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Abstract—Image denoising is a challenging inverse problem
due to complex scenes and information loss. Recently, vari-
ous methods have been considered to solve this problem by
building a well-designed convolutional neural network (CNN) or
introducing some hand-designed image priors. Different from
previous works, we investigate a new framework for image
denoising, which integrates edge detection, edge guidance, and
image denoising into an end-to-end CNN model. To achieve
this goal, we propose a multilevel edge features guided network
(MLEFGN). First, we build an edge reconstruction network
(Edge-Net) to directly predict clear edges from the noisy image.
Then, the Edge-Net is embedded as part of the model to provide
edge priors, and a dual-path network is applied to extract the
image and edge features, respectively. Finally, we introduce a
multilevel edge features guidance mechanism for image denoising.
To the best of our knowledge, the Edge-Net is the first CNN
model specially designed to reconstruct image edges from the
noisy image, which shows good accuracy and robustness on
natural images. Extensive experiments clearly illustrate that our
MLEFGN achieves favorable performance against other methods
and plenty of ablation studies demonstrate the effectiveness of
our proposed Edge-Net and MLEFGN. The code is available at
https://github.com/MIVRC/MLEFGN-PyTorch.

Index Terms—Edge guidance, edge reconstruction network
(Edge-Net), image denoising.

I. INTRODUCTION

MAGE denoising is an extremely hot topic in computer
vision, which aims to reconstruct a clean image from the
noisy one (see Fig. 1). It is a crucial step for many real applica-
tions since the quality of the denoised images will significantly
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Fig. 1. Example of color image denoising (AWGN, noise level: o = 50).

influence the performance of downstream tasks, such as image
classification [1], [2], image segmentation [3], [4], object
detection [5], [6], and other high-level computer vision tasks.
However, due to the complex scenes and information loss,
it is still considered a challenging inverse problem. In order
to elegantly solve the problem of image denoising, we aim
to build a flexible approach with the following desirable
properties: 1) it is able to perform image denoising in an
end-to-end manner; 2) it is efficient and can achieve superior
performance; and 3) it can integrate image priors to accelerate
model convergence and improve the visual effects of the
denoised images.

In recent years, various methods have been proposed for
image denoising, which can be roughly divided into traditional
methods [7]-[19] and learning-based methods [20]-[28].
Among them, the traditional methods can be further divided
into three categories: 1) spatial filtering methods, such as
bilateral filters [7], nonlocal means filters [8], and guided
filters [9]; 2) model-based methods, such as total varia-
tion (TV) approaches [11], [12], nonlocal self-similarity (NSS)
models [13], and sparse dictionary learning models [14];
and 3) wavelet transform-based methods [10]. At that time,
the block matching 3-D filter (BM3D [15]) and the weighted
nuclear norm minimization (WMMN [16]) achieved the best
results. Nevertheless, these methods suffer from several draw-
backs: 1) these methods are usually implemented in an iterative
manner, which may lead to a huge amount of calculation and
low efficiency and 2) these methods usually use hand-designed
priors, such as sparsity [21] or NSS [14], which might be not
suitable for arbitrary natural images.

The other category of image denoising method aims to
solve the problem via learning the mapping function between
the noisy and clean images, such as MLP [20], sparse
coding [21], and deep learning-based methods [22]-[28].
Among them, deep learning-based methods achieve advanced
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Fig. 2. Results of different edge detectors acting on a noisy image (noise level: ¢ = 50). It is obvious that these edge detectors are extremely sensitive to

noise.

results with the blossom of deep convolutional neural net-
works (CNNs). The success of the CNN-based image denois-
ing method is attributed to its powerful feature extraction
capability and well-designed network structure. For instance,
the DnCNN [26] was proposed for the Gaussian image
denoising, which took advantage of batch normalization and
residual learning to achieve competitive denoising results. The
BM3D-Net [27] is a nonlocal-based network that introduced
BM3D into CNN by wavelet shrinkage. The FFDNet [28]
is a flexible denoising model that took the noise level map
and the noisy image as the inputs for image denoising,
which achieved the state-of-the-art results. Most of the afore-
mentioned CNN-based methods aim to learn the mapping
between clean and noisy images directly by minimizing the
loss function. However, it is difficult to learn accurate mapping
due to the information loss.

Reviewing previous methods, we find that plenty of works
have pointed out that making full use of image priors can effec-
tively improve the quality of the reconstructed images. Indeed,
some image priors have been proposed for image restoration,
such as TV prior, sparse prior, and edge prior. Among them,
the edge prior is one of the most effective and accessible pri-
ors. As an important component of image features, it has been
widely used in image reconstruction tasks [29]-[31]. Mean-
while, some studies introduced edges into the CNN model
to guide image reconstruction or enhance the reconstructed
image. For instance, Jiang et al. [32] proposed an edge-guided
recurrent residual network (DEGRRN) for single-image super-
resolution. Chupraphawan and Ratanamahatana [33] proposed
a deep CNN with edge feature (DCEF) for image denoising.
Both DEGRRN and DCEF first applied the off-the-shelf edge
detector (e.g., Sobel or Canny) on the degraded image to obtain
corresponding edge maps and then sent it to the network along
with the input image to reconstruct the final image. However,
this way seriously limits the model performance and may not
be suitable for image denoising. As shown in Fig. 2, existing
edge extractors are extremely sensitive to noise. This means
that it is difficult to extract clear edges from the noisy image.
Therefore, how to obtain accurate edges from the noisy image
and how to make full use of them to reconstruct high-quality
noise-free images are the focus of this work. To achieve
this, we propose an efficient multilevel edge features guided
network (MLEFGN) for image denoising. Especially, we first
build an edge reconstruction network (Edge-Net) to directly
predict clear edges from the noisy image. Then, the Edge-
Net is embedded as a part of the model to provide edge
priors, and a dual-path network is applied to extract the
image and edge features. Finally, a multilevel edge features

Edge-Net

Image Edge

Fig. 3. Principle of edge detection. The Edge-Net is used to reconstruct clear
image edges from the noisy image.

guidance mechanism is introduced to reconstruct the denoised
image.

In summary, the main contributions of this article are as

follows.

1) We propose a new edge guidance framework for image
denoising, which integrates edge detection, edge guid-
ance, and image denoising in an end-to-end model.

2) We propose an Edge-Net. Edge-Net is the first CNN
model that can directly reconstruct clear edges from the
noisy observation.

3) We propose an MLEFGN. MLEFGN is a well-designed
model that can make full use of edges predicted by the
Edge-Net to reconstruct high-quality noise-free images.

II. RELATED WORKS

Recently, plenty of image priors guidance methods have
been proposed for image reconstruction. Among them,
the edge-guided methods have achieved excellent performance
and received widespread attention. In this work, we aim to
propose a new edge guidance framework for image denoising.
Therefore, how to extract and utilize image edges are the focus
of this research.

