

华东师范大学

East China Normal University

SEEK TRUTH. FOSTER ORIGINALITY AND LIVE UP TO THE NAME OF TEACHER

Juncheng LI (李俊诚) 2020.12.21

Name: Juncheng LI (李俊诚)

Research: Computer Vision, Image Processing

Supervisor: Guixu Zhang (张桂戌) & Faming Fang (方发明)

HomePage: junchenglee.com

Exploration and Construction of Lightweight Image Restoration Model

Motivation

MSRN & MDCN

SeaNet & MLEFGN

01

Introduction

Image Restoration (IR) aims to reconstruct visually pleasing high-quality (HQ) images from degraded low-quality (LQ) images (such as low-restoration images, noisy images, compressed images, and blurred images), which is important for high-level computer vision tasks and has been widely used in security surveillance, autonomous driving, and medical image processing.

Single Image Super-Resolution (图像超分辨率)

Single Image Denoising (图像去噪)

Single Image Dehazing (图像去雾)

Single Image Deblurring (图像去模糊)

How to reconstruct high-quality images?

Degraded image

Traditional methods
Deep learning-based methods

High-quality images

CNN-based model, such as SRCNN/ VDSR/ DnCNN.

02

Motivation

Motivation

DeblurGAN

SRResNet

Motivation

The problems faced by these models:

The size of the model becomes larger and larger, the number of parameters becomes more and more, and the structure of the model becomes more and more complex.

More Training Datasets. More Training Skills More Training Time. More Storage Space. More Execution Time. More Computing Resources.

Fewer Application Scenarios.

Exploring lightweight image restoration model is essential !

- Making full use of the features of the input image.
- Designing more effective feature extraction modules.
- Introducing image priors to guide image reconstruction.
- Exploring more effective coaching and training strategies.

Motivation

- Multi-scale Residual Network for Image Super-Resolution. ECCV, 2018 (Top CV Conference, 157 Citations, 213 Star in GitHub)
- Lightweight and Accurate Recursive Fractal Network for Image Super-Resolution. ICCV Workshop, 2019 (Oral Presentation)
- HighEr-Resolution Network for Image Demosaicing and Enhancing. ICCV Workshop, 2019 (ICCV-AIM2019 Winner)
- Luminance-aware Pyramid Network for Low-light Image Enhancement. IEEE Transactions on Multimedia (IEEE TMM), 2020.
- Multi-level Edge Features Guided Network for Image Denoising. IEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2020.
- Soft-edge Assisted Network for Single Image Super-Resolution. IEEE Transactions on Image Processing (IEEE TIP), 2020.
- MDCN: Multi-scale Dense Cross Network for Image Super-Resolution. IEEE Transactions on Circuits and Systems for Video Technology (IEEE TCSVT), 2020.

Construction of image restoration model based on multi-scale feature fusion:

- Multi-scale Residual Network for Image Super-Resolution. MSRN, Image Super-resolution.
- MDCN: Multi-scale Dense Cross Network for Image Super-Resolution. MDCN, Image Super-resolution, Improved version of MSRN.

Construction of image restoration model based on edge priors guidance:

- Soft-edge Assisted Network for Single Image Super-Resolution. SeaNet, Image Super-resolution.
- Multi-level Edge Features Guided Network for Image Denoising.
 MLEFGN, Image Denoising.

03

Multi-scale Feature Fusion MSRN & MDCN

SISR: The task aims to reconstruct a High-Resolution (HR) image from a Low-Resolution (LR) image.

The process of image restoration.

The evolution process of image feature extraction.

(c) Residual dense block

12×8

Objects show different details and features in different scale spaces and we can usually observe different features at different scales.

In computer vision, scale is always a big issue, and small objects and large-scale objects often seriously affect performance.

Generally speaking, smaller/dense sampling can see more details, and larger/sparser sampling can see the overall trend.

How to extract and utilize multi-scale image features? --- Change the size of the local receptive field.

Different resolution, same convolutional kernel

By changing the resolution of the input image to obtain different scale image and multi-scale image features are obtained by applying the same convolutional kernel on the image with different resolutions.

Feature Pyramid

Multi-scale Residual Network for Image Super-Resolution

Juncheng Li¹ Faming Fang¹ Kangfu Mei² Guixu Zhang¹

¹ East China Normal University ² Jiangxi Normal University

Contact us: cvjunchengli@gmail.con

Contribution

- We propose a novel Multi-scale residual block (MSRB), which can not only adaptively detect the image features, but also achieve feature fusion at different scales. This is the first multi-scale module based on the residual structure. Besides, MSRB can be used for feature extraction in other restoration tasks which show promising results.
- We propose a simple architecture for hierarchical features fusion (HFFS) and image reconstruction. It can be easily extended to any upscaling factors.
- We propose a Multi-scale residual Network (MSRN) for SISR, which exceeds most of the state-of-the-art methods without deep network structure.

$$\hat{\theta} = \arg \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}^{SR}(F_{\theta}(I_i^{LR}), I_i^{HR})$$

MSRB: Multi-scale feature extraction and fusion.

The structure of multi-scale residual block (MSRB).

MSRB: Multi-scale feature extraction and fusion.

The structure of multi-scale residual block (MSRB).

