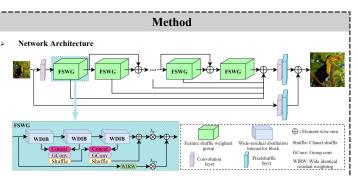
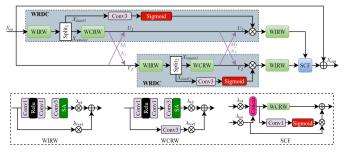


## Feature Distillation Interaction Weighting Network for Lightweight Image Super-Resolution

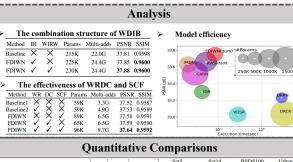
Guangwei Gao<sup>1†</sup>, Wenjie Li<sup>1†</sup>, Juncheng Li<sup>2\*</sup>, Fei Wu<sup>1</sup>, Huimin Lu<sup>3</sup>, Yi Yu<sup>4</sup> <sup>1</sup>Nanjing University of Posts and Telecommunications <sup>2</sup> The Chinese University of Hong Kong <sup>3</sup>Kyushu Institute of Technology <sup>4</sup>National Institute of Informatics


### Background

SR aims to reconstruct a high-resolution (HR) image from a low-resolution (LR) image. However, most existing SR models are often accompanied by a large number of model parameters and large calculation costs, which limits their applications on mobile devices.


- We aim to explore a lightweight and efficient SR model.
- We aim to solve the problem of how to make full use of intermediate features.

#### Contributions


- We propose a wide-residual attention weighting unit for lightweight SISR, which has stronger feature distillation capabilities than ordinary residual blocks.
- We propose a novel Self-Calibration Fusion module to replace the traditional concatenate operation for efficient feature interaction and fusion, which can aggregate more representative features and self-calibrate the input and output features.
- We propose a Wide-Residual Distillation Connection framework, which connects the coarse and distilled fine features within the module and allows features from different scales to interact with each other.
- We design a Feature Shuffle Weighted Group for pairwise feature fusion, which consists of interactional WDIBs. Meanwhile, it serves as a basic component of our proposed model.



