid structure, we build a new model termed as PNet,
which removes the pyramid framework and only retains the top
branch B3. Meanwhile, the parameter quantities of PNet are at
the same magnitude as the baseline by adjusting the number
of channels for fairness. In Table III, cases 1 and 6 represent
the PNet and LPNet, respectively. The PSNR and SSIM values
on three datasets go down marginally once the pyramid struc-
ture is removed. In addition, as presented in Fig. 8, the orange
curve is generally below the blue curve during the stable phase
of training. Since the introduced pyramid structure can extract
global image features that facilitate the improvement of local
features, which significantly enriches the diversity of features.
Therefore, our LPNet is able to reconstruct clear and accurate
images compared to PNet.

TABLE V
ABLATION STUDY OF EACH COMPONENT IN THE LOSS FUNCTION.

√
AND ×

DENOTE WHETHER TO USE IT DURING TRAINING, RESPECTIVELY. WE TEST

THE ENHANCED IMAGES WITH PSNR/SSIM METRICS

In general, these analyses manifest that with the guidance
of the luminance map, the enhanced image obtains appropriate
brightness distribution. Moreover, our model can extract fine-
grained image features and generate an enhanced image with
rich texture details due to the ability of the pyramid structure.

D. Effectiveness of Luminance-Aware Loss Function

In this paper, a luminance-aware loss function is proposed for
training the model. In Table V, we confirm the importance of
each component in the loss function. It can be observed that the
performance of training with the total loss is superior to that
of removing any component from it. Accordingly, we present
several visual comparisons in Fig. 11. It should be pointed out
that L1 loss is used as the basic content loss as shown in (b).
Then we successively add Luminance loss, VGG loss and both
of them, which correspond to (c), (d), and (e), respectively. We
can find out that the area inside the red rectangle in (b) is darker
than the counterpart in (c). To solve this issue, we introduce
luminance loss to avoid insufficient brightness. The result in (c)
confirms its effectiveness while the patterns on the plates are
still fuzzy and difficult to distinguish. Afterward, we employ
VGG loss to promote the visual quality of the enhanced image.
However, the plates at the lower-left corner in (d) are a little dark
compared to the results optimized with the total loss in (e).

In summary, the above ablation studies sufficiently demon-
strate each component of the loss function is indispensable.
Furthermore, we can draw a conclusion that our proposed
luminance-aware loss is effective to explore appropriate bright-
ness and facilitate the image details.

E. Investigation of High-Level Noise Image

Extremely low-light imaging with limited illumination and
short exposure is always subjected to high-level noise. To fur-
ther verify the robustness of our model, we manually add white
Gaussian noise with noise level σ = 15, 30, 50 on the MIT5K
dataset for training and testing. As shown in Fig. 12, we can find
our solution performs enhancing and denoising simultaneously.
However, it should be pointed out that the recovered images (e)
and (f) are smooth and lack some edge details due to the in-
fluence of noise. Especially, σ = 50 is a relatively high noise
level which will severely destroy the image content, so that it is
difficult to generate a clear and accurate image. In general, even
though the presence of massive noise will disturb the training
process and degrade the performance to some extent, our model
is still effective. In the future, we hope to further analyze the im-
pact of high-level noise on low-light image enhancement tasks.
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Fig. 11. Visual results of loss component (Lcont, Llum, Lvgg) in the Luminance-aware loss function on the LOL dataset.

Fig. 12. Visual comparisons of the LPNet tested with different noise level
images on the MIT5K dataset. The first row (a)–(c) are the simulated noise
images based on the clear input image (g), (d)–(f) and (h) are the recovered
images obtained by our method, and (i) represents the ground truth.

In addition, we strive to promote our method that can brighten
up luminance while preserving rich details from the high-level
noise image.

VI. DISCUSSION AND LIMITATION

Low-light image enhancement is a challenging but practi-
cal task, which is commonly used in various platforms such
as smartphones, cameras, and embedded devices. Given the
impracticality of exploiting large and deep networks on mo-
bile equipment due to strict latency constraints, devising a
lightweight and effective model is critical. Though our method
achieves promising results in most cases with fewer parame-
ters and faster speed, it still has some limitations. For instance,
the result reconstructed by our LPNet in Fig. 7 (h) lacks some
texture details hidden behind the reflective objects like glass or
monitor. Additionally, it is unfeasible to recover the refined edge
information under the excessive noise as shown in Fig. 12 (f).
In future work, we aim to yield further improvements with se-
mantic analysis to boost image quality. Moreover, we strive to
build a large-scale paired dataset with diverse data distribution
for low-light image enhancement of real scenes.

VII. CONCLUSION

In this paper, we remedy the low-light image enhance-
ment problem by introducing an innovative Luminance-aware

Pyramid Network (LPNet). The main idea is to construct a pyra-
mid architecture across multi-level learning in a coarse-to-fine
strategy, which consists of two coarse feature extraction
branches and a luminance-aware refinement branch. Besides, a
lightweight and efficient feature extraction block (MSCFB) is
proposed to build up the entire framework, which strikes an ex-
cellent trade-off among performance, model size, and execution
time. In addition, we employ a compound luminance-aware loss
function that facilitates the visual quality of the enhanced image.
Extensive experiments and ablation studies have illustrated
our solution is efficacious both qualitatively and quantitatively,
which has great potential to apply in low-light image/video
enhancement tasks on mobile devices.
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