• Multi-scale Features Extraction:

• Multi-scale Features Fusion :

 $P_{1} = \sigma(w_{5\times5}^{1} * M_{n-1} + b^{1}),$ $S_{2} = \sigma(w_{3\times3}^{2} * [S_{1}, P_{1}] + b^{2}),$ $P_{2} = \sigma(w_{5\times5}^{2} * [P_{1}, S_{1}] + b^{2}),$ $S' = w_{1\times1}^{3} * [S_{2}, P_{2}] + b^{3},$ $M_{n} = S' + M_{n-1},$

 $S_1 = \sigma(w_{3\times 3}^1 * M_{n-1} + b^1),$

• Local Residual Learning:

Algorithm	Scale	Set5	Set14	BSDS100 Urban1		100	Manga109				
		PSNR/SSIM	PSNR/SSIM	PSN	Bicubic	x4	28.43/0.8022	26.10/0.6936	25.97/0.6517	23.14/0.6599	24.91/0.7826
Bicubic	x2	33.69/0.9284	30.34/0.8675	29.5	A + [23]	x4	30.33/0.8565	27.44/0.7450	26.83/0.6999	24.34/0.7211	27.03/0.8439
A+[23]	x2	36.60/0.9542	32.42/0.9059	31.2	SelfExSB [20]	v4	30 34 /0 8593	27 55/0 7511	26 84/0 7032	24 83/0 7403	27.83/0.8598
SelfExSR $[20]$	x2	36.60/0.9537	32.46/0.9051	31.2	SPCNN [1]	AI	20.54/0.8533	27.00/0.7011	26.01/0.0004	24.03/0.1403	27.00/0.0000
SRCNN [1]	x2	36.71/0.9536	32.32/0.9052	31.3	SRONN [1]	X4	30.30/0.8373	27.02/0.7455	20.91/0.0994	24.53/0.7230	27.00/0.8505
ESPCN [2]	x2	37.00/0.9559	32.75/0.9098	31.5	ESPCN [2]	x4	30.66/0.8646	27.71/0.7562	26.98/0.7124	24.60/0.7360	27.70/0.8560
FSRCNN [3]	x2	37.06/0.9554	32.76/0.9078	31.5	FSRCNN [3]	x4	30.73/0.8601	27.71/0.7488	26.98/0.7029	24.62/0.7272	27.90/0.8517
VDSR [4]	x2	37.53/0.9583	33.05/0.9107	31.9	VDSR [4]	x4	31.36/0.8796	28.11/0.7624	27.29/0.7167	25.18/0.7543	28.83/0.8809
DRCN [5]	x2	37.63/0.9584	33.06/0.9108	31.8	DRCN [5]	x 4	31.56/0.8810	28.15/0.7627	27.24/0.7150	25.15/0.7530	28.98/0.8816
LapSRN [6]	x2	37.52/0.9581	33.08/0.9109	31.8	LapSRN [6]	x4	31.54/0.8811	28.19/0.7635	27.32/0.7162	25.21/0.7564	29.09/0.8845
EDSR [9]	x2	38.11/0.9601	33.92/0.9195	32.3	EDSR [9]	x4	32.46/0.8968	28.80/0.7876	27.71/0.7420	-/-	-/-
MSRN(our)	x2	38.08/0.9605	33.74/0.9170	32.2	MSRN(our)	x4	32.07/0.8903	28.60/0.7751	27.52/0.7273	26.04/0.7896	30.17/0.9034
Bicubic	x3	30.41/0.8655	27.64/0.7722	27.2	Bicubic	x8	24.40/0.6045	23.19/0.5110	23.67/0.4808	20.74/0.4841	21.46/0.6138
A+ [23]	x3	32.63/0.9085	29.25/0.8194	28.3	A+ [23]	x8	25.53/0.6548	23.99/0.5535	24.21/0.5156	21.37/0.5193	22.39/0.6454
SelfExSR [20]	x3	32.66/0.9089	29.34/0.8222	28.3	SelfExSR [20]	x8	25.49/0.6733	24.02/0.5650	24.19/0.5146	21.81/0.5536	22.99/0.6907
SRCNN [1]	x3	32.47/0.9067	29.23/0.8201	28.3	SRCNN [1]	x8	25.34/0.6471	23.86/0.5443	24.14/0.5043	21.29/0.5133	22.46/0.6606
ESPCN [2]	x3	33.02/0.9135	29.49/0.8271	28.5	ESPCN [2]	x8	25.75/0.6738	24.21/0.5109	24.37/0.5277	21.59/0.5420	22.83/0.6715
FSRCNN [3]	x3	33.20/0.9149	29.54/0.8277	28.5	FSRCNN [3]	x8	25.42/0.6440	23.94/0.5482	24.21/0.5112	21.32/0.5090	22.39/0.6357
VDSR [4]	x3	33.68/0.9201	29.86/0.8312	28.8	VDSR [4]	x8	25.73/0.6743	23.20/0.5110	24.34/0.5169	21.48/0.5289	22.73/0.6688
DRCN [5]	x3	33.85/0.9215	29.89/0.8317	28.8	DBCN [5]	×8	25.93/0.6743	24.25/0.5510	24.49/0.5169	21.10/0.5280	23 20/0 6686
LapSRN [6]	x3	33.82/0.9207	29.89/0.8304	28.8		0	20.35/0.0745	24.25/0.5510	24.43/0.0100	21.71/0.0209	23.20/0.0000
EDSR [9]	x3	34.65/0.9282	30.52/0.8462	29.2		xð	20.15/0.7028	24.45/0.5792	24.54/0.5293	21.81/0.5555	23.39/0.7068
MSBN(our)	x3	34.38/0.9262	30.34/0.8395	29.0	MSRN(our)	x8	26.59/0.7254	24.88/0.5961	24.70/0.5410	22.37/0.5977	24.28/0.7517

Algorithm	Feature extraction	Filters	Layers	Depth	Parameters	Updates	Channel
EDSR [9]	32 blocks	256	69	69	43 M	1×10^{6}	RGB
MSRN (our)	8 blocks	64	44	28	6.3M	4×10^5	Y

Remaining Problems:

- MSRB cannot obtain feedforward information.
- HFFS will cause a large number of parameters, and this hierarchical feature utilization method will generate a lot of redundant features, which will make the model difficult to train.
- A single model cannot handle different upsampling factors.