A. Image Edge Detection

The points at which the brightness of an image changes
drastically are usually organized into a set of curve segments
called image edges. Image edges are the key components
of high-frequency details, which are widely used in image
recovery, analysis, and understanding. Therefore, extracting
clear and accurate image edges is important for image recon-
struction. Nowadays, many edge detectors have been designed,
such as Canny [34], Prewitt [35], Sobel, and Roberts operators.
However, all of these edge detectors are extremely sensitive to
noise (see Fig. 2) since these operators are designed for clear
images. Hence, it is difficult to obtain clear and accurate image
edges from the noisy image by directly using the existing
methods. To solve this problem, we intend to extract image
edges via the powerful modeling capabilities of CNN. As
shown in Fig. 3, we aim to build an Edge-Net to directly
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Fig. 4. Complete architecture of our proposed MLEFGN. The green, orange, sky blue, navy blue, and purple blocks represent the convolutional layer, DB,

RB, RG, and EdgeNet, respectively.

predict the clear and accurate image edges from the noisy
image.

B. Edge-Guided Image Reconstruction

In the past few decades, prior-guided image reconstruction
methods have received great attention. For example, the TV
prior [36], sparsity prior [14], and edge prior [37], [38] all
achieved significant results. Among them, edge prior is one
of the most effective and widely used priors since image
edges are the key components of high-frequency features.
Nowadays, many edge-guided methods have been proposed for
image reconstruction. For instance, Lu et al. [31] proposed an
edge-guided dual-modality image reconstruction method for
CT and MRI, which aimed to establish a knowledge-based
connection between these two different imaging modalities;
Canh et al. [30] proposed an edge-preserving weighting
scheme by utilizing the nonlocal structure and histogram of the
natural image in the gradient domain for compressive sensing
recovery; and Guo and Yin [29] proposed an edge-guided com-
pressive sensing reconstruction approach, which can recover
high-quality images from fewer measurements. Recently, some
studies introduced image edges into the CNN model to further
improve the quality of reconstructed images. For instance,
Yang et al. [39] proposed a DEGRRN for single image
superresolution (SISR); Liu er al. [68] presented a phase
congruency edge map guided multiscale deep encoder—decoder
network for SISR; and Chupraphawan and Ratanamahatana
[33] designed a DCEF for image denoising. All these methods
prove the importance and effectiveness of image edges for
image restoration. However, these deep learning-based meth-
ods also show some disadvantages.

1) It is difficult for them to obtain correct edges by directly
applying the off-the-shelf edge detector (e.g., Sobel,
Canny, and Prewitt) on the degraded image. This is
because existing edge detectors (whether binarized or
nonbinarized edge detector) are extremely sensitive to
other factors (e.g., noise and blur kernel), which makes
them not robust enough to detect correct edges from the
degraded images.

2) They directly add or concatenate the input image with
the extracted image edges and then send them to the

network for learning. This will greatly weaken the effect
of edges, thus inhibiting the model performance. To
solve these problems, we aim to explore a more robust
method that can extract correct edges from the degraded
image and fully use them.

III. MULTILEVEL EDGE FEATURES GUIDED NETWORK

The degradation model of image denoising can be formu-
lated as y = x + v, where y is the noisy image obtained
from the clear image x, and v is the additive white Gaussian
noise (AWGN). The goal of image denoising is to reconstruct
a clear image x from the noisy one y. Nowadays, CNN-based
image denoising methods convert this problem into a learning
problem, which aims to learn the mapping function between y
and x via a large number of training data sets. That is, given
a training data set {x', y'}* . we need to solve

R 1 < o

0 = argmin_ Z} 150 (") = 213 )
where Fy(-) and Fy(y") denote the model and the reconstructed
clear image, respectively. Meanwhile, § denotes the parameter
set of the model, and M represents the number of images in
the training data set.

Following previous works, we also consider this as a learn-
ing problem and propose an MLEFGN for image denoising.
As shown in Fig. 4, the MLEFGN can be divided into
three stages. In Stage-I, we build an efficient Edge-Net to
directly reconstruct clear and accurate image edges from
the noisy image. This is the core component of our model
and the basic condition for the edge-guided image denoising
strategy. In Stage-II, we apply a dual-path dense network to
extract image features and edge features, respectively. Finally,
we introduce a multilevel edge features guidance mechanism
to achieve the final denoised image reconstruction. We define
Inoisy and Iear as the input and output of the MLEFGN,
respectively. Therefore, the edge reconstruction in Stage-I can
be expressed as

Iédge = E(Inoisy) (2)

where E() denotes the Edge-Net and I, represents the
predicted image edges. Then, we construct a dual-path network
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for feature extraction in Stage-II. In each path, we use a
simplified version of dense block (DB) [40] and two residual
groups (RGs) to extract the corresponding features

fimage = FTop (Inoisy) (3)
fedge = FBottom (Ie/dge) (4)

where Frop(-) and Fpogom(+) denote the corresponding path
network, and fimaee and feqee represent the extracted image
low- and high-frequency (image edges) features, respectively.
Meanwhile, these two branches are independent of each other.
In order to make full use of image edges, we introduce an
edge guidance module to reconstruct the final denoised image
in Stage-III

Ic/lear = Fgom (fimage, fedge) 5)

where Frgm(-) denotes the edge guidance module and I]
represents the reconstructed denoised image.

MLEFGN is an end-to-end image denoising model that
embeds the Edge-Net as a part of the model to provide edge
priors. For this, we propose an edge preservation loss to fur-
ther improve the model performance. Different from previous
works that only learn the mapping between noisy and clear
images, we need to ensure the accuracy of the reconstructed
edges. Hence, given a training data set {1} .» Liear> Ligge}m1>
we need to solve

lear

oisy

i
clear Il

A R <
0= argrr})lnﬁ z ”F(Irioisy’ E(Irioisy)) -
i=1

+/1||E(Irioisy) - ffdge”l (6)

where 6 denotes the parameter set of our MLEFGN, 1 is a
hyperparameter, and E(-) and F(-) denote the Edge-Net and
MLEFGN, respectively.

MLEFGN is a well-designed edge-guided image denoising
model, which is the first CNN model that implements edge
detection, edge guidance, and image denoising in a single
network. It is worth noting that the Edge-Net is served as
a submodel of the MLEFGN, which is trained together with
the whole model in an end-to-end manner. Each component
of the model will be described in Sections III-A-III-C.

A. Stage-1: Edge Reconstruction

As aforementioned, using the off-the-shelf edge detectors is
difficult to reconstruct clear and accurate edges from the noisy
image since all of these edge detectors are sensitive to noise
(see Fig. 2). To address this problem, we propose an Edge-Net
to directly predict the clear and accurate image edges from the
noisy image via the powerful modeling capabilities of CNN.

