

Lightweight and Accurate Recursive Fractal Network for Image Super-Resolution

Juncheng Li, Yiting Yuan, Kangfu Mei, and Faming Fang*

International Conference on Computer Vision, 2019

Learning for Computational Imaging (LCI) Workshop

• Method : SRRFN

02

03

05

Experiments

Investigation & Discussion

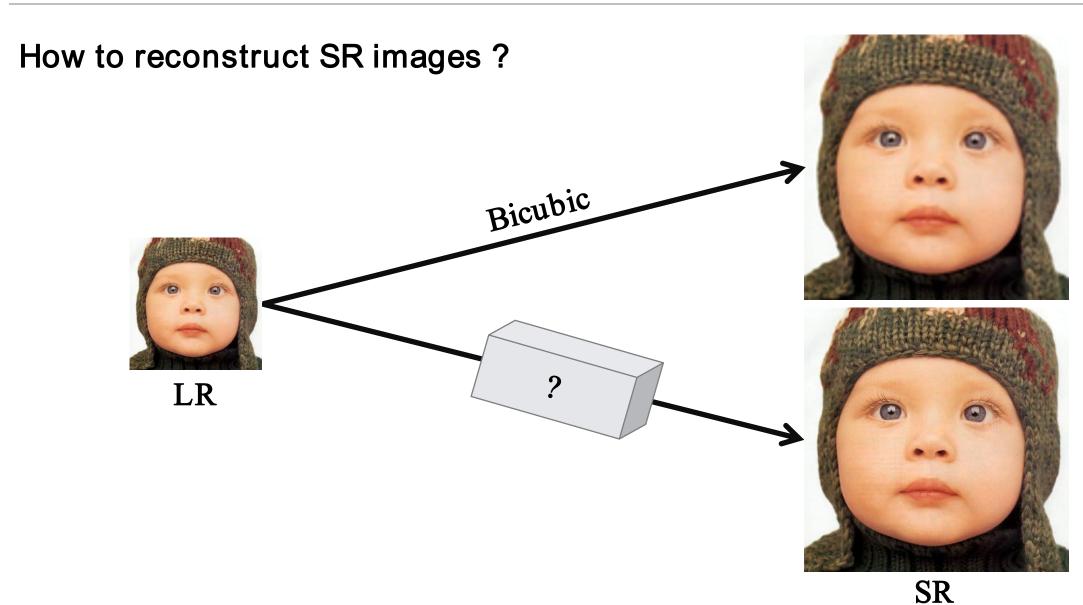
Conclusion

What is SISR?

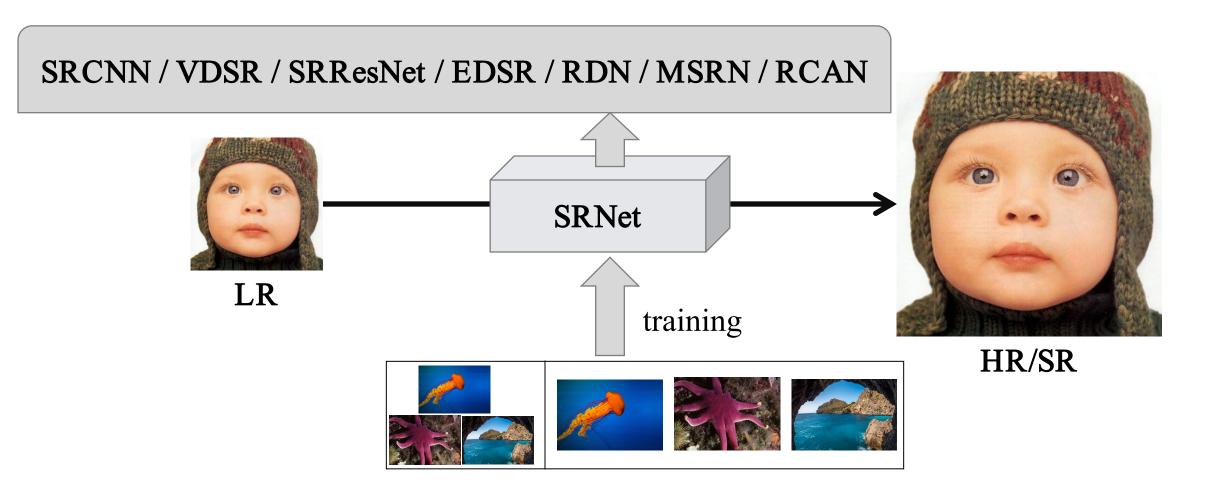
Single Image Super-Resolution (SISR) aims to reconstruct a super-resolution (SR) image from its degraded low-resolution (LR) one, which is receiving increasing attention in academia and industry.

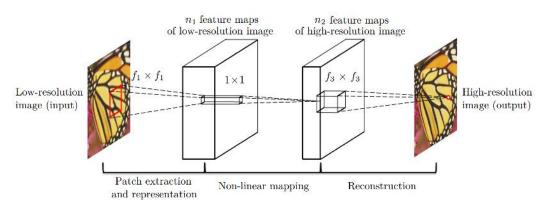
What is the role of SISR?

SISR has been widely used for computer vision tasks such as medical image enhancement, video superresolution, and facial illusion. The quality of SR images largely affects the accuracy of image recognition and segmentation tasks.



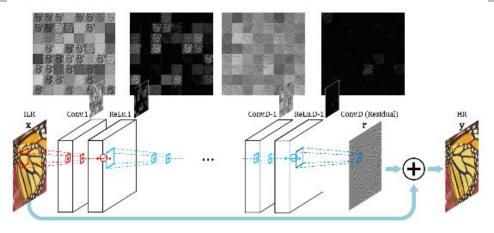
How to reconstruct SR image?