MDCN: Multi-scale Dense Cross Network for Image Super-Resolution

Juncheng Li, Faming Fang, Jiaqian Li, Kangfu Mei, and Guixu Zhang

- We devise a Multi-scale Dense Cross Block (MDCB) for feature extraction, which essentially a dual-path dense network that can effectively detect local and multi-scale features.
- We design a Hierarchical Feature Distillation Block (HFDB) to maximize the use of hierarchical features. It is the first CNN module specially designed for hierarchical feature learning.
- We introduce a Dynamic Reconstruction Block (DRB) to learn the inter-scale correlation between different upsampling factors, which makes MDCN can reconstruct SR images with different upsampling factors in a single model.

The complete architecture of our proposed Multi-scale Dense Cross Network (MDCN), which consists of two stages: feature extraction and dynamic reconstruction. The dark blue block, orange block, and gray block denote the MDCB, HFDB, and DRB, respectively.

MDCB: Multi-scale feature extraction and fusion.

 $L_{22} = C_{3\times3}^{1}(L_{11}), H_{22} = C_{5\times5}^{1}(H_{11}),$ $L_{33} = C_{3\times3}^{2} \left(C_{1\times1}^{2}([L_{12}, L_{22}, M_{53}]) \right),$ $H_{33} = C_{5\times5}^{2} \left(C_{1\times1}^{2}([H_{12}, H_{22}, M_{35}]) \right),$ $L_{out} = C_{1\times1}^{3} \left([L_{23}, L_{33}, H_{23}, H_{33}, L_{in}] \right).$

MDCB: Multi-scale feature extraction and fusion.

Fig. 6. The decomposed structure of MDCB, which remove the residual learning for better representation. (A) is the MDCB structure that removes residual learning, (B) is the decomposed structure of MDCB, and (C) is the equivalent structure after straightening (B).

The difference between MSRB and MDCB:

MDCB can obtain more feedforward information.

Fewer parameters, extract richer features, and achieve better performance.

