

Feedback Network for Mutually Boosted Stereo Image Super-Resolution and Disparity Estimation Qinyan Dai; Juncheng Li; Qiaosi Yi; Faming Fang*; Guixu Zhang East China Normal University

>> Introduction

We propose a Stereo Super-Resolution and Disparity Estimation Feedback Network (SSRDE-FNet) that jointly handles the two tasks in a unified framework and interact them for mutual boosting. Besides leveraging the cross-view infomation explored by disparity estimation in LR space, we perform disparity estimation in the HR

Stereo SR Results

Method	Scale	#P	Left			(Left + Right)/2			
			KITTI 2012	KITTI 2015	Middlebury	KITTI 2012	KITTI 2015	Middlebury	Flickr1024
VDSR	$\times 2$	0.66M	30.17/0.9062	28.99/0.9038	32.66/0.9101	30.30/0.9089	29.78/0.9150	32.77/0.9102	25.60/0.8534
EDSR	$\times 2$	38.6M	30.83/0.9199	29.94/0.9231	34.84/0.9489	30.96/0.9228	30.73/0.9335	34.95/0.9492	28.66/0.9087
RDN	$\times 2$	22.0M	30.81/0.9197	29.91/0.9224	34.85/0.9488	30.94/0.9227	30.70/0.9330	34.94/0.9491	28.64/0.9084
RCAN	$\times 2$	15.3M	30.88/0.9202	29.97/0.9231	34.80/0.9482	31.02/0.9232	30.77/0.9336	34.90/0.9486	28.63/0.9082
StereoSR	$\times 2$	1.08M	29.42/0.9040	28.53/0.9038	33.15/0.9343	29.51/0.9073	29.33/0.9168	33.23/0.9348	25.96/0.8599
PASSRnet	$\times 2$	1.37M	30.68/0.9159	29.81/0.9191	34.13/0.9421	30.81/0.9190	30.60/0.9300	34.23/0.9422	28.38/0.9038
iPASSR	$\times 2$	1.37M	30.97/0.9210	30.01/0.9234	34.41/0.9454	31.11/0.9240	30.81/0.9340	34.51/0.9454	28.60/0.9097
SSRDE-FNet (ours)	$\times 2$	2.10M	31.08/0.9224	30.10/0.9245	35.02/0.9508	31.23/0.9254	30.90/0.9352	35.09/0.9511	28.85/0.913
VDSR	$\times 4$	0.66M	25.54/0.7662	24.68/0.7456	27.60/0.7933	25.60/0.7722	25.32/0.7703	27.69/0.7941	22.46/0.6718
EDSR	$\times 4$	38.9M	26.26/0.7954	25.38/0.7811	29.15/0.8383	26.35/0.8015	26.04/0.8039	29.23/0.8397	23.46/0.7285
RDN	$\times 4$	22.0M	26.23/0.7952	25.37/0.7813	29.15/0.8387	26.32/0.8014	26.04/0.8043	29.27/0.8404	23.47/0.7295
RCAN	$\times 4$	15.4M	26.36/0.7968	25.53/0.7836	29.20/0.8381	26.44/0.8029	26.22/0.8068	29.30/0.8397	23.48/0.7286
StereoSR	$\times 4$	1.42M	24.49/0.7502	23.67/0.7273	27.70/0.8036	24.53/0.7555	24.21/0.7511	27.64/0.8022	21.70/0.6460
PASSRnet	$\times 4$	1.42M	26.26/0.7919	25.41/0.7772	28.61/0.8232	26.34/0.7981	26.08/0.8002	28.72/0.8236	23.31/0.7195
SRRes+SAM	$\times 4$	1.73M	26.35/0.7957	25.55/0.7825	28.76/0.8287	26.44/0.8018	26.22/0.8054	28.83/0.8290	23.27/0.7233
iPASSR	$\times 4$	1.42M	26.47/0.7993	25.61/0.7850	29.07/0.8363	26.56/0.8053	26.32/0.8084	29.16/0.8367	23.44/0.7287
SSRDE-FNet (ours)	$\times 4$	2.24M	26.61/0.8028	25.74/0.7884	29.29/0.8407	26.70/0.8082	26.45/0.8118	29.38/0.8411	23.59/0.735

space to overcome the accuracy limitation of LR correspondence and better guide the stereo SR.