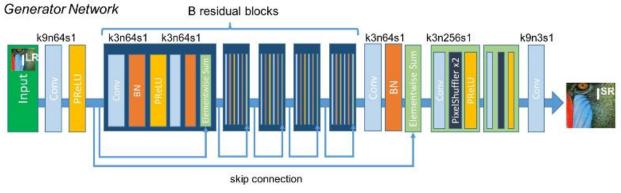
SRCNN

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for image super resolution.



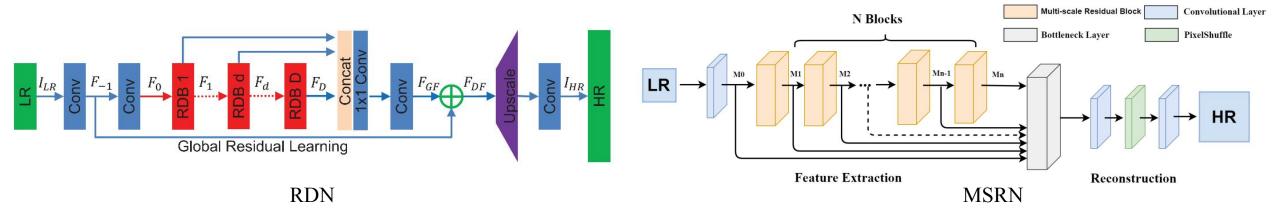
VDSR

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep convolutional networks.

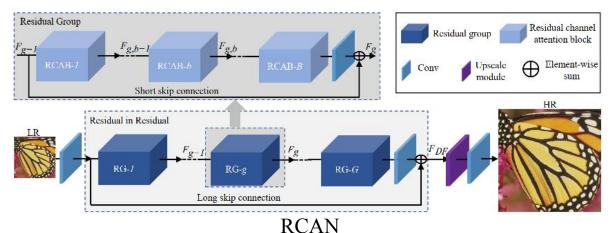


SRResNet

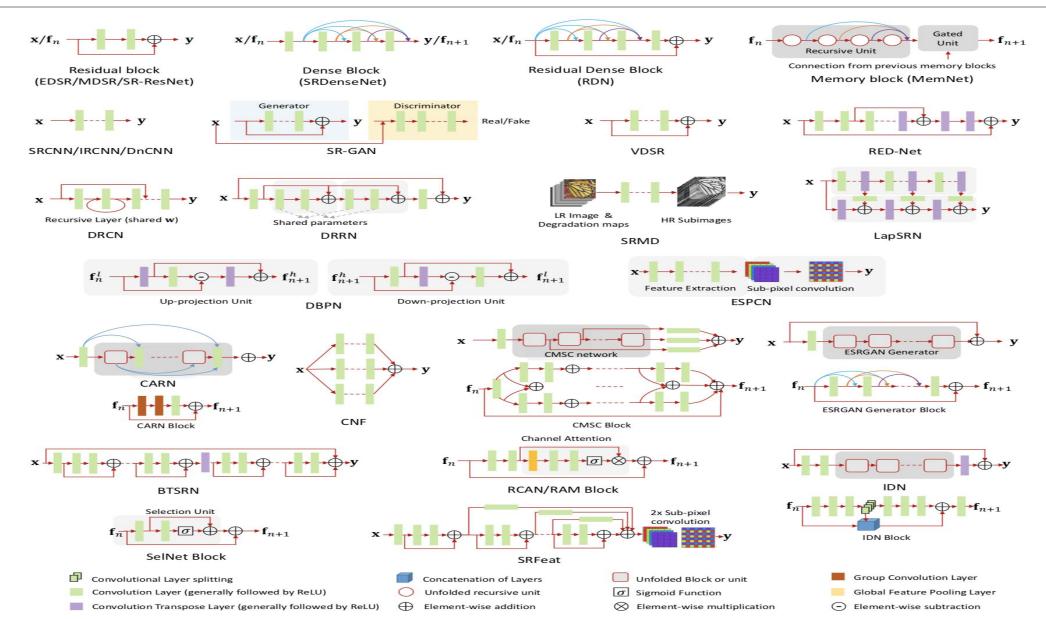
Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network



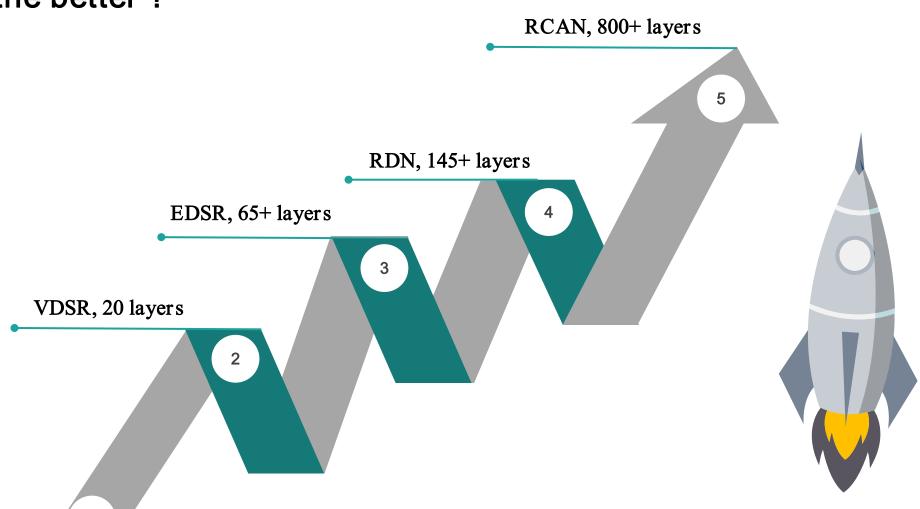
Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, Yun Fu. Residual Dense Network for Image Super-Resolution Juncheng Li, Faming Fang, Kangfu Mei, Guixu Zhang. Multi-scale Residual Network for Image Super-Resolution



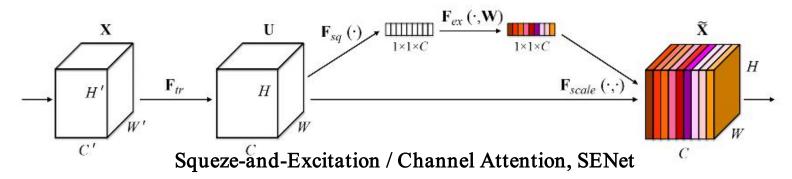
Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image Super-Resolution Using Very Deep Residual Channel Attention Networks.