	C 1	Set5 [57]	Set14 [58]	BSDS100 [62	2] Urban100 [63	3] Manga109 [[61]	Average					
Algorithm	Scale	PSNR / SSIM	PSNR / SSIM	PSNR / SSIN	A PSNR / SSIN	M PSNR / SS	IM	PSNR / SSI	N				
SRCNN [7] (2014)	$\times 2$	36.66 / 0.9542	32.45 / 0.9067	31.36 / 0.887	29.50 / 0.894	6 35.60 / 0.96	663	33.11 / 0.921	9				
ESPCN [11] (2016)	$\times 2$	37.00 / 0.9559	32.75 / 0.9098	31.51 / 0.893	9 29.87 / 0.906	36.21 / 0.96	594	33.47 / 0.927	71				
VDSR [8] (2016)	$\times 2$	37.53 / 0.9590	33.05 / 0.9130	31.90 / 0.896	0 30.77 / 0.914	37.22 / 0.97	750	34.09 / 0.931	4				
DRCN [10](2016)	$\times 2$	37.63 / 0.9584	33.06 / 0.9108	31.85 / 0.894	30.76 / 0.914	37.63 / 0.97	723	34.19 / 0.930)2				
LapSRN [12] (2017)	$\times 2$	37.52 / 0.9591	33.08 / 0.9130	31.80 / 0.895	30.41 / 0.910	37.27 / 0.97	740	34.02 / 0.930)2				
EDSR [13] (2017)	$\times 2$	38.11 / 0.9602	33 92 / 0 9195	32 32 / 0 901	3 32 93 / 0 935	<u>39 10 / 0 97</u>	773	35 27 / 0.938	37				
SRMDNF [19] (2018)	$\times 2$	37.79 / 0.9	SRCNN [7] (2014)	$\times 4$	30.48 / 0.8628	27.50 / 0.7513	26.90	0 / 0.7101	24.52 / 0. ⁻	7221	27.58 / 0.8555	27.40 / 0.7804	
MSRN [17] (2018)	$\times 2$	38.07 / 0.9	ESPCN [11] (2016)	$\times 4$	30.66 / 0.8646	27.71 / 0.7562	26.98	8 / 0.7124	24.60 / 0.	7360	27.70 / 0.8560	27.53 / 0.7850	
RAN [24] (2019)	$\times 2$	37.58 / 0.9	VDSR [8] (2016)	$\times 4$	31.35 / 0.8830	28.02 / 0.7680	27.29	9 / 0.7267	25.18 / 0.	7540	28.83 / 0.8870	28.13 / 0.8037	
DNCL [25] (2019)	$\times 2$	37.65 / 0.9	DRCN [10] (2016)	$\times 4$	31.56 / 0.8810	28.15 / 0.7627	27.24	4 / 0.7150	25.15 / 0.	7530	28.98 / 0.8816	28.22 / 0.7987	
FilterNet [22] (2019)	$\times 2$	37.86 / 0.9	LapSRN [12] (2017)	$\times 4$	31.54 / 0.8850	28.19 / 0.7720	27.32	2 / 0.7270	25.21 / 0.	7560	29.09 / 0.8900	28.27 / 0.8060	
MRFN [21] (2019)	$\times 2$	37.98 / 0.9	EDSR [13] (2017)	$\times 4$	32.46 / 0.8968	28.80 / 0.7876	27.71	1 / 0.7420	26.64 / 0.	8033	31.02 / 0.9148	29.33 / 0.8289	
SeaNet [26] (2020)	$\times 2$	38.08 / 0.9	SRMDNF [19] (2018)	$\times 4$	31.96 / 0.8925	28.35 / 0.7787	27.49	9 / 0.7337	25.68 / 0.	7731	30.09 / 0.9024	28.71 / 0.8161	
MDCN (Ours)	$\times 2$	38.19 / 0.9	MSRN [17] (2018)	$\times 4$	32.25 / 0.8958	28.63 / 0.7833	27.61	1 / 0.7377	26.22 / 0.	7905	30.57 / 0.9103	29.05 / 0.8235	
MDCN+ (Ours)	$\times 2$	38.25 / 0.9	RAN [24] (2019)	$\times 4$	31.43 / 0.8847	28.09 / 0.7691	27.31	1 / 0.7260	N / A		N / A	N / A	
SRCNN [7] (2014)	$\times 3$	32.75 / 0.9	DNCL [25] (2019)	$\times 4$	31.66 / 0.8871	28.23 / 0.7717	27.39	9 / 0.7282	25.36 / 0.	7606	N / A	N / A	
ESPCN [11] (2016)	$\times 3$	33.02 / 0.9	FilterNet [22] (2019)	$\times 4$	31.74 / 0.8900	28.27 / 0.7730	27.39	9 / 0.7290	25.53 / 0.	7680	N / A	N / A	
VDSR [8] (2016)	×3	33.67 / 0.9	MRFN [21] (2019)	$\times 4$	31.90 / 0.8916	28.31 / 0.7746	27.43	3 / 0.7309	25.46 / 0.	7654	29.57 / 0.8962	28.53 / 0.8117	
DRCN [10] (2016)	$\times 3$	33.85 / 0.9	SeaNet [26] (2020)	$\times 4$	32.33 / 0.8970	28.72 / 0.7855	27.65	5 / 0.7388	26.32 / 0.	7942	30.74 / 0.9129	29.13 / 0.8257	
LapSRN [12] (2017)	$\times 3$	33.82 / 0.9	MDCN (Ours)	$\times 4$	32.48 / 0.8985	28.83 / 0.7879	27.74	4 / 0.7423	26.69 / 0.	8049	31.10 / 0.9163	29.37 / 0.8300	
EDSR [13] (2017)	$\times 3$	34.65 / 0.9	MDCN+ (Ours)	$\times 4$	32.61 / 0.9000	28.90 / 0.7893	27.79	9 / 0.7434	26.86 / 0.	8083	31.40 / 0.9188	29.51 / 0.8320	
SRMDNF [19] (2018)	$\times 3$	34.12 / 0.9											
MSRN [17] (2018)	$\times 3$	34.48 / 0.9276	30.40 / 0.8436	29.13 / 0.806	28.31 / 0.856	33.56 / 0.94	451	31.18 / 0.875	57				_
RAN [24] (2019)	$\times 3$	33.71 / 0.9223	29.84 / 0.8326	28.84 / 0.798	1 N/A	N / A		N/A					
DNCL [25] (2019)	$\times 3$	33.95 / 0.9232	29.93 / 0.8340	28.91 / 0.799	5 27.27 / 0.832	26 N/A		N/A					
FilterNet [22] (2019)	$\times 3$	34.08 / 0.9250	30.03 / 0.8370	28.95 / 0.803	0 27.55 / 0.838	0 N/A		N/A					
MRFN [21] (2019)	$\times 3$	34.21 / 0.9267	30.03 / 0.8363	28.99 / 0.802	9 27.53 / 0.838	32.82 / 0.93	396	30.72 / 0.868	39				
SeaNet [26] (2020)	$\times 3$	34.55 / 0.9282	30.42 / 0.8444	29.17 / 0.807	28.50 / 0.859	33.73 / 0.94	463	31.27 / 0.877	/1				
MDCN (Ours)	$\times 3$	34.69 / 0.9294	30.54 / 0.8470	29.26 / 0.809	5 28.83 / 0.866	34.17 / 0.94	485	31.50 / 0.880)1				
MDCN+ (Ours)	$\times 3$	34.76 / 0.9299	30.63 / 0.8480	29.31 / 0.810	3 29.00 / 0.868	34.43 / 0.94	497	31.63 / 0.991	13				

MSRN VS MDCN: MDCN achieves better results with fewer parameters

TABLE VI Replace the MSRB in the MSRN with MDCB to get the MDCN'. MDCN' achieves better results with fewer parameters.

MSRN & MDCN

Methods		MSRN		MDCN'(Ours)			
Scale	x2	x3	x4	x2	x3	x4	
Parameters	5.92M	6.11M	6.07M	4.34M ↓	4.52M ↓	4.48M ↓	
Set5	38.07/0.9608	34.48/0.9276	32.25/0.8958	38.10/0.9608	34.52/0.9278	32.30/0.8965	
Set14	33.68/0.9184	30.40/0.8436	28.63/0.7833	33.74/0.9186	30.45/0.8444	28.68/0.7844	
BSD100	32.22/0.9002	29.13/0.8061	27.61/0.7377	32.23/0.9003	29.16/0.8067	27.63/0.7383	
Urban100	32.32/0.9304	28.31/0.8560	26.20/0.7905	32.34/0.9304	28.39/0.8575	26.26/0.7918	
Manga109	38.64/0.9771	33.56/0.9451	30.57/0.9103	38.73/0.9774	33.77/0.9462	30.68/0.9119	
Average	34.99/0.9374	31.18/0.8754	29.05/0.8235	35.03/0.9375 (0.04/0.0001 ↑)	31.26/0.8765 (0.08/0.0011 ↑)	29.11/0.8246 (0.06/0.0011 ↑)	

TABLE VII Replace the MDCB in the MDCN with MSRB to get the MSRN'. MDCN achieves better results with fewer parameters.