As shown in Fig. 4, the purple block represents the Edge-
Net, which consists of two convolutional layers, two residual
blocks (RBs), and one DB. Among them, the convolutional
layers are used to change the spatial dimension of images,
and the residual and DBs are used to extract image features.
Fig. 5(a) and (c) shows the RB [41] and DB [40], respectively.
Different from the original RB, we remove the batch normal-
ization layers to speed up the model. As for DB, each layer in
the block is connected to every other layer in a feedforward
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Fig. 5. Architecture of (a) RB, (b) RG, and (c) DB.

fashion. Consequently, the pth layer receives feature maps of
all preceding layers (Xo, X1, ..., X,—1) as input

Xp:Hp([X();Xl;"'»Xp*l]) (7)
where [Xg, X1,..., X,_1] denotes the concatenation of fea-
ture maps produced in layers O,...,p — 1. Here, p < P,

and P represents the number of layers in the DB. Meanwhile,
H ), indicates the current convolutional layer, and X , represents
the output of this layer. Note that DBs are known for their
powerful feature extraction capabilities. However, this dense
connection mechanism will bring a large number of parame-
ters. To solve this issue, a 1 x 1 bottleneck layer is introduced at
the tail of the block to reduce model parameters. Furthermore,
we also introduce local residual learning to improve the
information flow and, thus, improve model performance.

In this stage, we aim to build an Edge-Net to learn the
mapping between the noisy image and its corresponding clear
edges; thus, we can directly reconstruct accurate edges from
the noisy image. However, we find it difficult to learn this
mapping directly. Therefore, we transform this problem into
a feature removal problem. Especially, we build a network to
learn how to eliminate low-frequency features and image noise
simultaneously so that the remaining features are the required
image edges. Define all convolutional layers in the Edge-Net
as R(-), and the operations of the Edge-Net can be rewritten
as

Iédge = E(Inoisy) = Inoisy - R(Inoisy) (8)

where Ig;,. denotes the predicted image edges. Meanwhile,
the edge loss of the Edge-Net can be defined as

Iedge ” 1 )

where Iqg is the clear edges detected on the clear image. The
easiest way to obtain Jeqg is to apply the existing edge detector
(e.g., Canny, Sobel, or Roberts) on a clear image. However,
these detectors use the binarization measurement to convert
all edge values to 0 and 1, which causes a lot of information
loss and the appearance of false edges. Meanwhile, we find
that these detectors are not robust enough to fit all images,
which hinders their widespread application. Therefore, we rec-
ommend retaining more edge information by eliminating the
binarization strategy. To achieve this, we propose a new

L:edge = ” Iédge -
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Fig. 6. Results of different edge detectors acting on a clear image. It is
obvious that our method can obtain more high-frequency details.

curvature formula for edge detection, which does not use the
binarization strategy

(10)

where u; = (Vi lejear/ (1 + |VIclear|2)l/2),i ={a,b}, and a
and b represent the horizontal and vertical directions, respec-
tively. Meanwhile, V and div(-) represent the gradient and
divergence operation, respectively. Compared with exist-
ing edge extractors, our curvature formula can accurately
describe the changes in the gradient regions and obtain more
high-frequency details (see Fig. 6); thus, we can get more
precise edges as our training labels. In this article, we use (10)
to obtain the label for training because of its simplicity
and feasibility. However, it is worth noting that (10) can be
replaced by any better edge detector. This means that one
can directly use other nonbinarized edge extraction methods
or achieve edge extraction by suppressing the binarization
operation of the off-the-shelf edge detector (e.g., Sobel, Canny,
and Prewitt).

Iedge = div(uaa ub)

B. Stage-II: Feature Extraction

To fully extract and utilize image and edge features, we con-
struct a dual-path network to extract the image and edge
features separately. In this stage, each path of the network
contains a DB and two RGs. Among them, the DB is used
to extract features, and RGs are used to further refine the
extracted features. As shown in Fig. 5, we use N RBs to form
an RG. However, we observe that simply stacking RB will
achieve suboptimal results. Therefore, we apply a long skip
connection for global residual learning, such as RCAN [42].
This strategy can ease the flow of information across RBs and
stabilize the model training. With the help of DB and RG,
abundant image and edge features can be extracted in this
stage. This is essential for the subsequent edge guidance and
high-quality denoised image reconstruction.

C. Stage-llI: Edge Guidance Image Denoising

In the previous stage, we have obtained plenty of image
and edge features. However, these two types of features are
independent of each other, which is not conducive to achieving
good results. The most widely used method is to directly fuse

or add the image and edge features to obtain the final image.
However, this method will lead to feature loss or conflict.
To solve this problem, we propose a multilevel guidance
mechanism. This strategy can make full use of different levels
of image and edge features to stimulate the potential of
edge guidance, which is conducive to reconstruct high-quality
denoised images.

In particular, image or edge features will gradually disap-
pear as the depth of the network increases. Therefore, only
using the final output from Stage-II to reconstruct the denoised
image is not the optimal method. In order to increase the
diversity of features, we also use the hierarchical image and
edge features. As shown in Fig. 4, the output of each module in
Stage-II is considered as a level; thus, all the extracted features
can be divided into three levels, and the ith level image and
edge features fusion can be defined as

i i
image edge

fiuse = (11)

where fi,.. and ;dge denote the image and edge feature maps
extracted in the ith level (i = 1, 2, 3), respectively. After that,
we can obtain three outputs fi ., fie.. and f3..

Since these outputs contain rich image and edge features,
how to make full use of them is essential for reconstruct-
ing high-quality denoised images. The easiest method is
directly concatenating these features and transferring them to
a clear image. However, we find this method cannot achieve
the best results and make the model difficult to converge.
To solve this problem, we design a simple inverted pyramid
module (IPM) for feature fusion and image reconstruction.
As shown in Fig. 4, this module is located at the tail of MLE-
FGN and consists of three RGs. All these features (f{ ., fies
and f3.) will be sent to the module, and the RG will be used
to concatenate and fuse the features in adjacent levels

IIlPM = FRIG([fﬁleea ff%l%e]) (12)
IIZPM = Fl%G([ffise’ ffise]) (13)
If:’M = F]%G([IILM7 IIZPM]) (14)

where [-] is the concatenation operation, FéG denotes the ith
RG, and I}, represents the corresponding output. Finally,
we use L; as the content loss to minimize the difference
between the denoised and clear images

»Ccontent = ”Ic,lear — Lclear Hl (15)
where 1. I3\, which represents the reconstructed

denoised image. Therefore, the total loss of MLEFGN can
be rewritten as

»Ctotal = »Ccoment + /I»Cedger (16)

Overall, we propose an MLEFGN for image denoising.
Especially, MLEFGN contains three stages, and all these
stages are closely combined and trained in an end-to-end
manner. This is the first image denoising model that integrates
edge detection, edge guidance, and image denoising at the
same time.
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TABLE I