To achieve a more essential facilitation, we propose the **HR D**isparity Information Feedback (HRDIF) mechanism that feeds the aggragated HR features and the HR disparity back to previous layers for the

refinement of low-level features in the SR process.

>> Method

SSRDE-FNet is essentially a recurrent network which contains two dual recursive sub-networks for left and right views. Each iteration involves two SR reconstruction steps and two disparity steps.

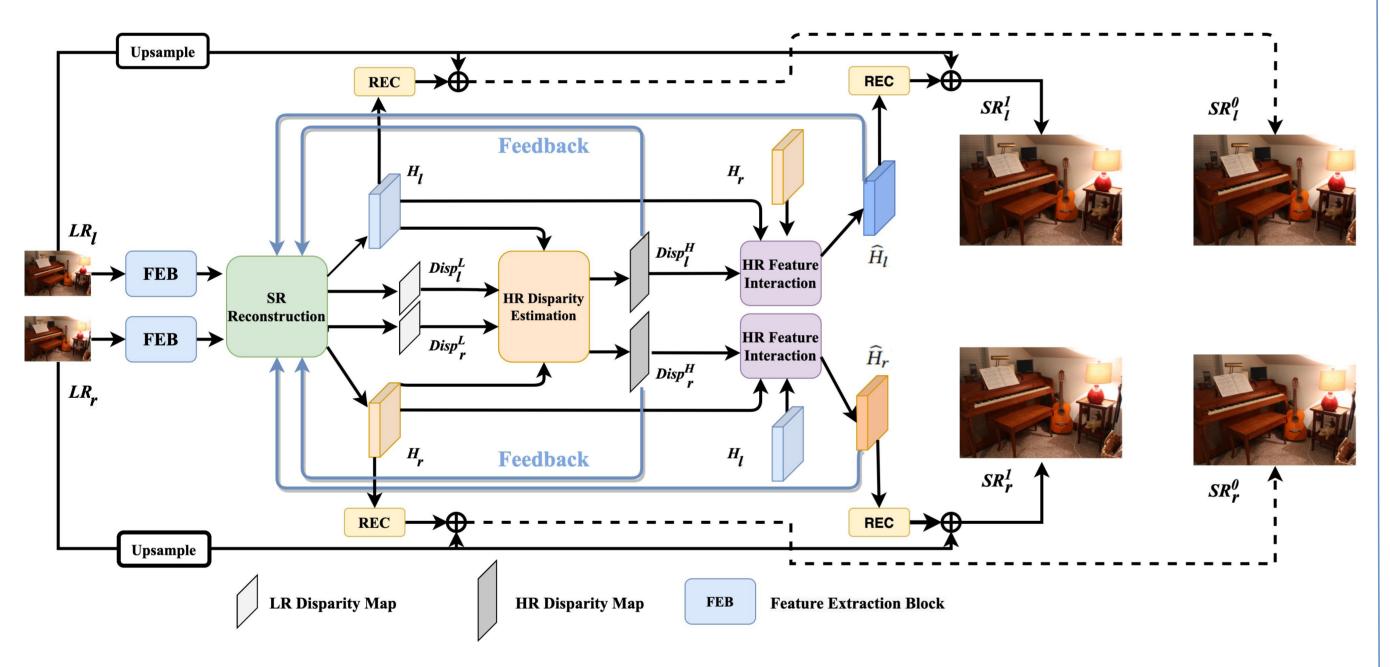
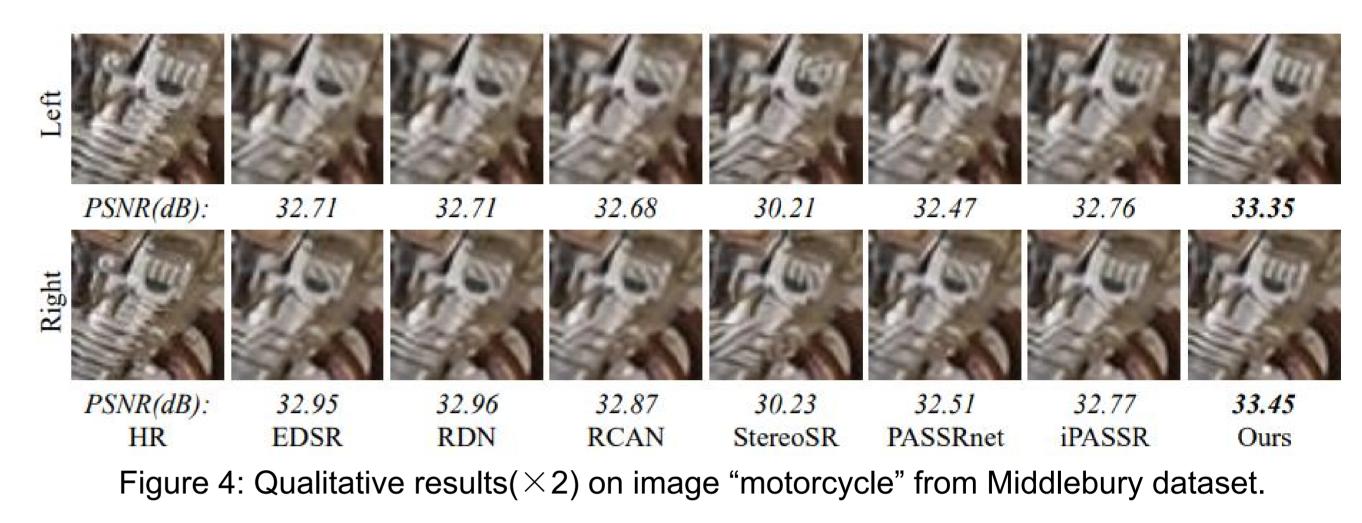
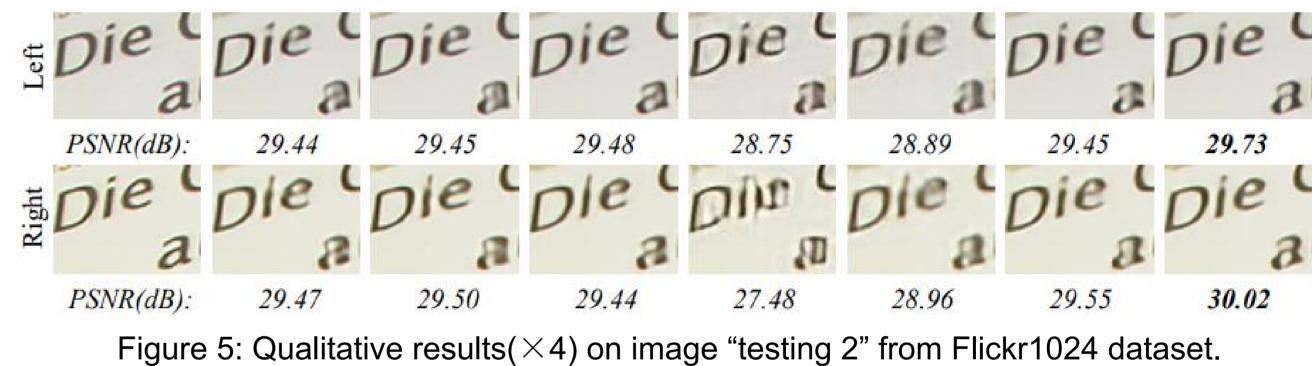




Table 1: Quantitative results of different methods on KITTI 2012, KITTI 2015, Middlebury, and Flickr1024 datasets. #P represents the number of parameters of the networks.