Methods	1	MSRN'(x2,x3,x4)	MDCN (x2,x3,x4, Ours)				
Scale	x2	x3	x4	x2	x3	x4		
Parameters		16.77M		15.62M ↓				
Set5	38.07/0.9608	34.51/0.9279	32.32/0.8967	38.19/0.9612	34.69/0.9294	32.48/0.8985		
Set14	33.78/0.9192	30.45/0.8445	28.71/0.7850	33.86/0.9202	30.54/0.8470	28.83/0.7988		
BSD100	32.23/0.9001	29.17/0.8070	27.66/0.7391	32.32/0.9014	29.26/0.8095	27.74/0.7423		
Urban100	32.43/0.9314	28.43/0.8584	26.35/0.7946	32.92/0.9355	28.83/0.8662	26.69/0.8049		
Manga109	38.55/0.9779	33.72/0.9461	30.75/0.9120	39.09/0.9780	34.17/0.9485	31.10/0.9163		
Average	35 01/0 9379	31 26/0 8768	29 16/0 8255	35.28/0.9393	31.40/0.8801	29.37/0.8322		
Average	55.01/0.9579	51.20/0.8708	29.10/0.8255	(0.27/0.0014 个)	(0.14/0.0033 ↑)	(0.21/0.0067 个)		

04

Edge Priors Guidance SeaNet & MLEFGN

The process of image restoration.

Image restoration guided by image priors

Plenty of works have pointed out that **prior knowledge can effectively assist image restoration**. Accordingly, many image priors have been proposed and used, such as :

- Total Variation Prior
- Sparse Prior
- Edge Prior

Image restoration guided by image priors

- TV prior will smooth texture details.
- Sparse prior is difficult to model because it requires other domain knowledge.

• Edge prior is one of the most effective priors since image edges are important high-frequency features.

The focus of our research.

Therefore, we aim to introduce edge priors to guide image restoration.

Original Image

Image Edge

The points where the brightness of an image changes drastically are usually organized into a set of curve segments called **image edges**.

How to obtain imge edges?

The most widely used method is to apply off-the-shelf edge detectors on the degraded image to obtain image edges.

SISR:

How to obtain imge edges?

The most widely used method is to apply off-the-shelf edge detectors on the degraded image to obtain image edges.

Remaining Problems:

- Existing edge extractors are **extremely sensitive to noise** or other interference factors.
- It is **extremely difficult to obtain clear and accurate edges** from the degraded image using **off-the-shelf edge operators**.
- **Inaccurate edges** will **interfere** with the quality of the reconstructed images.
- Existing edge detectors use the binarization measurement to convert all the values of the edges to 0 and 1, which results in the loss of a great number of image features and the appearance of false edges.

Solution: Edge-Net

We aim to explore a CNN model that can reconstruct clear and accurate soft-edges from the degraded image, thus it can use for image restoration.

Solution: Soft-edge

$$I_{Edge} = div(u_x, u_y),$$
$$u_i = \frac{\nabla i I_{HR}}{\sqrt{1 + |\nabla I_{HR}|^2}}, i \in \{x, y\}$$

We suggest using image soft-edge instead of image edge since it can **retain more accurate image edge information**.

Soft-Edge Assisted Network for Single Image Super-Resolution

Faming Fang^(D), Juncheng Li, and Tieyong Zeng^(D)

Contribution

- We verified the importance and effectiveness of edge prior for SISR, and suggested using image soft-edge instead of image edge to obtain more information.
- We propose a soft-edge reconstruction network (EdgeNet), which is the first CNN model used to reconstruct the image soft-edge directly from the LR image.
- We propose an efficient and accurate Soft-edge assisted Network (SeaNet), which is a well-designed network that introduces the Edge-Net to provide image soft-edge prior.

Edge-Net:

Edge-Net can be used as part of any SR model to provide image soft-edge or works independently to reconstruct a super-resolution image soft-edge from the LR image directly. We define the edge loss as

$$\mathcal{L}_{edge} = \left\| E(I_{LR}) - I_{Edge} \right\|_{1}$$

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left\| F(I_{LR}^{i}) - I_{HR}^{i} \right\| + \lambda \left\| E(I_{LR}^{i}) - I_{Edge}^{i} \right\|_{1}$$

TABLE I

QUANTITATIVE COMPARISONS OF THE STATE-OF-THE-ART SR METHODS. ALL OF THESE METHODS ARE TRADITIONAL MATHEMATICAL MOD-ELS OR MODELS THAT INTRODUCE IMAGE PRIORS INTO CNN FOR SR IMAGE RECONSTRUCTION. NOTICE THAT, DEGREE-MV USES THE MULTI-VIEW TESTING STRATEGY TO IMPROVE PERFORMANCE. BEST RESULTS ARE **HIGHLIGHTED**