PSNR (dB) RESULTS OF DIFFERENT IMAGE DENOISING METHODS ON GRAY-SCALE IMAGES (SET12) WITH NOISE LEVELS ¢ = 15, 25, 35, AND 50.
“AVERAGE” REPRESENTS THE AVERAGE RESULT OF THE DATA SET, AND THE BEST RESULTS ARE HIGHLIGHTED IN RED

| Tmages [ Cma | House | Peppers | Starfish [ Monarch | Airplane | Parror | Lena | Barbara | Boat | Man | Couple [[ Average |
Noise Level o=15
BM3D [15] 31.91 34.93 32.69 31.14 31.85 31.07 31.37 34.26 33.10 32.13 31.92 32.10 32.37
TNRD [43] 32.19 34.53 33.04 31.75 32.56 31.46 31.63 34.24 32.13 32.14 32.23 32.11 32.50
NLED?>< - [44] 32.28 34.76 33.10 31.75 32.71 31.59 31.70 34.35 32.53 32.16 32.22 32.13 32.61
WNNM [16] 32.17 35.13 32.99 31.82 32.71 31.39 31.62 34.27 33.60 32.27 32.11 32.17 32.70
IRCNN [45] 32.55 34.89 33.31 32.02 32.82 31.70 31.84 34.53 3243 32.34 32.40 32.40 32.77
DnCNN [26] 32.61 34.97 33.30 32.20 33.09 31.70 31.83 34.62 32.64 3242 32.46 32.47 32.86
FFDNet [28] 3242 35.01 33.10 32.02 32.77 31.58 31.77 34.63 32.50 32.35 32.40 32.45 32.75
ADNet [46] 32.81 35.22 3349 32.17 33.17 31.86 31.96 34.71 32.80 32.57 32.47 32.58 32.98
MLEFGN (Ours) 32.56 35.41 3342 32.29 33.44 31.82 31.90 34.80 33.05 32.60 32.51 32.67 33.04
Noise Level o=25
BM3D [15] 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.90 29.61 29.71 29.97
TNRD [43] 29.72 32.53 30.57 29.02 29.85 28.88 29.18 32.00 29.41 29.91 29.87 29.71 30.06
NLED?>< - [44] 29.75 32.81 30.66 29.09 30.03 28.99 29.29 32.18 30.11 29.90 29.86 29.74 30.18
WNNM [16] 29.64 32.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82 30.26
IRCNN [45] 30.08 33.06 30.88 29.27 30.09 29.12 29.47 3243 29.92 30.17 30.04 30.08 30.38
DnCNN [26] 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.10 30.12 30.43
FFDNet [28] 30.06 33.27 30.79 29.33 30.14 29.05 29.43 32.59 29.98 30.23 30.10 30.18 30.43
ADNet [46] 30.34 33.41 31.14 29.41 30.39 29.17 29.49 32.61 30.25 30.37 30.08 30.24 30.58
MLEFGN (Ours) 30.29 33.61 30.98 29.66 30.52 29.25 29.46 32.76 30.57 30.40 30.13 30.30 30.66
Noise Level o=35
BM3D [15] 27.92 31.36 28.51 26.86 27.58 26.83 27.40 30.56 28.98 28.43 28.22 28.15 28.40
MLP [20] 28.08 31.18 28.54 27.12 27.97 27.22 27.72 30.82 27.62 28.53 28.47 28.24 28.46
WNNM [16] 28.80 31.92 28.75 27.27 28.13 27.10 27.69 30.73 29.48 28.54 28.33 28.24 28.69
DnCNN [26] 28.61 31.61 29.14 27.53 28.51 27.52 27.94 3091 28.09 28.72 28.66 28.52 28.82
FFDNet [28] 28.54 31.99 29.18 27.58 28.54 27.47 28.02 31.20 28.29 28.82 28.70 28.68 28.92
MLEFGN (Ours) 28.78 32.47 29.37 27.77 28.70 27.62 28.03 31.36 29.09 29.00 28.79 28.88 29.15
Noise Level o=50
BM3D [15] 26.13 29.69 26.68 25.04 25.82 25.10 25.90 29.05 27.22 26.78 26.81 26.46 26.72
MLP [20] 26.37 29.64 26.68 25.43 26.26 25.56 26.12 29.32 25.24 27.03 27.06 26.67 26.78
TNRD [43] 26.62 29.48 27.10 25.42 26.31 25.59 26.16 28.93 25.70 26.94 26.98 26.50 26.81
WNNM [16] 26.45 30.33 26.95 25.44 26.32 25.42 26.14 29.25 27.79 26.97 26.94 26.64 27.05
IRCNN [45] 26.88 29.96 27.33 25.57 26.61 25.89 26.55 29.40 26.24 27.17 27.17 26.88 27.14
DnCNN [26] 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90 27.18
FFDNet [28] 27.03 30.43 27.43 25.77 26.88 25.90 26.58 29.68 26.48 27.32 27.30 27.07 27.32
ADNet [46] 27.31 30.59 27.69 25.70 26.90 25.88 26.56 29.59 26.64 27.35 27.17 27.07 27.37
MLEFGN (Ours) 27.15 31.00 27.63 25.77 27.01 26.05 26.56 29.85 27.37 27.40 27.32 27.35 27.54

IV. EXPERIMENTS
A. Data Sets

In this article, we choose the AWGN as our research object
due to its extensiveness and practicality. Therefore, we choose
Set12 [47], BSD68 [48], Kodak24 [49], CBSD68 [50], and
Urban100 [51] with different AWGN noise levels as our test
data sets. Following the previous works [26], [28], we use
Set12, BSD68, and Urbanl00 to evaluate the performance
of MLEFGN on gray-scale images and CBSD68, Kodak24,
and Urbanl00 to test its performance on color images. It is
well-known that real noise images are more complicated than
simulated images. In order to further verify the effective-
ness and robustness of MLEFGN, we utilize RNI6 [52] and
RNI15 [53] to test the ability of MLEFGN for real noise
removing. Both of them have no ground truth; thus, we can
use it to test our model performance with unknown noise mode
and level.

B. Implementation Details

1) Training Setting: Before training, we first apply (10) on
the training data set to obtain their corresponding clear image
edges. Then, we generate noisy images by adding AWGN with
different noise levels. To verify the effectiveness of the model,
we set noise level o = 15,25, 35,50, and 75 for gray-scale
images and ¢ = 10, 30, 50, and 70 for color images. During
training, we randomly choose 16 noisy patches with the size

of § xS (S = 96 for gray-scale images and S = 64 for
color images) as inputs, and the learning rate is initialized as
10~*. In addition, MLEFGN is implemented with the PyTorch
framework and updated with the Adam optimizer.