The deeper, the better?



Channel attention mechanism necessary for SISR?

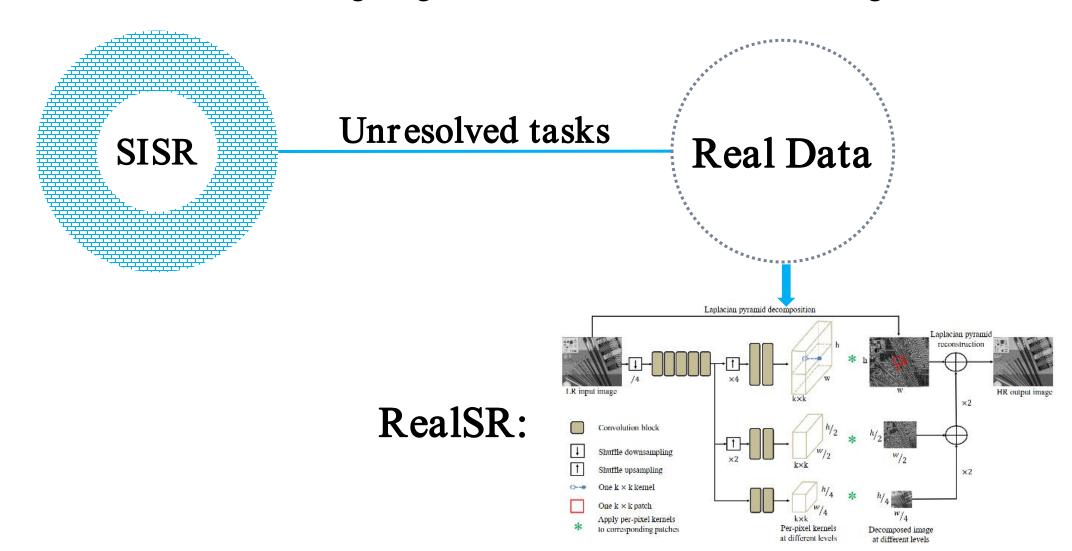


Jie Hu, Li Shen, Gang Sun.Squeeze-and-Excitation Networks.

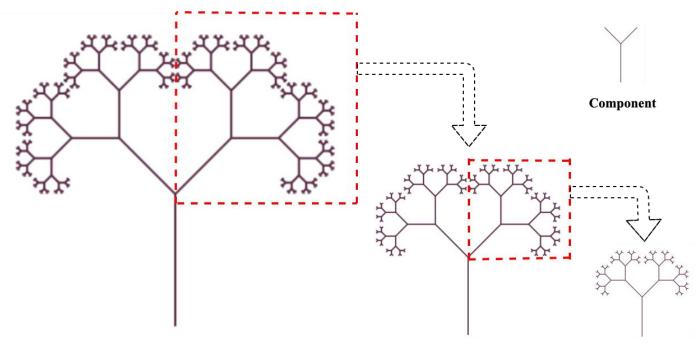
Method	RIRN()	<2)	$RCAN(\times 2)$ 50		
Scale	PSNR/SSIM	Time (s)	PSNR/SSIM	Time (s)	
Set5	38.24/0.9613	0.21s	38.26/0.9615	0.60s	
Set14	33.91/0.9206	0.33s	33.98/0.9210	1.11s	
BSD100	32.37/0.9021	0.24s	32.39/0.9024	0.75s	
Urban100	33.10/0.9370	1.04s	33.24/0.9377	3.78s	
Manga109	39.31/0.9784	1.22s	39.37/0.9785	4.55s	
Average	35.39/0.9399	0.61s	35.45/0.9402	2.16s	

Table 1. The performance comparison with and without the CAM.

Previous works on simulating degradation models still meaningful?



How to design a network with infinite possibilities?



Fractal Tree

The fractal structure was proposed by B.B.Mandelbrot in 1973, which is usually defined as "a rough or fragmentary geometry, it can be divided into several parts, and each part is (at least approximately) an overall reduced shape". It has the following characteristics:

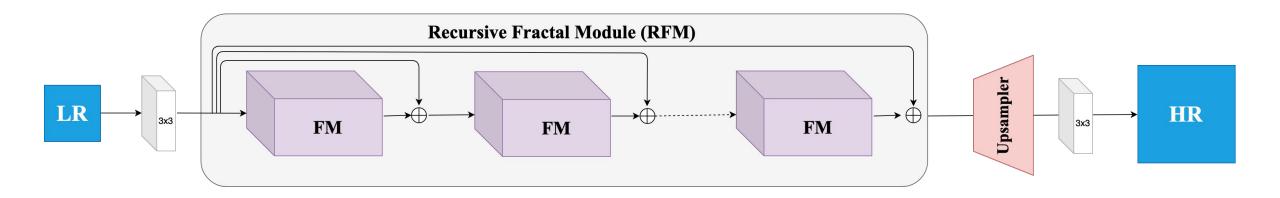
- (a). self similarity
- (b). infinitely fine structure
- (c). can be defined by a simple method and generated by recursion and iteration.

Motivation:

- 1. We aim to explore a lightweight and accurate SISR framework.
- 2. We aim to simplify the design of network structure by introducing the fractal structure.