Algorithm	Scala	Set5 [37]	Set14 [38]	BSDS100 [39]	Imaga Priors
Algorium	Scale	PSNR / SSIM PSNR / SSIM		PSNR / SSIM	image Phois
Bicubic	$\times 2$	33.69 / 0.9284	30.34 / 0.8675	29.57 / 0.8434	-
A+ [32]	imes 2	36.60 / 0.9542	32.42 / 0.9059	31.24 / 0.8870	Neighbor embedding
SelfExSR [40]	$\times 2$	36.60 / 0.9537	32.46 / 0.9051	31.20 / 0.8863	Transformed self-exemplars
CSCN-MV [27]	$\times 2$	37.14 / 0.9567	32.56 / 0.9074	31.40 / 0.8840	Sparse prior
DEGREE-MV [29]	$\times 2$	37.61 / 0.9589	33.11 / 0.9129	31.84 / 0.8951	Edge prior
SeaNet (Ours)	$\times 2$	38.08 / 0.9609	33.75 / 0.9190	32.27 / 0.9008	Edge prior
Bicubic	$\times 3$	30.41 / 0.8655	27.64 / 0.7722	27.21 / 0.7344	-
A+ [32]	$\times 3$	32.63 / 0.9085	29.25 / 0.8194	28.31 / 0.7828	Neighbor embedding
SelfExSR [40]	$\times 3$	32.66 / 0.9089	29.34 / 0.8222	28.30 / 0.7839	Transformed self-exemplars
CSCN-MV [27]	$\times 3$	33.26 / 0.9167	29.55 / 0.8271	28.50 / 0.7885	Sparse prior
DEGREE-MV [29]	imes 3	33.70 / 0.9212	29.77 / 0.8309	28.76 / 0.7956	Edge prior
SeaNet (Ours)	$\times 3$	34.55 / 0.9282	30.42 / 0.8445	29.17 / 0.8071	Edge prior
Bicubic	$\times 4$	28.43 / 0.8022	26.10 / 0.6936	25.97 / 0.6517	
A+ [32]	$\times 4$	30.33 / 0.8565	27.44 / 0.7450	26.83 / 0.6999	Neighbor embedding
SelfExSR [40]	$\times 4$	30.34 / 0.8593	27.55 / 0.7511	26.84 / 0.7032	Transformed self-exemplars
CSCN-MV [27]	$\times 4$	31.04 / 0.8775	27.76 / 0.7620	27.11 / 0.7191	Sparse prior
DEGREE-MV [29]	$\times 4$	31.30 / 0.8968	27.92 / 0.7637	27.18 / 0.7207	Edge prior
SeaNet (Ours)	$\times 4$	32.33 / 0.8970	28.72 / 0.7855	27.65 / 0.7388	Edge prior

QUANTITATIVE COMPARISONS OF THE STATE-OF-THE-ART SR METHODS. ALL OF THESE METHODS ARE BASED ON CNN WITHOUT IMAGE PRIORS. Best Results are Highlighted and Second Best Results are <u>Underlined</u>										
	G 1	Set5 [37]	Set14 [38]	BSDS100 [39]	Urban100 [40]	Manga109 [41]	—			
Algorithm	Scale	PSNR / SSIM	OU	NTITATIVE COMPAR	ISONS OF MSRN	EDSR EDSR+ S	EANET (BASE	LINE) SEANET (FINA	I.) AND SEANET+ (FINAL)
SRCNN [7]	$\times 2$	36.71 / 0.9536				, 20 511, 20 5111, 5				
ESPCN [9]	$\times 2$	37.00 / 0.9559	A.1	0.1	D	Set5 [37]	Set14 [38]	BSDS100 [39]	Urban100 [40]	Manga109 [41]
FSRCNN [8]	$\times 2$	37.06 / 0.9554	Algorith	m Scale	Parameters	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
VDSR [10]	$\times 2$	37.53 / 0.9583	MSRN [16]	×2	5926k	38.08/0.9605	33.74/0.9170	32.23/0.9013	32.22/0.9326	38.82/0.9868
DRCN [11]	$\times 2$	37.63 / 0.9584	SeaNet (Baselin	(1) = Ours	4194k	37 99/0 9607	33 60/0 9174	32 18/0 8995	32 08/0 9276	38 48/0 9768
LapSRN [13]	$\times 2$	37.52 / 0.9581	EDSP [17]	~2	40121k	38 11/0 9602	33.02/0.0105	32 32/0 0013	32.03/0.0351	30.10/0.0773
DRRN [12]	$\times 2$	37.74 / 0.9590	EDSR [17] $EDSR + [17]$	~2	40121K	38.11/0.9002	24.02/0.9193	22.22/0.9013	32.95/0.9551	39.10/0.9775
SeaNet (Ours)	$\times 2$	38.08 / 0.9609	EDSK+[17]	×2	40121K	38.20/0.9606	34.02/0.9204	32.37/0.9018	33.10/0.9363	- / -
SeaNet+ (Ours)	$\times 2$	38.15 / 0.9611	SeaNet (Final,	Ours) X2	/102k	38.08/0.9609	33.75/0.9190	32.27/0.9008	32.50/0.9318	38.76/0.9774
SRCNN [7]	$\times 3$	32.47 / 0.9067	SeaNet+ (Final,	Ours) $\times 2$	7102k	38.15/0.9611	33.86/0.9198	32.31/0.9013	32.68/0.9332	38.97/0.9779
ESPCN [9]	$\times 3$	33.02 / 0.9135	MSRN [16]	$\times 3$	6110k	34.38/0.9262	30.34/0.8395	29.08/0.8041	28.08/0.8554	33.44/0.9427
FSRCNN [8]	$\times 3$	33.20 / 0.9149	SeaNet (Baselin	ne, Ours) $\times 3$	4563k	34.36/0.9280	30.34/0.8428	29.09/0.8053	28.17/0.8527	33.40/0.9444
VDSR [10]	$\times 3$	33.68 / 0.9201	EDSR [17]	$\times 3$	42481k	34.65/0.9280	30.52/0.8462	29.25/0.8093	28.80/0.8653	34.17/0.9476
DRCN [11]	$\times 3$	33.85 / 0.9215	EDSR+ [17]	$\times 3$	42481k	34.76/0.9290	30.66/0.8481	29.32/0.8104	29.02/0.8685	- / -
LapSRN [13]	$\times 3$	33.82 / 0.9207	SeaNet (Final.	Ours) ×3	7471k	34.55/0.9282	30.42/0.8444	29.17/0.8071	28.50/0.8594	33.73/0.9463
DRRN [12]	$\times 3$	34.03 / 0.9240	SeaNet+ (Final	Ours) ×3	7471k	34 65/0 9290	30 53/0 8461	29 23/0 8081	28 68/0 8620	34 02/0 9478
SeaNet (Ours)	$\times 3$	<u>34.55 / 0.9282</u>			60721r	22.07/0.9202	28 60/0 7751	27.52/0.7272	26.04/0.7806	20.17/0.0024
SeaNet+ (Ours)	$\times 3$	34.65 / 0.9290	MSKN [10]	×4	6073K	32.07/0.8903	28.60/0.7731	27.5210.7275	26.04/0.7896	30.17/0.9034
SRCNN [7]	$\times 4$	30.50 / 0.8573	SeaNet (Baselin	ie, Ours) $\times 4$	4224k	32.18/0.8948	28.61/0.7822	27.57/0.7359	26.05/0.7896	30.44/0.9088
ESPCN [9]	$\times 4$	30.66 / 0.8646	EDSR [17]	$\times 4$	45430k	32.46/0.8968	28.80/0.7876	27.71/0.7420	26.64/0.8033	31.02/0.9148
FSRCNN [8]	$\times 4$	30.73 / 0.8601	EDSR+ [17]	$\times 4$	45430k	32.62/0.8984	28.94/0.7901	27.79/0.7437	26.67/0.8041	- / -
VDSR [10]	$\times 4$	31.36 / 0.8796	SeaNet (Final,	Ours) $\times 4$	7397k	32.33/0.8970	28.72/0.7855	27.65/0.7388	26.32/0.7942	30.74/0.9129
DRCN [11]	$\times 4$	31.56 / 0.8810	SeaNet+ (Final,	Ours) $\times 4$	7397k	32.44/0.8981	28.81/0.7872	27.70/0.7399	26.50/0.7976	31.05/0.9154
LapSRN [13]	$\times 4$	31.54 / 0.8811								Ĩ
DRRN [12]	$\times 4$	31.68 / 0.8888	28.21 / 0.7722	27.38 / 0.7240	25.44 / 0.7640	29.46 / 0.8960				
SeaNet (Ours)	$\times 4$	32.33 / 0.8970	28.72 / 0.7855	27.65 / 0.7388	26.32 / 0.7942	30.74 / 0.9129				
SeaNet+ (Ours)	$\times 4$	32.44 / 0.8981	28.81 / 0.7872	27.70 / 0.7399	26.50 / 0.7976	31.05 / 0.9154				