Figure 1: The framework of SSRDE-FNet.

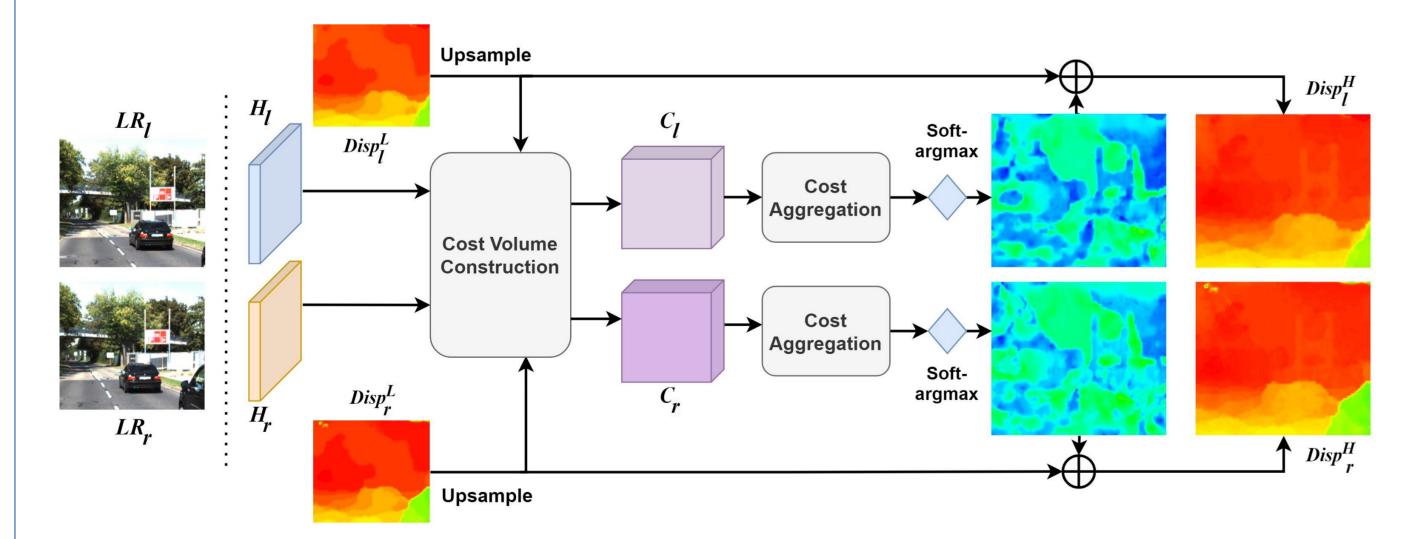
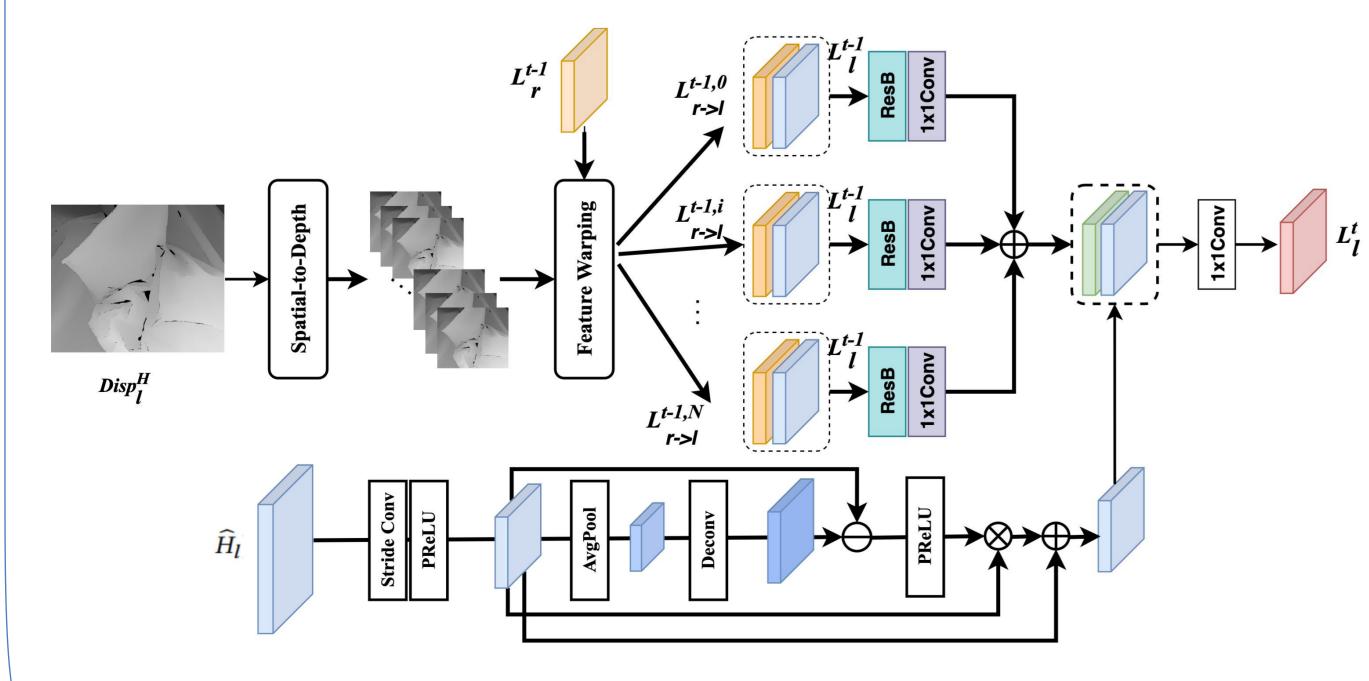