#### > Wide-residual Distillation Interaction Block



# Combination Coefficient Learning > Shuffle Attention



| -                                   |            |        |            |       |        |       |        |         |        |          |        |
|-------------------------------------|------------|--------|------------|-------|--------|-------|--------|---------|--------|----------|--------|
|                                     |            |        |            | Set5  |        | Set14 |        | BSDS100 |        | Urban100 |        |
| Algorithm                           | Scale      | Params | Multi-adds | PSNR  | SSIM   | PSNR  | SSIM   | PSNR    | SSIM   | PSNR     | SSIM   |
| SRCNN (Dong et al. 2015)            |            | 57K    | 52.7G      | 32.75 | 0.9090 | 29.30 | 0.8215 | 28.41   | 0.7863 | 26.24    | 0.7889 |
| FSRCNN (Dong, Loy, and Tang 2016)   |            | 12K    | 5.0G       | 33.16 | 0.9140 | 29.43 | 0.8242 |         | 0.7910 | 26.43    | 0.8080 |
| VDSR (Kim, Lee, and Lee 2016a)      |            | 665K   | 612.6G     | 33.67 | 0.9210 | 29.78 | 0.8320 | 28.83   | 0.7990 | 27.14    | 0.8290 |
| DRCN (Kim, Lee, and Lee 2016b)      |            | 1774K  | 17974.3G   | 33.82 | 0.9226 | 29.76 | 0.8311 | 28.80   | 0.7963 | 27.15    | 0.8276 |
| IDN (Hui, Wang, and Gao 2018)       |            | 590K   | 105.6G     | 34.11 | 0.9253 | 29.99 | 0.8354 | 28.95   | 0.8013 | 27.42    | 0.8359 |
| CARN-M (Ahn, Kang, and Sohn 2018)   |            | 412K   | 46.1G      | 33.99 | 0.9236 | 30.08 | 0.8367 | 28.91   | 0.8000 | 27.55    | 0.8385 |
| CARN (Ahn, Kang, and Sohn 2018)     |            | 1592K  | 118.8G     | 34.29 | 0.9255 | 30.29 | 0.8407 | 29.06   | 0.8034 | 28.06    | 0.8493 |
| IMDN (Hui et al. 2019)              | ×3         | 703K   | 71.5G      | 34.36 | 0.9270 | 30.32 | 0.8417 | 29.09   | 0.8046 | 28.17    | 0.8519 |
| AWSRN-M (Wang, Li, and Shi 2019)    |            | 1143K  | 116.6G     | 34.42 | 0.9275 | 30.32 | 0.8419 | 29.13   | 0.8059 | 28.26    | 0.8545 |
| MADNet (Lan et al. 2020)            |            | 930K   | 88.4G      | 34.16 | 0.9253 | 30.21 | 0.8398 | 28.98   | 0.8023 | 27.77    | 0.8439 |
| RFDN (Liu, Tang, and Wu 2020)       |            | 541K   | 55.4G      | 34.41 | 0.9273 | 30.34 | 0.8420 | 29.09   | 0.8050 | 28.21    | 0.8525 |
| MAFFSRN (Muqeet et al. 2020)        |            | 418K   | 34.2G      | 34.32 |        | 30.35 | 0.8429 | 29.09   | 0.8052 | 28.13    | 0.8521 |
| LAPAR-A (Li et al. 2021)            |            | 594K   | 114G       | 34.36 | 0.9267 | 30.34 | 0.8421 | 29.11   | 0.8054 | 28.15    | 0.8523 |
| FDIWN-M(Ours)                       |            | 446K   | 35.9 G     | 34.46 | 0.9274 | 30.35 | 0.8423 | 29.10   | 0.8051 | 28.16    | 0.8528 |
| FDIWN(Ours)                         |            | 645K   | 51.5G      | 34.52 | 0.9281 | 30.42 | 0.8438 | 29.14   | 0.8065 | 28.36    | 0.8567 |
| SRCNN (Dong et al. 2015)            |            | 57K    | 52.7G      | 30.48 | 0.8628 | 27.49 | 0.7503 | 26.90   | 0.7101 | 24.52    | 0.7221 |
| FSRCNN (Dong, Loy, and Tang 2016)   |            | 12K    | 4.6G       | 30.71 | 0.8657 | 27.59 | 0.7535 | 26.98   | 0.7150 | 24.62    | 0.7280 |
| VDSR (Kim, Lee, and Lee 2016a)      |            | 665K   | 612.6G     | 31.35 | 0.8838 | 28.01 | 0.7674 | 27.29   | 0.7251 | 25.18    | 0.7524 |
| DRCN (Kim, Lee, and Lee 2016b)      |            | 1774K  | 17974.3G   | 31.53 | 0.8854 | 28.02 | 0.7670 | 27.23   | 0.7233 | 25.14    | 0.7510 |
| LapSRN (Lai et al. 2017)            |            | 813K   | 149.4G     | 31.54 | 0.8850 | 28.19 | 0.7720 | 27.32   | 0.7280 | 25.21    | 0.7560 |
| IDN (Hui, Wang, and Gao 2018)       |            | 590K   | 81.9G      | 31.82 | 0.8903 | 28.25 | 0.7730 | 27.41   | 0.7297 | 25.41    | 0.7632 |
| CARN-M (Ahn, Kang, and Sohn 2018)   |            | 412K   | 32.5G      | 31.92 |        | 28.42 | 0.7762 |         | 0.7304 | 25.62    | 0.7694 |
| CARN (Ahn, Kang, and Sohn 2018)     |            | 1592K  | 90.9G      | 32.13 | 0.8937 | 28.60 | 0.7806 | 27.58   | 0.7349 | 26.07    | 0.7837 |
| IMDN (Hui et al. 2019)              | $\times 4$ | 715K   | 40.9G      | 32.21 | 0.8948 | 28.58 | 0.7811 |         | 0.7353 | 26.04    | 0.7838 |
| AWSRN-M (Wang, Li, and Shi 2019)    |            | 1254K  | 72.0G      | 32.21 | 0.8954 | 28.65 | 0.7832 |         | 0.7368 | 26.15    | 0.7884 |
| MADNet (Lan et al. 2020)            |            | 1002K  | 54.1G      | 31.95 | 0.8917 | 28.44 | 0.7780 | 27.47   | 0.7327 | 25.76    | 0.7746 |
| RFDN (Liu, Tang, and Wu 2020)       |            | 550K   | 31.6G      | 32.24 | 0.8952 | 28.61 | 0.7819 | 27.57   | 0.7360 | 26.11    | 0.7858 |
| MAFFSRN (Muqeet et al. 2020)        |            | 441K   | 19.3G      | 32.18 | 0.8948 | 28.58 | 0.7812 | 27.57   | 0.7361 | 26.04    | 0.7848 |
| ECBSR (Zhang, Zeng, and Zhang 2021) |            | 603K   | 34.73G     | 31.92 | 0.8946 | 28.34 | 0.7817 |         | 0.7393 | 25.81    | 0.7773 |
| LAPAR-A (Li et al. 2021)            |            | 659K   | 94G        | 32.15 | 0.8944 | 28.61 | 0.7818 | 27.61   | 0.7366 | 26.14    | 0.7871 |
| FDIWN-M(Ours)                       |            | 454K   | 19.6G      | 32.17 | 0.8941 | 28.55 | 0.7806 |         | 0.7364 | 26.02    | 0.7844 |
| FDIWN(Ours)                         |            | 664K   | 28.4G      | 32.23 | 0.8955 | 28.66 | 0.7829 | 27.62   | 0.7380 | 26.28    | 0.7919 |
|                                     |            |        |            |       |        |       |        |         |        |          |        |