2) Model Setting: In this article, we propose an MLEFGN
for image denoising. In order to achieve an end-to-end manner,
the Edge-Net is embedded as a part of the MLEFGN to provide
image edge priors. Meanwhile, we set 4 = 0.5 to control the
proportion of L4 according to plenty of experiments. In the
final model, each RG contains five (N = 5) RBs, each DB
contains eight (P = 8) convolutional layers, and each layer
contains 64 (C = 64) channels. Meanwhile, the kernel sizes
of all the convolutional layers are all set as 3 x 3 except for
the bottleneck layer, whose kernel size is 1 x 1.

C. Comparisons With State-of-the-Art Methods

In order to verify the effectiveness of MLEFGN, we com-
pare MLEFGN with more than 14 image denoising methods,
including EPLL [54], BM3D [15], MLP [20], RED [56],
MemNet [57], TNRD [43], NLEDS , [44], NN3D [58],
WNNM [16], IRCNN [45], DnCNN [26], FFDNet [28],
ADNet [46], and N3Net [55]. All denoised images are
evaluated with PSNR. Due to page limitations, we only
provide a part of the results; more results can be found on
our homepage.

1) PSNR Results on Gray-Scale Images: In Tables I, II,
and III, we report the average PSNR results of different
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33.06 / 0.8599

20.40 / 0.1340
Noisy Image

29.00 /7 0.8638
DnCNN [26]

Fig. 7.

TABLE II

AVERAGE PSNR (dB) RESULTS OF DIFFERENT IMAGE DENOISING
METHODS ON GRAY-SCALE IMAGES (BSD68) WITH
NOISE LEVELS 0 = 15, 25, 35, AND 50

BM3D [15] 31.08 28.57 27.08 25.62
EPLL [54] 3121 28.68 27.16 25.67
WNNM [16] 31.37 28.83 2730 25.87
TNRD [43] 3142 28.92 N/A 2597
NLEDS . [44] 31.43 28.93 N/A N/A
MLP [20] 31.50 28.96 27.50 26.03
DnCNN [26] 3173 29.23 27.69 26.23
FFDNet [28] 31.63 29.19 27.73 26.29
ADNet [46] 3174 29.25 N/A 26.29
N°Net [55] N/A 29.30 N/A 26.39
MLEFGN (Ours) 3181 29.34 27.85 26.39
TABLE III

AVERAGE PSNR (dB) RESULTS OF DIFFERENT IMAGE DENOISING
METHODS ON GRAY-SCALE IMAGES (URBAN100) WITH
NOISE LEVELS ¢ = 15, 25, AND 50

TNRD [43 31.08 29.29 25.71
BM3D [15 3234 29.70 25.94
IRCNN [45] 32.49 29.82 26.14
DnCNN [26] 32.63 29.97 26.28
NN3D [58] N/A 30.09 2647
FFDNet [28] 32.42 29.92 2652
N3Net [55] N/A 30.19 26.82
WNNM [16] 32.97 30.39 26.83

MLEFGN (Ours) 3321 30.64 27.22

image denoising methods on Setl2 [47], BSD68 [48], and
Urban100 [51] with noise level ¢ = 15, 25, 35, and
50, respectively. Meanwhile, we provide detailed results of
each image in Setl2 to compare these methods in Table I
more intuitively. Among them, BM3D and WNNM are two
representative model-based methods based on nonlocal self-
similarity, DnCNN, FFDNet, and N3Net are the most classic
and famous CNN-based methods, and ADNet and NLEDS, ,
are the latest methods proposed in 2020. According to these
tables, we can clearly observe that our MLEFGN achieves

33.27 / 0.8624

33.61 / 0.8659

PSNR / SSIM

29.12 / 0.8704
MLEFGN (Ours)

28.91 /7 0.8640
FFDNet [28]

PSNR / SSIM
Ground Truth

Visual comparison of MLEFGN with DnCNN [26] and FFDNet [28] on gray-scale images (noise level: o = 25).

the best results on all data sets. Compared with the classic
CNN-based denoising method (e.g., DnCNN and FFDNet),
the performance of MLEFGN has been significantly improved.
In addition, the results of our MLEFGN are slightly better than
N3Net on BSD68. It is worth noting that MLEFGN achieves
excellent performance on Urban100, which is 0.4 dB higher
than N3Net. This is because Urban100 contains 100 images
of natural buildings with obvious object edges. With the help
of Edge-Net, our MLEFGN can better reconstruct them. All
these results demonstrate the powerful denoising ability of
MLEFGN on image gray-scale images.

2) PSNR Results on Color Images: As for color image
denoising, we employ three data sets, namely, Kodak24 [49],
CBSD68 [50], and Urban100 [51]. Among them, CBSD68 is
the corresponding color version of the gray-scale BSD68 data-
base. In Table IV, we provide the average results of different
image denoise methods on these three data sets. Different from
gray-scale images, we choose noise level ¢ = 10, 30, 50, and
70 for color images. The purpose is to increase the number of
noise levels to better test the performance and generalization
of MLEFGN. It is obvious that our MLEFGN achieves the
best results on all data sets. This further demonstrates the
effectiveness and robustness of MLEFGN, which can achieve
excellent performance in different color spaces, noise levels,
and data sets.

3) Visual Comparisons: In Figs. 7 and 8, we provide the
visual results of the denoised images with noise levels 25 and
50. In this part, we choose two of the most representa-
tive CNN-based image denoising methods: DnCNN [26] and
FFDNet [28] for comparison. DnCNN and FFDNet achieve
competitive results in image denoising, which remains the
two most widely used methods. However, we find that they
are not perfect in processing image details, especially on
textures and edges. As shown in Fig. 7, we can observe that
the denoised images produced by DnCNN and FFDNet still
contain noise and artifacts. For example, there are a lot of
noises and artifacts under the eaves, and the face is blurred and
unclear. In contrast, our MLEFGN can reconstruct high-quality
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TABLE IV

AVERAGE PSNR (dB) RESULTS OF DIFFERENT IMAGE DENOISING METHODS ON COLOR IMAGES (KODAK24[49], CBSD68 [50], AND URBAN100 [51])
WITH NOISE LEVELS ¢ = 10, 30, 50, AND 70. BEST RESULTS ARE HIGHLIGHTED IN RED COLOR

[ Method ] Kodak24 [49] [ CBSD68 [50] [ Urban100 [51] |
Noise Level o=10 =30 =50 =70 o=10 o=30 o=50 o=70 o=10 =30 =50 o=70
TNRD [43] 3433 28.83 27.17 24.94 33.36 27.64 25.96 23.83 33.60 27.40 25.52 22.63

RED [56] 3491 2971 27.62 26.36 33.89 28.46 26.35 25.08 3459 29.02 26.40 24774
MemNet [57] N/A 29.67 27.65 26.40 N/A 2839 26.33 25.08 N/A 2893 26.53 2493
CBM3D [13] 36.57 30.89 28.63 2727 3591 29.73 2738 26.00 36.00 30.36 27.94 2631
IRCNN [45] 36.70 31.24 2893 N/A 36.06 30.22 27.86 N/A 26.53 30.28 27.69 N/A
DnCNN [26] 36.98 31.39 29.16 27.64 36.31 30.40 28.01 26.56 36.21 30.28 28.16 26.17
FFDNet [28] 36.81 31.39 29.10 27.68 36.14 30.31 27.96 26.53 35.77 30.53 28.05 26.39

MLEEGN (Ours) 37.04 31.67 29.38 27.94 36.37 30.56 2821 26.75 36.42 31.32 28.92 27.28

15.24 7 0.2881
Noisy Image

25.56 1 0.7723
DnCNN [26]

Fig. 8.

images with clear textures and edges. In Fig. 8, we show the
reconstruction images with noise level ¢ = 50. We can clearly
see that the input images have been seriously polluted, and
the edges reconstructed by DNCNN and FFDNet have been
severely damaged. However, with the help of edge priors, our
MLEFGN can reconstruct clear and accurate image edges.