Dataset	Scale	SRN	SeaNet (Baseline)
	$\times 2$	37.78/0.9597	37.99/0.9607
Set5 [37]	$\times 3$	34.11/0.9249	34.36/0.9280
PSNR/SSIM	$\times 4$	32.01/0.8919	32.18/0.8948
	$\times 2$	33.42/0.9158	33.60/0.9174
Set14 [38]	$\times 3$	30.12/0.8378	30.34/0.8428
PSNR/SSIM	$\times 4$	28.42/0.7771	28.61/0.7822
	$\times 2$	32.04/0.8974	32.18/0.8995
BSDS100 [39]	$\times 3$	28.95/0.8006	29.09/0.8053
PSNR/SSIM	$\times 4$	27.43/0.7304	27.57/0.7359
	$\times 2$	31.56/0.9223	32.08/0.9276
Urban100 [40]	$\times 3$	27.74/0.8415	28.17/0.8527
PSNR/SSIM	$\times 4$	25.74/0.7718	26.05/0.7896
	$\times 2$	37.98/0.9756	38.48/0.9768
Manga109 [41]	$\times 3$	32.98/0.9405	33.40/0.9444
PSNR/SSIM	$\times 4$	30.00/0.9022	30.44/0.9088

QUANTITATIVE COMPARISONS OF SRN AND SEANET (BASELINE)

Fig. 6. Visual comparison of SRN and SeaNet (baseline) for x2, x3, and x4 SR images. SRN is a simplified model obtained by removing the Edge-Net from the SeaNet (baseline).

QUANTITATIVE COMPARISONS OF ESPCN [9] AND 'ESPCN+ISE'

Dataset	Scale	ESPCN	ESPCN+ISE
	$\times 2$	37.00/0.9559	37.50/0.9580
Set5 [37]	$\times 3$	33.02/0.9135	33.63/0.9190
PSNR/SSIM	$\times 4$	30.66/0.8646	31.32/0.8780
	$\times 2$	32.75/0.9098	33.01/0.9100
Set14 [38]	$\times 3$	29.49/0.8271	29.78/0.8291
PSNR/SSIM	$\times 4$	27.71/0.7562	28.07/0.7600
	$\times 2$	31.51/0.8939	31.88/0.8956
BSDS100 [39]	$\times 3$	28.50/0.7937	28.77/0.7960
PSNR/SSIM	$\times 4$	26.98/0.7124	27.20/0.7156
	$\times 2$	29.87/0.9065	30.66/0.9145
Urban100 [40]	$\times 3$	26.41/0.8161	27.09/0.8299
PSNR/SSIM	$\times 4$	24.60/0.7360	25.08/0.7430
	$\times 2$	36.21/0.9694	37.18/0.9711
Manga109 [41]	$\times 3$	30.79/0.9181	31.89/0.9288
PSNR/SSIM	$\times 4$	27.70/0.8560	28.78/0.8756

Fig. 8. Study of model size on the test dataset Set14 (x3). SeaNet strikes a good balance between model size and performance.