Contribution:

- A. We propose a fractal module (FM) to simplify the model design, which can generate an infinite number of new structures via a simple component. Meanwhile, the fractal structure can be easily integrated with modern modules to create unlimited possibilities.
- B. We develop a Super Resolution Recursive Fractal Network, which introduces the fractal module and recursive learning mechanism to maximize the model performance.
- C. SRRFN achieves superior results with fewer parameters and faster execution time. Especially, it achieves state-of-the-art results in BD and DN degrade models.



$$L'_{in} = F_{in}(I_{LR}),$$

$$L'_{out} = F_{RFM}(L'_{in}),$$

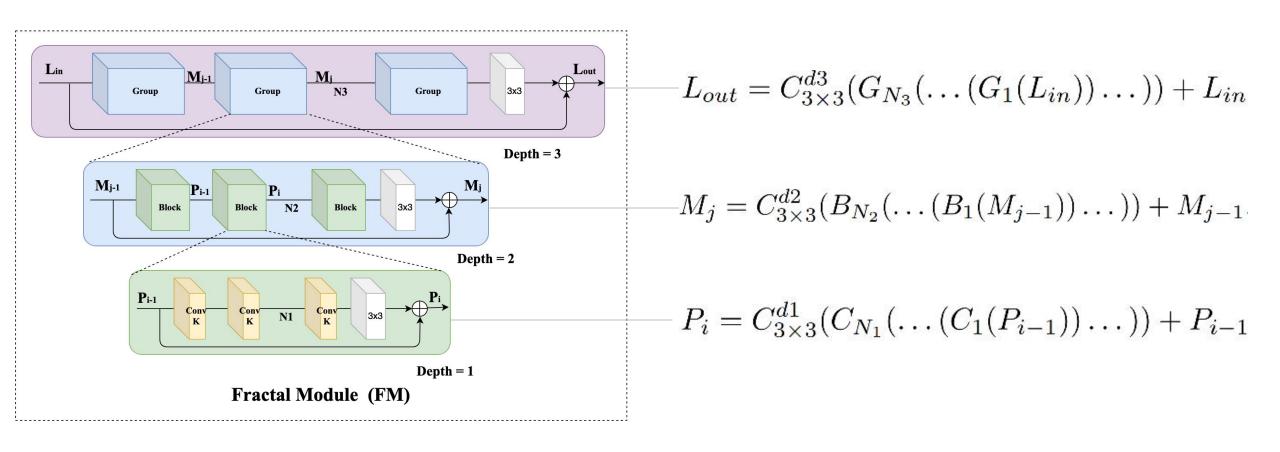
$$L_{sr} = F_{UP}(L'_{out}),$$

$$I_{SR} = F_{out}(L_{sr}).$$

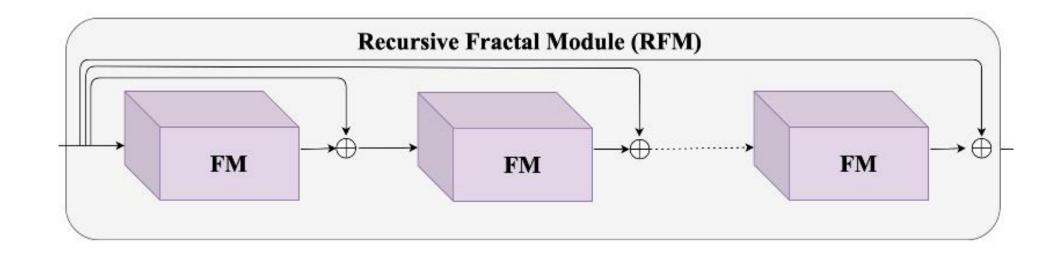
Loss function:

$$\hat{\theta} = arg \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \|F_{\theta}(I_{LR}^{i}) - I_{HR}^{i}\|_{1}$$

Fractal Module (FM):

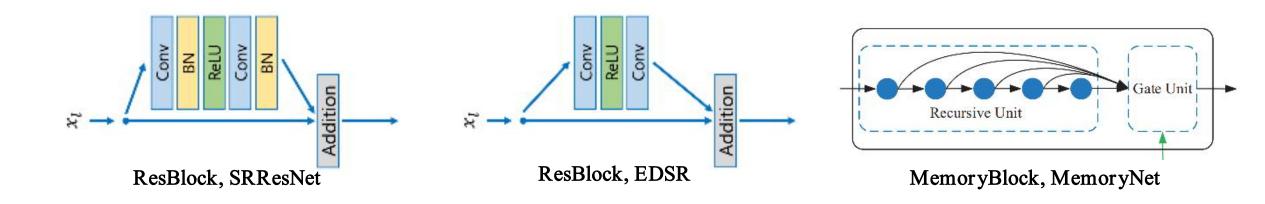


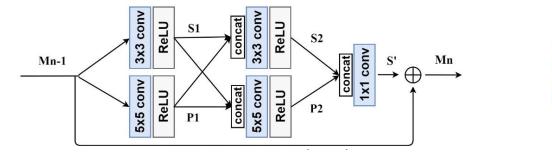
Recursive Mechanism (RM):



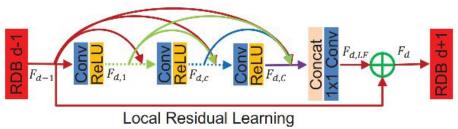
$$L^{s} = F_{FM}(L^{s-1}) + L^{0}$$

Integration with Modern Modules:

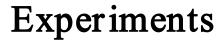




Multi-scale Block, MSRN



ResdualDenseBlock, RDN



BI:

Algorithm	Scale	Set5 3	Set14 [45]	BSDS100 [2]	Urban100 [15]	Manga109 [31]	Average
Algorithm	Scarc	PSNR / SSIM					
Bicubic	$\times 2$	33.66 / 0.9299	30.24 / 0.8688	29.56 / 0.8431	26.88 / 0.8403	30.80 / 0.9339	30.23 / 0.8832
SRCNN 6	$\times 2$	36.66 / 0.9542	32.45 / 0.9067	31.36 / 0.8879	29.50 / 0.8946	35.60 / 0.9663	33.11 / 0.9219
LapSRN [21]	$\times 2$	37.52 / 0.9591	33.08 / 0.9130	31.80 / 0.8950	30.41 / 0.9101	37.27 / 0.9740	34.02 / 0.9302
VDSR [18]	$\times 2$	37.53 / 0.9590	33.05 / 0.9130	31.90 / 0.8960	30.77 / 0.9140	37.22 / 0.9750	34.09 / 0.9314
MemNet [35]	$\times 2$	37.78 / 0.9597	33.28 / 0.9142	32.08 / 0.8978	31.31 / 0.9195	37.72 / 0.9740	34.43 / 0.9330
SRMDNF [47]	$\times 2$	37.79 / 0.9601	33.32 / 0.9159	32.05 / 0.8985	31.33 / 0.9204	38.07 / 0.9761	34.51 / 0.9343
MSRN [24]	$\times 2$	38.07 / 0.9608	33.68 / 0.9184	32.22 / 0.9002	32.32 / 0.9304	38.64 / 0.9771	34.99 / 0.9374
D_DBPN []	$\times 2$	38.09 / 0.9600	33.85 / 0.9190	32.27 / 0.9000	32.55 / 0.9324	38.89 / 0.9775	35.13 / 0.937
MDSR [26]	$\times 2$	38.11 / 0.9602	33.85 / 0.9198	32.29 / 0.9007	32.84 / 0.9347	38.96 / 0.9776	35.21 / 0.938
EDSR [26]	$\times 2$	38.11 / 0.9602	33.92 / 0.9195	32.32 / 0.9013	32.93 / 0.9351	39.10 / 0.9773	35.27 / 0.938
RDN [51]	$\times 2$	38.24 / 0.9614	34.01 / 0.9212	32.34 / 0.9017	32.89 / 0.9353	39.18 / 0.9780	35.33 / 0.939:
SRRFN (Ours)	$\times 2$	38.18 / 0.9612	33.97 / 0.9210	32.35 / 0.9018	33.04 / 0.9361	39.23 / 0.9781	35.35 / 0.939
SRRFN+ (Ours)	$\times 2$	38.24 / 0.9614	34.13 / 0.9224	32.39 / 0.9023	33.24 / 0.9378	39.43 / 0.9786	33,49 / 0.940
Bicubic	×3	30.39 / 0.8682	27.55 / 0.7742	27.21 / 0.7385	24.46 / 0.7349	26.95 / 0.8556	27.31 / 0.794
SRCNN [6]	$\times 3$	32.75 / 0.9090	29.30 / 0.8215	28.41 / 0.7863	26.24 / 0.7989	30.48 / 0.9117	29.44 / 0.845
VDSR [18]	$\times 3$	33.67 / 0.9210	29.78 / 0.8320	28.83 / 0.7990	27.14 / 0.8290	32.01 / 0.9340	30.29 / 0.863
LapSRN [21]	$\times 3$	33.82 / 0.9227	29.87 / 0.8320	28.82 / 0.7980	27.07 / 0.8280	32.21 / 0.9350	30.36 / 0.863
MemNet 37	$\times 3$	34.09 / 0.9248	30.00 / 0.8350	28.96 / 0.8001	27.56 / 0.8376	32.51 / 0.9369	30.62 / 0.866
SRMDNF [47]	$\times 3$	34.12 / 0.9254	30.04 / 0.8382	28.97 / 0.8025	27.57 / 0.8398	33.00 / 0.9403	30.74 / 0.869
MSRN [24]	$\times 3$	34.48 / 0.9276	30.40 / 0.8436	29.13 / 0.8061	28.31 / 0.8560	33.56 / 0.9451	31.18 / 0.875
MDSR [26]	$\times 3$	34.66 / 0.9280	30.44 / 0.8452	29.25 / 0.8091	28.79 / 0.8655	34.17 / 0.9472	31.46 / 0.879
EDSR [26]	$\times 3$	34.65 / 0.9280	30.52 / 0.8462	29.25 / 0.8093	28.80 / 0.8653	34.17 / 0.9476	31.48 / 0.879
RDN [5]]	$\times 3$	34.71 / 0.9296	30.57 / 0.8468	29.26 / 0.8093	28.80 / 0.8653	34.13 / 0.9484	31.49 / 0.879
SRRFN (Ours)	$\times 3$	34.74 / 0.9296	30.62 / 0.8478	29.29 / 0.8100	28.98 / 0.8689	34.36 / 0.9491	31.60 / 0.881
SRRFN+ (Ours)	$\times 3$	34.84 / 0.9303	30.70 / 0.8490	29.35 / 0.8110	29.21 / 0.8721	34.66 / 0.9505	31.75 / 0.882
Bicubic	×4	28.42 / 0.8104	26.00 / 0.7027	25.96 / 0.6675	23.14 / 0.6577	24.89 / 0.7866	25.62 / 0.725
SRCNN 6	$\times 4$	30.48 / 0.8628	27.50 / 0.7513	26.90 / 0.7101	24.52 / 0.7221	27.58 / 0.8555	27.40 / 0.780
VDSR [18]	$\times 4$	31.35 / 0.8830	28.02 / 0.7680	27.29 / 0.7267	25.18 / 0.7540	28.83 / 0.8870	28.13 / 0.803
LapSRN [21]	$\times 4$	31.54 / 0.8850	28.19 / 0.7720	27.32 / 0.7270	25.21 / 0.7560	29.09 / 0.8900	28.27 / 0.806
MemNet [37]	$\times 4$	31.74 / 0.8893	28.26 / 0.7723	27.40 / 0.7281	25.50 / 0.7630	29.42 / 0.8942	28.46 / 0.809
SRMDNF 47	$\times 4$	31.96 / 0.8925	28.35 / 0.7787	27.49 / 0.7337	25.68 / 0.7731	30.09 / 0.9024	28.71 / 0.816
MSRN [24]	$\times 4$	32.25 / 0.8958	28.63 / 0.7833	27.61 / 0.7377	26.20 / 0.7905	30.57 / 0.9103	29.05 / 0.823
D_DBPN [10]	$\times 4$	32.47 / 0.8980	28.82 / 0.7860	27.72 / 0.7400	26.38 / 0.7946	30.91 / 0.9137	29.26 / 0.826
RDN [51]	$\times 4$	32.47 / 0.8990	28.81 / 0.7871	27.72 / 0.7419	26.61 / 0.8028	31.00 / 0.9151	29.32 / 0.829
EDSR 26	$\times 4$	32.46 / 0.8968	28.80 / 0.7876	27.71 / 0.7420	26.64 / 0.8033	31.02 / 0.9148	29.33 / 0.828
MDSR 26	$\times 4$	32.50 / 0.8973	28.72 / 0.7857	27.72 / 0.7418	26.67 / 0.8041	31.11 / 0.9146	29.34 / 0.828
SRRFN (Ours)	$\times 4$	32.56 / 0.8993	28.86 / 0.7882	27.75 / 0.7424	26.78 / 0.8071	31.22 / 0.9159	29.43 / 0.830
SRRFN+ (Ours)	$\times 4$	32.66 / 0.9006	28.95 / 0.7900	27.81 / 0.7437	26.98 / 0.8113	31.56 / 0.9190	29.59 / 0.832