All the aforementioned experiments fully demonstrate the
excellent denoising ability of the MLEFGN in both gray-scale
and color images. This improvement is mainly due to: 1) the
introduced edge priors can effectively protect the image edges
from damage, thereby rebuilding sharp and accurate image
edges; 2) the well-designed dual-path network can extract the
image and edge features effectively; and 3) the introduced
multilevel edge features guidance mechanism can maximize
the use of image edges to reconstruct the final denoised
images.

V. INVESTIGATION
A. Compare With Previous Edge Guidance Methods

Image edges are the key components of high-frequency
details. Therefore, many researchers introduced it to their
methods for image reconstruction. Among them, we found
a denoising method that introduces image edges into the
CNN model, named DCEF [33]. DCEF was proposed by

27.07 / 0.7365

27.35 /1 0.7535

PSNR

/ SSIM

25.75 /1 0.7830
FFDNet [28]

25.98 / 0.7977
MLEFGN (Ours)

PSNR / SSIM
Ground Truth

Visual comparison of MLEFGN with DnCNN [26] and FFDNet [28] on gray-scale images (noise level: o = 50).

TABLE V
PSNR (dB) COMPARISON WITH DCEF ON SET12 AND BSD68
[ Duwes | Seii2 | SO |
Noisy Level o=15 o=25 o=50 o=15 =25 o=50
DCEF 32.65 33.33 26.92 31.50 29.14 26.05
MLEFGN (Ours) 33.04 33.66 27.54 31.81 29.34 26.39

Chupraphawan et al. in 2019, and the method can be divided
into three steps: 1) extracting image edges from the noisy
input using the Canny detector; 2) adding the noisy image
and the extracted edges to obtain the new input; and 3)
building a CNN model to reconstruct the final denoised image.
Different from this method, we aim to explore a new edge
guidance framework that can extract accurate image edges and
effectively use image edges. In Table V, we show the average
PSNR comparison between these two methods. It is obvious
that the performance of MLEFGN has been significantly
improved. Furthermore, we can observe that as the noise
level increases, the PSNR gap gradually increases. This is
because as the noise level increases, the image edges are
deteriorated, making the edge priors become more important.
With the powerful modeling capabilities of CNN, the Edge-
Net can directly reconstruct sharp edges from the noisy image.
Therefore, we can reconstruct high-quality denoised images.
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Clear Image

Noise, MSE = 2165.70

DnCNN, MSE = 155.31 FFDNet, MSE = 146.36 MLEFGN (Ours), MSE = 119.01

Fig. 9. Recovery performance comparison (noise level: ¢ = 50). Please
zoom in to view details.

B. Image Region Exploration

The image region can be divided into smooth, edges, and
texture [59], [60]. Among them, the smooth region is the
easiest region to reconstruct, and edge guidance methods
will bring better quality to edge region. However, its good
preservation of texture is still challenging as small textural
variation cannot be well differentiated from noise [59], [61].
In Figs. 7 and 8, we have provided a visual comparison of
the denoised images. In this part, we will further explore the
reconstruction effect of each region of the image.

1) In Fig. 9, we show the mean squared error (mse) map
of the reconstructed image. In the mse map, the bluer
the pixel, the smaller the mse error, and the better
the reconstruct result. According to the figure, we can
observe that DnCNN, FFDNet, and our MLEFGN can
effectively protect the texture. However, after zooming
in, we can see that there are fewer bright areas in
MLEFGN’s mse map, which means that MLEFGN can
reconstruct higher quality denoised images.

2) In Fig. 10, we provide detailed visualization results of
the image region, including smooth, edges, and texture.
It is obvious that all regions of the noisy image were
severely damaged. With the help of CNN’s powerful
modeling capabilities, DnCNN and FFDNet can recover
images details to a certain extent. However, a closer
inspection of both denoised results reveals that there is
still a bit of noise in the smooth region, some flaw in the
edge region, and a lot of artifacts in the texture region.
In contrast, MLEFGN shows excellent performance in
all of these regions.

C. Effectiveness on High Noise Level

High-noise-level image denoising is still a challenging task
since noise will severely damage images. To further explore
the denoising capabilities of MLEFGN at high noise levels,
we provide PSNR and visual comparisons on gray-scale
images with noise ¢ = 75. In Table VI, we provide the average
PSNR on Setl2 and BSD68. Combining with Tables I and II,
we can find the following phenomena.

Smooth

Edges

Ground Truth

Texture

FFDNet

Noisy DnCNN MLEFGN (Ours)

Image region visualization (noise level: ¢ = 50).

Fig. 11.

Visual comparison on gray-scale images (noise level: ¢ = 75).
Top to bottom: noisy image, denoised images by BM3D, denoised images by
FFDNet, denoised images by MLEFGN (ours), and the ground truth.

TABLE VI
PSNR COMPARISON ON GRAY-SCALE IMAGES (NOISE LEVEL: ¢ = 75)

[ Noise Level 0=75

BM3D DnCNN FFDNet MLEFGN (Ours)
Setl2 2491 25.20 25.49 25.69
[ BSD68 [ 2421 24.64 24.79 24.85

1) The PSNR gap between BM3D and CNN-based meth-
ods (DnCNN, FFDNet, and MLEFGN) further increases
under a high noise level.

2) At relatively low noise levels, the performance of
DnCNN is comparable to FFDNet or even better than it.
However, as the noise level increases, the performance
of FFDNet is better than DnCNN.

3) The performance of MLEFGN is better than FFDNet
whether at low or high noise levels.