Figure 2: Illustration of HR disparity estimation module.

Method	Disparit	HRDIF		HFF	PSNR/SSIM		
memou	Up disp	HR disp	AHFF LRE				
baseline						29.16/0.8361	
baseline + Up disp	\checkmark					29.20/0.8370	
baseline + HR disp		\checkmark				29.27/0.8383	
SSR-FNet					\checkmark	29.27/0.8385	
SSRDE-FNet w/o LRE		\checkmark	\checkmark			29.35/0.8407	
SSRDE-FNet (Ours)		\checkmark	1	\checkmark		29.38/0.8411	

Table 2: Ablation study on different settings of SSRDE-FNet on Middlebury. The average PSNR and SSIM score of the SR left and right images are shown.

>> Disparity Estimation Results

HR image

		Baseline	Estimated HR	PASSRnet	iPASSR
		disparity	disparity	[30]	[32]
KITTI 2012	Noc	6.72	3.90	11.33	7.88
	All	7.81	5.12	12.29	8.96
KITTI 2015	Noc	5.71	3.52	9.36	6.57
	All	6.38	4.28	9.91	7.20

Table 3: Average disparity EPE (lower is better) on KITTI 2012 and 2015 for 4x SR.

Figure 3: Illustration of our HR disparity information feedback(HRDIF) mechanism.

iteration 1, step 1 iteration 2, step 2 Figure 6: Visual result of the disparity map on KITTI 2015.

		Iteration 1		Iteration 2	
		Step 1	Step 2	Step 1	Step 2
LITTI 0040	Noc	7.13	6.50	4.59	3.90
KITTI 2012	ALL	8.14	7.53	5.79	5.12
VITTI 2015	Noc	6.98	6.47	4.06	3.52
KITTI 2015	ALL	7.60	7.11	4.81	4.28

Table 4: Disparity accuracy improvements during inference on KITTI 2012 and 2015.