BI:

Algorithm	Scale	Set5 3 PSNR / SSIM	Set14 [45] PSNR / SSIM	BSDS100 [2] PSNR / SSIM	Urban100 [15] PSNR / SSIM	Manga109 311 PSNR / SSIM	Average PSNR / SSIM
DRCN 19	$\times 2$	37.63 / 0.9584	33.06 / 0.9108	31.85 / 0.8947	30.76 / 0.9147	37.63 / 0.9723	34.19 / 0.9302
MS-LapSRN [22]	$\times 2$	37.78 / 0.9600	33.28 / 0.9150	32.05 / 0.8980	31.15 / 0.9190	37.78 / 0.9760	34.41 / 0.9336
DRRN [35]	$\times 2$	37.74 / 0.9590	33.23 / 0.9140	32.05 / 0.8970	31.23 / 0.9190	37.92 / 0.9760	34.43 / 0.9330
SRFBN [25]	$\times 2$	38.11 / 0.9609	33.82 / 0.9196	32.29 / 0.9010	32.62 / 0.9328	39.08 / 0.9779	35.18 / 0.9384
SRRFN (Ours)	$\times 2$	38.18 / 0.9612	33.97 / 0.9210	32.35 / 0.9018	33.04 / 0.9361	39.23 / 0.9781	35.35 / 0.9396
DRCN [19]	×3	33.85 / 0.9215	29.89 / 0.8317	28.81 / 0.7954	27.16 / 0.8311	32.31 / 0.9328	30.40 / 0.8625
MS-LapSRN [22]	$\times 3$	34.06 / 0.9240	29.97 / 0.8360	28.93 / 0.8020	27.47 / 0.8370	32.68 / 0.9390	30.62 / 0.8676
DRRN [35]	$\times 3$	34.03 / 0.9240	29.96 / 0.8350	28.95 / 0.8000	27.53 / 0.7640	32.74 / 0.9390	30.64 / 0.8524
SRFBN [25]	$\times 3$	34.70 / 0.9292	30.51 / 0.8461	29.24 / 0.8084	28.73 / 0.8641	34.18 / 0.9481	31.47 / 0.8792
SRRFN (Ours)	$\times 3$	34.74 / 0.9296	30.62 / 0.8478	29.29 / 0.8100	28.98 / 0.8689	34.36 / 0.9491	31.60 / 0.8811
DRCN 19	×4	31.56 / 0.8810	28.15 / 0.7627	27.24 / 0.7150	25.15 / 0.7530	28.98 / 0.8816	28.22 / 0.7987
DRRN [35]	$\times 4$	31.68 / 0.8888	28.21 / 0.7722	27.38 / 0.7240	25.44 / 0.7640	29.46 / 0.8960	28.43 / 0.8090
MS-LapSRN [22]	$\times 4$	31.74 / 0.8890	28.26 / 0.7740	27.43 / 0.7310	25.51 / 0.7680	29.54 / 0.8970	28.50 / 0.8118
SRFBN [25]	$\times 4$	32.47 / 0.8983	28.81 / 0.7868	27.72 / 0.7409	26.60 / 0.8015	31.15 / 0.9160	29.35 / 0.8287
SRRFN (Ours)	$\times 4$	32.56 / 0.8993	28.86 / 0.7882	27,75 / 0,7424	26.78 / 0.8071	31,22 / 0.9159	29.43 / 0.8318

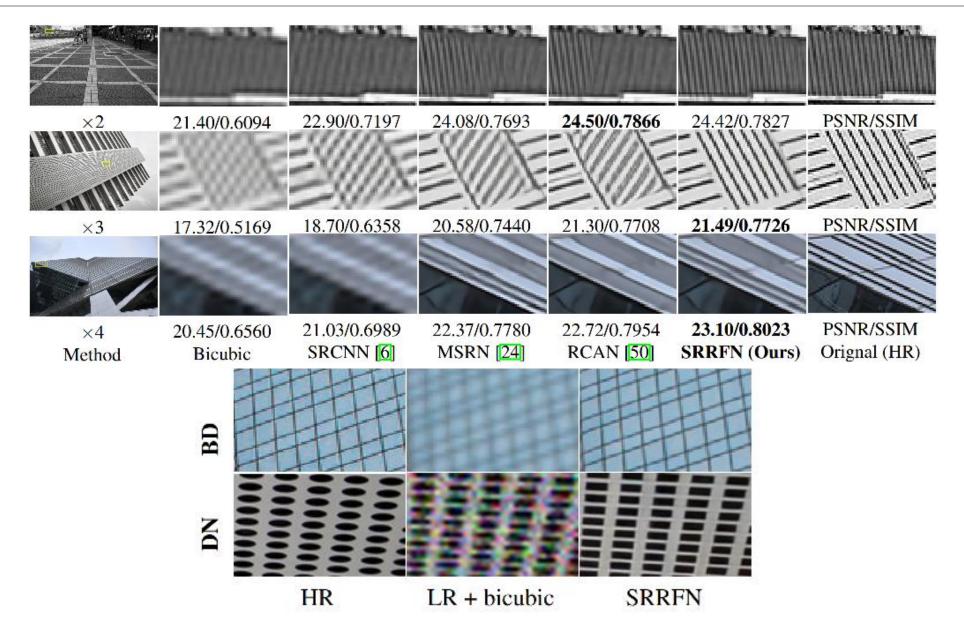
BD:

DN:

Model	Methods	Set5 PSNR / SSIM	Set14 PSNR / SSIM	BSDS100 PSNR / SSIM	Urban100 PSNR / SSIM	Manga109 PSNR / SSIM	Average PSNR / SSIM
3	Bicubic	28.34 / 0.8161	26.12 / 0.7106	26.02 / 0.6733	23.20 / 0.6601	25.03 / 0.7987	25.74 / 0.7318
	SRCNN 6	31.63 / 0.8888	28.52 / 0.7924	27.76 / 0.7526	25.31 / 0.7612	28.79 / 0.8851	28.40 / 0.8159
	VDSR [18]	33.30 / 0.9159	29.67 / 0.8269	28.63 / 0.7903	26.75 / 0.8145	31.66 / 0.9260	30.00 / 0.8547
DD	SRMD(NF) 47	34.09 / 0.9242	30.11 / 0.8364	28.98 / 0.8009	27.50 / 0.8370	32.97 / 0.9391	30.73 / 0.8675
BD	RDN [51]	34.57 / 0.9280	30.53 / 0.8447	29.23 / 0.8079	28.46 / 0.8581	33.97 / 0.9465	31.35 / 0.8770
	SRFBN [25]	34.66 / 0.9283	30.48 / 0.8439	29.21 / 0.8069	28.48 / 0.8581	34.07 / 0.9466	31.38 / 0.8768
	RCAN [50]	34.70 / 0.9288	30.63 / 0.8462	29.32 / 0.8093	28.81 / 0.8647	34.38 / 0.9483	31.57 / 0.8795
	SRRFN (Ours)	34.77 / 0.9293	30.67 / 0.8469	29.31 / 0.8096	28.85 / 0.8653	34.51 / 0.9489	31.62 / 0.8800
	SRRFN+ (Ours)	34.86 / 0.9299	30.76 / 0.8479	29.36 / 0.8105	29.06 / 0.8682	34.80 / 0.9502	31.77 / 0.8813
DN	Bicubic	24.14 / 0.5445	23.14 / 0.4828	22.94 / 0.4461	21.63 / 0.4701	23.08 / 0.5448	22.99 / 0.4977
	SRCNN 6	27.16 / 0.7672	25.49 / 0.6580	25.11/0.6151	23.32 / 0.6500	25.78 / 0.7889	25.37 / 0.6958
	VDSR [18]	27.72 / 0.7872	25.92 / 0.6786	25.52 / 0.6345	23.83 / 0.6797	26.41 / 0.8130	25.88 / 0.7186
	SRMD(NF) 47	27.74 / 0.8026	26.13 / 0.6974	25.64 / 0.6495	24.28 / 0.7092	26.72 / 0.8424	26.10 / 0.7402
	RDN [51]	28.46 / 0.8151	26.60 / 0.7101	25.93 / 0.6573	24.92 / 0.7362	28.00 / 0.8590	26.78 / 0.7555
	SRFBN [25]	28.53 / 0.8182	26.60 / 0.7144	25.95 / 0.6625	24.99 / 0.7424	28.02 / 0.8618	26.82 / 0.7599
	SRRFN (Ours)	28.57 / 0.8194	26.69 / 0.7155	25.98 / 0.6630	25.21 / 0.7506	28.21 / 0.8646	26.93 / 0.7626
	SRRFN+ (Ours)	28.66 / 0.8211	26.75 / 0.7169	26.02 / 0.6639	25.34 / 0.7538	28.37 / 0.8672	27.03 / 0.7640

Experiments

BI:



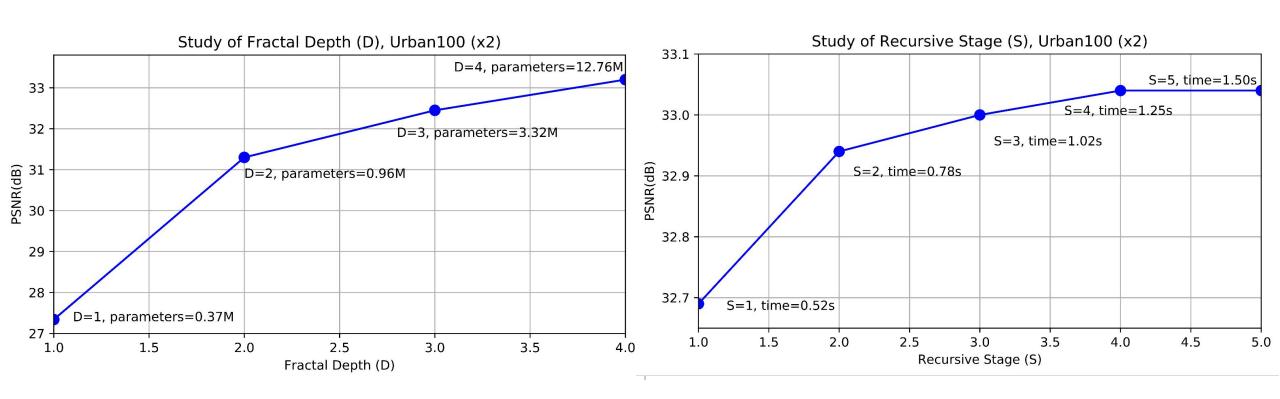
Investigation & Discussion

RCAN & SRRFN:

Algorithm Scale	Coolo	Parameters	Set5 [3]	Set14 45	BSDS100 [2]	Urban100 [15]	Manga109 [31]	Average
	Scale	rarameters	PSNR / SSIM / Time	PSNR / SSIM / Time	PSNR / SSIM / Time	PSNR / SSIM / Time	PSNR / SSIM / Time	PSNR / SSIM / Time
RCAN [50]	$\times 2$	15.44M	38.27 / 0.9614 / 0.60s	34.12 / 0.9216 / 1.11s	32.41 / 0.9027 / 0.75s	33.34 / 0.9384 / 3.78s	39.44 / 0.9786 / 4.55s	35.52 / 0.9405 / 2.16s
SRRFN (Ours)	$\times 2$	4.06M	38.18 / 0.9612 / 0.218	33.97 / 0.9210 / 0.35s	32.35 / 0.9018 / <mark>0.24</mark> s	33.04 / 0.9361 / 1.078	39.23 / 0.9781 / 1.25s	35.35 / 0.9396 / 0.61s
RCAN [50]	$\times 3$	15.63M	34.74 / 0.9299 / 0.34s	30.65 / 0.8482 / 0.55s	29.32 / 0.8111 / 0.41s	29.09 / 0.8702 / 1.89s	34.44 / 0.9499 / 2.33s	31.65 / 0.8818 / 1.10s
SRRFN (Ours)	$\times 3$	4.24M	34.74 / 0.9296 / 0.17s	30.62 / 0.8478 / <mark>0.23s</mark>	29.29 / 0.8100 / <mark>0.16s</mark>	28.98 / 0.8689 / <mark>0.62s</mark>	34.36 / 0.9491 / 0.79s	31.60 / 0.8811 / 0.39s
RCAN [50]	$\times 4$	15.59M	32.63 / 0.9002 / 0.30s	28.87 / 0.7889 / 0.40s	27.77 / 0.7436 / 0.30s	26.82 / 0.8087 / 1.21s	31.22 / 0.9173 / 1.50s	29.46 / 0.8317 / 0.74s
SRRFN (Ours)	$\times 4$	4.21M	32.56 / 0.8993 / 0.16s	28.86 / 0.7882 / <mark>0.19s</mark>	27.75 / 0.7424 / <mark>0.16s</mark>	26.78 / 0.8071 / <mark>0.47s</mark>	31.22 / 0.9159 / 0.58s	29.43 / 0.8318 / 0.31s

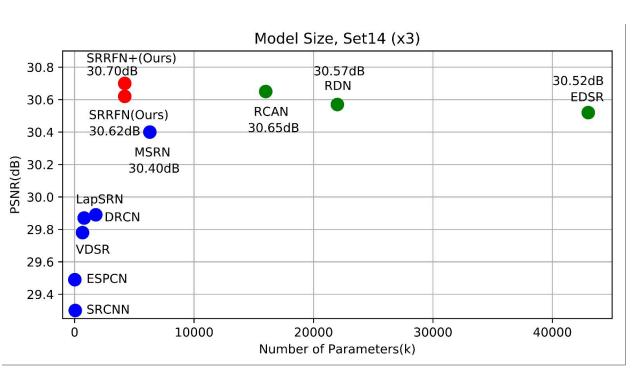
Quantitative comparisons (PSNR/SSIM, Parameters, and Execution time) with RCAN

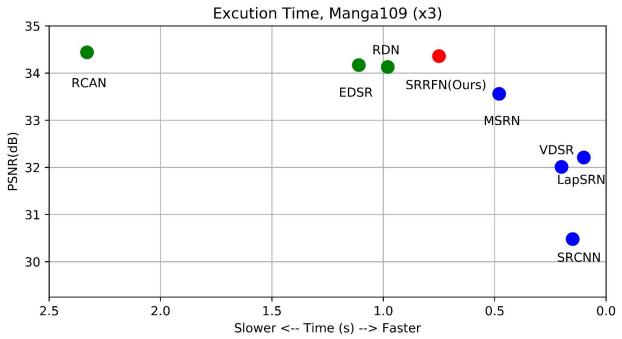
Study of Fractal Depth (D) & Recursive Stage (S):



Investigation & Discussion

Model Size and Execution Time:





Conclusion

We proposed a Super-Resolution Recursive Fractal Network (SRRFN). This is a lightweight and accurate SR framework.

SRRFN introduces the fractal module (FM) for feature extraction and uses recursive mechanism for recursive residual learning, which achieves competitive results with fewer parameters and faster execution time.

Investigation & Discussion

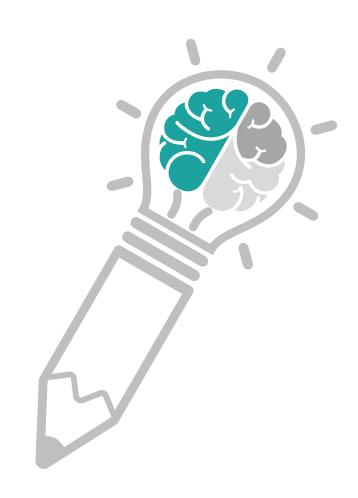
Benefits of SRRFN:

- 1. The fractal module can greatly simplifies
 the model design and can construct an
 infinite variety of topological structures
 through a simple basic component.
- 2. These topologies structure provide a large number of search paths that enable the network to extract abundant image features to reconstruct high-quality SR images.

Limitations of SRRFN:

- 1. Which module to choose as the basic component?
- 2. How to set the fractal depth
- (D) as the final model depth?

AutoML + Fractal Module



WeChat

cvjunchengli@gmail.com