In Fig. 11, we show the visual comparison at high noise
level ¢ = 75. It is obvious that the content in the input
image has been severely damaged, making it difficult for
even humans to recognize. Although BM3D and FFDNet
can effectively remove noise, we found that the denoised
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Eq. (10) Edge-Net (Ours) Ground Truth

Fig. 12. Visual comparison of image edges extracted by different methods. Noise levels of gray-scale and color images are set to ¢ = 75 and 50, respectively.

image contains a lot of artifacts, and the details (edges and
texture) have been destroyed. In contrast, the denoised images
reconstructed by our MLEFGN achieve an excellent visual
effect, which has clear and accurate edges. This is because
high-noise image denoising has stricter requirements on model
performance. With the help of edge priors, MLEFGN can
reconstruct high-quality denoised images even under high
noise levels. However, it is worth noting that the smoothing
effect and some incorrect regions can also be observed in our
results. This might be caused by the loss of information and
incorrect edge guidance. Contaminated by high-level noise,
a lot of information in the image will be lost. This is still a
great challenge for Edge-Net to reconstruct the correct edges.
Fortunately, our results are better than existing methods, both
in PSNR and visual effects. In future work, we will pay
more attention to the high-noise-level image denoising task
and commit to proposing a more effective edge reconstruction
model and image denoising model.

VI. ABLATION STUDY

In this article, we propose an MLEFGN for image denois-
ing. In order to study the effectiveness of the proposed method,
we provide a series of ablation studies in this section.

A. Study of the Edge-Net

Edge-Net is the key component of MLEFGN, which is
designed to extract clear and accurate edges directly from the
noisy one. Due to its uniqueness and completeness, it can
work independently or be embedded in any denoising model
to provide image priors. To further explore its performance,
we design the following experiments.

1) We train an independent Edge-Net to verify its ability to
extract edges from the noisy image. As shown in Fig. 12,
we provide some edge results extracted by classical edge
detectors, including Sobel, Prewitt, Canny, curvature
formula (10), and our Edge-Net. It is obvious that
all these edge operators are sensitive to noise, so it
is difficult to extract clear and accurate edges from
the noisy image. In addition, our proposed curvature
formula (10) is also sensitive to noise although it can
obtain more high-frequency details from the clear image.

Fig. 13.

2)

3)

MLN

Visual comparison of MLN and MLEFGN (noise level: ¢ = 75).

Therefore, we build an Edge-Net instead of using them
directly to extract image edges. According to this figure,
we can clearly observe that with the powerful model-
ing capabilities of CNN, our Edge-Net can reconstruct
clear and accurate image edges. Compared with other
methods, image edges reconstructed by the Edge-Net
are amazing. This fully illustrates the effectiveness of
Edge-Net in edge extraction.

Edge-guided image restoration methods have received
increasing attention in the past few decades. In this work,
Edge-Net serves as a part of MLEFGN to provide edge
priors to reconstruct high-quality denoised images. In
order to verify the effect of the edge priors provided
by the Edge-Net, we build a new model named the
multilevel network (MLN). MLN uses the framework of
MLEFGN as the backbone and removes the Edge-Net in
the new network. Therefore, both paths of the network in
MLN receive the same noise image as input. In Fig. 13,
we show the visual comparison of MLN and MLEFGN
at noise level ¢ = 75. It is obvious that the edges of the
denoised image reconstructed by MLN have been dam-
aged. This is because the edges in the input image have
been severely damaged, so it is difficult for the network
to recover them. Contrarily, the introduced Edge-Net can
effectively predict and reconstruct clear edges, so our
MLEFGN can rebuild more accurate images than MLN.
This further demonstrates the importance and effective-
ness of the edge priors provided by the Edge-Net.

All the aforementioned experiments demonstrate the
effectiveness of the edge guidance mechanism. In this
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Impact of different edges on model performance (Setl2, Noise Level=50)
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Fig. 14. Study of different edge detectors on Setl2 (noise level: ¢ = 50).

Sobel MLEFGN (Ours)

Visual comparison of the denoised images with ¢ = 50.

Canny

Fig. 15.

part, we will explore the impact of edges extracted
by different edge detectors on model performance. To
achieve this, we build a simplified version of MLEFGN.
Different from the original MLEFGN, we set N = 2,
P =4, and C = 32 in this model in order to reduce
training time. Then, we replace the Edge-Net with the
edges extracted by different edge operators, e.g., Prewitt,
Sobel, and Canny. This means that the Edge-Net will
not exist in the model; thus, the DBs in the dual-path
network will directly receive the noisy image and the
extracted edges as input. Meanwhile, in order to show
the effect of edge guidance, we also provide the results
of MLN mentioned in Section VI-A [2)]. In Fig. 14,
we provide the PSNR results of the reconstructed images
guided by these edge detectors. According to the figure,
we draw the following conclusions: 1) model perfor-
mance will be affected by the quality of the extracted
edges; 2) the higher the quality of the edges, the better
the model performance; 3) effective edges can improve
model performance, while incorrect edges will reduce
model performance (Roberts) due to the remained noise
and false edges; and 4) with the guidance of edges
provided by the Edge-Net, the model achieves the best
results. In addition, Fig. 15 shows the visual comparison
of the denoised images reconstructed by these models. It
is obvious that although other models also achieve good
PSNR results, the reconstructed denoised images still
contain a lot of artifacts and wrong edges. In contrast,
our MLEFGN can reconstruct high-quality denoised
images with sharp edges and accurate textures.

All the aforementioned experiments prove the effectiveness
of the proposed Edge-Net. Meanwhile, these ablation studies

11

Study of Residual Group (RG) on Kodak24, Noise Level=30
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Fig. 16. Study of RG on Kodak24 (noise level: ¢ = 30). Weset N = 1,3, 5,

and 8 in each RG, respectively.

Study of Multi-level Edge Features Guided Mechanism on Set12, Noise Level=75
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Fig. 17.  Study of the multilevel guidance mechanism (noise level: ¢ = 75).

indicate that the quality of edges and edge guidance mecha-
nisms are extremely important in image denoising.

B. Study of the Residual Group

As shown in Fig. 4, in Stage-Il and Stage-III, we use
the RGs for feature extraction and fusion, respectively. RG
is an efficient module, which contains N RBs. In order to
explore the impact of different numbers of RBs on model
performance, we design this ablation experiment. As shown
in Fig. 16, we can clearly observe that as N increases,
the model performance can be further improved. This means
that the performance of MLEFGN can be further improved.
However, the purpose of this research is not to purely pursue
model performance but to provide a new edge guidance
framework for image denoising. Therefore, we set N = 5
in the final model to achieve a good balance between model
size and performance.

C. Study of the Multilevel Guidance Mechanism

In order to make full use of different levels of image and
edge features, we propose a multilevel guidance mechanism
in Stage-III. In this part, we aim to explore the effectiveness
of this mechanism. To achieve this, we build a new model
named edge features guided network (EFGN). EFGN is the
modified version of MLEFGN, which makes the following
changes: 1) only the last level of image and edge features is
fused (f,. = i?nage + eSdge); 2) the IPM is decomposed and
moved to the end of the model to ensure that the parameters
of the two models are consistent; and 3) the recombined IPM
takes f7 . as input to reconstruct the final denoised image.
In Fig. 17, we provide the performance changes of these two
models during training. It is obvious that the curve of our
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Fig. 18. Real image denoising. Top to bottom: noisy images, denoised images
by DnCNN-B, denoised images by FFDNet, and denoised images by our
MLEFGN. We set ¢ = 15 and ¢ = 50 for gray-scale and color images in
MLEFGN, respectively. Please zoom in to view details.

MLEFGN (orange line) grows steadily as the training epoch
increases. However, the curve of EFGN (blue line) fluctuates
seriously, which is difficult to converge. This demonstrates that
the introduced multilevel guidance mechanism and IPM can
make the fusion of image and edge features more stable so
that edge guidance can be fully realized. Therefore, we can
draw the conclusion that the proposed multilevel guidance
mechanism is effective.

VII. DISCUSSION
A. Exploring on Real Images

Real image noise comes from multiple sources, such as
camera imaging pipelines (shot noise, amplifier noise, and
quantization noise), scanning, and lossy compression. Mean-
while, all these noises are usually nonuniform and non-
Gaussian. Therefore, the task of real image denoising is
more difficult. In this part, real noisy images are used to
further assess the practicability of our MLEFGN. Accordingly,
we choose RN6 and RN15 as the test data sets, which all
have no ground truth. Therefore, the performance only can be
evaluated by visual comparison. We choose DnCNN-B and
FFDNet for comparison because they are widely accepted as
the benchmark for image denoising. In Fig. 18, we provide
a visual comparison of these methods. It is obvious that the
results of MLEFGN are better than DnCNN-B and close to
FFDNet. It is worth noting that MLEFGN is not a blind
denoising model; thus, we set ¢ = 15 and ¢ = 50 for
gray-scale and color images, respectively. The choice of noise
levels is based on our rough estimation. Different from MLE-
FGN, DnCNN-B is a blind Gaussian denoising model that
sets the range of noise levels to ¢ € [0,55], and FFDNet
adopts an interactive strategy to handle real noisy images.
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TABLE VII

ACCURACY COMPARISON OF TRAINING AND TESTING
DATA SETS IN DIFFERENT MODES

Lrain Noisy image Clear image
Test
Noisy image 83.50% 50.73%
Clear image 56.85% 91.81%

These are all good strategies for blind image denoising, which
can also be introduced into our model to further improve
the capability of real image denoising. Recently, some blind
or real image denoising models have been proposed, e.g.,
RIDNet [62], CBDNet [63], and VDNNet [64]. These methods
usually use real images as training data sets or introduce
specific learning strategies, which can also be introduced
in toto our model. As discussed in SRRFN [65], the works
on simulating degradation models are still meaningful, and an
efficient network or framework is also crucial. In future works,
we will further explore the performance of our proposed edge
guidance framework on real image denoising.

B. Exploring on High-Level Task

The quality of the denoised images will influence the
performance of high-level computer vision tasks, such as
image classification and segmentation. In this part, we aim
to build a classifier to test the classification accuracy of clean,
noisy, and denoised images. Especially, we use the VGG [66]
model as our classifier and choose the 102 category flower
data set [67] as the data set. First, we divide the data set
into train and fest parts. Then, we apply AWGN with noise
level 0 = 50 on them to obtain train_noise and test_noise,
respectively. Finally, we use them to train the VGG classifier
and test their classification accuracy. In Table VII, we pro-
vide accuracy results. According to the table, we can draw
the following conclusions: 1) the model can achieve better
results when the train and test data sets have the same data
distribution and 2) the model achieves the best results when
both the train and test data sets are clear images. Therefore,
we hope to get clear enough images for image classification.
However, the collected images are often accompanied by a
lot of noise, which will seriously reduce the classification
accuracy. In order to verify that image denoising can improve
classification accuracy, we design two sets of experiments:
1) the model trained on clear images and tested on noisy
images or the denoised images reconstructed by different
denoising methods (ADNet, DNCNN, and our MLEFGN) and
2) the model trained on noisy images or the denoised images
and tested on clear images. The accuracy results are presented
in Fig. 19(a) and (b), respectively. It is obvious that using
the denoised images reconstructed by MLEFGN for training
or testing, we can get 72% accuracy, which is nearly 20%
higher than the noise images and 10% higher than ADNet
and DnCNN. This is a huge improvement, reflecting the
fact that MLEFGN can reconstruct clearer images than other
denoising methods. Although MLEFGN achieves better results
than other methods, we should notice that the classification
accuracy is still much lower than clear images (91%). This is
because: 1) ¢ = 50 is a relatively high noise level, and it will
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Exploring on Image Classification Exploring on Image Classification
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Fig. 19. Exploration on image classification (AWGN, noise level: ¢ = 50).
Model is trained on (a) clear images and tested on different mode data and
(b) different mode data and tested on clear images.

Study on lamda

PSR (dB)
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Fig. 20. Study of 4. When 4 = 0.5, the model achieves the best results.

seriously destroy the content of the image so that reconstruct
clear and accurate images is a difficult task and 2) the data set
itself contains some real noise, making the denoising task more
difficult. Unquestionably, the performance of current denoising
methods can be further improved. In future work, we will
combine the feedback from high-level tasks (e.g., image
classification and image segmentation) to further improve the
denoising effect.

C. Exploring the Hyperparameter 1

The total loss of MLEFGN consists of two parts, a content
loss, and an edge loss. Among them, we introduce the hyper-
parameter A to control the proportion of the edge loss. If 1 is
too small, it is difficult to play the role of edge guidance.
In contrast, if A is too big, the reconstructed images will
be over-sharpened. In order to found a better A, we design
an ablation study in Fig. 20. It is obvious that MLEFGN
is robust to the choice of A, and the model achieves the
best performance when 4 = 0.5. Although it has achieved
good results, we believe that there exists a better 1 that
can further improve our model. We intend to introduce the
dynamic learning strategy to achieve automatic learning of A,
thereby solving this problem.

VIII. CONCLUSION

In this article, we proposed an MLEFGN for image denois-
ing, which can reconstruct high-quality denoised images with
clear and sharp edges. MLEFGN is a new edge guidance
framework that integrates edge detection, edge guidance, and
image denoising in an end-to-end model. To achieve this,
we proposed an Edge-Net to provide edge priors and build
a dual-path network to extract the image and edge features. In
addition, we introduced the multilevel guidance mechanism to
make full use of edge features. Extensive experiments show
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that our MLEFGN achieves competitive results on AWGN and
real noisy image denoising tasks. Although the current model
and strategy have achieved great results, further improvements
can be made at high noise levels. In the future, we will
explore a better edge extraction method and guidance strategy
to further improve model performance. Meanwhile, we will
verify the effectiveness of the edge guidance mechanism in
other image restoration tasks, such as image dehazing, image
deblurring, and image enhancement.
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