Multilevel Edge Features Guided Network for Image Denoising

Faming Fang^(D), Juncheng Li^(D), Yiting Yuan, Tieyong Zeng^(D), and Guixu Zhang^(D)

Contribution

- We verified the importance and effectiveness of edge prior for SID.
- We propose a new edge guidance framework for image denoising, which integrates edge detection, edge guidance, and image denoising in an end-to-end model.
- We propose a new Edge-Net for SID. Edge-Net is the first CNN model that can directly reconstruct clear edges from the noisy observation.
- We propose a Multi-level Edge Features Guided Network (MLEFGN). MLEFGN is a well-designed model that can make full use of edges predicted by the Edge-Net to reconstruct high-quality noise-free images.

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{M} \sum_{i=1}^{M} \|F(I_{\text{noisy}}^{i}, E(I_{\text{noisy}}^{i})) - I_{\text{clear}}^{i}\|_{1} + \lambda \|E(I_{\text{noisy}}^{i}) - I_{\text{edge}}^{i}\|_{1}$$

Multi-level Guidance Mechanism:

PSNR (dB) Results of Different Image Denoising Methods on **Gray-Scale** Images (Set12) With Noise Levels $\sigma = 15, 25, 35, \text{ and } 50$. "AVERAGE" Represents the Average Result of the Data Set, and the Best Results Are Highlighted in Red

Images	C.ma	House	Peppers	Starfish	Monarch	Airplane	Parror	Lena	Barbara	Boat	Man	Couple	Average
Noise Level	σ=15												
BM3D [15]	31.91	34.93	32.69	31.14	31.85	31.07	31.37	34.26	33.10	32.13	31.92	32.10	32.37
TNRD [43]	32.19	34.53	33.04	31.75	32.56	31.46	31.63	34.24	32.13	32.14	32.23	32.11	32.50
NLED $^{6}_{7 \times 7}$ [44]	32.28	34.76	33.10	31.75	32.71	31.59	31.70	34.35	32.53	32.16	32.22	32.13	32.61
WNNM [16]	32.17	35.13	32.99	31.82	32.71	31.39	31.62	34.27	33.60	32.27	32.11	32.17	32.70
IRCNN [45]	32.55	34.89	33.31	32.02	32.82	31.70	31.84	34.53	32.43	32.34	32.40	32.40	32.77
DnCNN [26]	32.61	34.97	33.30	32.20	33.09	31.70	31.83	34.62	32.64	32.42	32.46	32.47	32.86
FFDNet [28]	32.42	35.01	33.10	32.02	32.77	31.58	31.77	34.63	32.50	32.35	32.40	32.45	32.75
ADNet [46]	32.81	35.22	33.49	32.17	33.17	31.86	31.96	34.71	32.80	32.57	32.47	32.58	32.98
MLEFGN (Ours)	32.56	35.41	33.42	32.29	33.44	31.82	31.90	34.80	33.05	32.60	32.51	32.67	33.04
Noise Level	$\sigma=25$												
BM3D [15]	29.45	32.85	30.16	28.56	29.25	28.42	28.93	32.07	30.71	29.90	29.61	29.71	29.97
TNRD [43]	29.72	32.53	30.57	29.02	29.85	28.88	29.18	32.00	29.41	29.91	29.87	29.71	30.06
$NLED_{7\times7}^{6}$ [44]	29.75	32.81	30.66	29.09	30.03	28.99	29.29	32.18	30.11	29.90	29.86	29.74	30.18
WNNM [16]	29.64	32.22	30.42	29.03	29.84	28.69	29.15	32.24	31.24	30.03	29.76	29.82	30.26
IRCNN [45]	30.08	33.06	30.88	29.27	30.09	29.12	29.47	32.43	29.92	30.17	30.04	30.08	30.38
DnCNN [26]	30.18	33.06	30.87	29.41	30.28	29.13	29.43	32.44	30.00	30.21	30.10	30.12	30.43
FFDNet [28]	30.06	33.27	30.79	29.33	30.14	29.05	29.43	32.59	29.98	30.23	30.10	30.18	30.43
ADNet [46]	30.34	33.41	31.14	29.41	30.39	29.17	29.49	32.61	30.25	30.37	30.08	30.24	30.58
MLEFGN (Ours)	30.29	33.61	30.98	29.66	30.52	29.25	29.46	32.76	30.57	30.40	30.13	30.30	30.66
Noise Level			•	•		•	σ=35						-
BM3D [15]	27.92	31.36	28.51	26.86	27.58	26.83	27.40	30.56	28.98	28.43	28.22	28.15	28.40
MLP [20]	28.08	31.18	28.54	27.12	27.97	27.22	27.72	30.82	27.62	28.53	28.47	28.24	28.46
WNNM [16]	28.80	31.92	28.75	27.27	28.13	27.10	27.69	30.73	29.48	28.54	28.33	28.24	28.69
DnCNN [26]	28.61	31.61	29.14	27.53	28.51	27.52	27.94	30.91	28.09	28.72	28.66	28.52	28.82
FFDNet [28]	28.54	31.99	29.18	27.58	28.54	27.47	28.02	31.20	28.29	28.82	28.70	28.68	28.92
MLEFGN (Ours)	28.78	32.47	29.37	27.77	28.70	27.62	28.03	31.36	29.09	29.00	28.79	28.88	29.15
Noise Level	σ =50												
BM3D [15]	26.13	29.69	26.68	25.04	25.82	25.10	25.90	29.05	27.22	26.78	26.81	26.46	26.72
MLP [20]	26.37	29.64	26.68	25.43	26.26	25.56	26.12	29.32	25.24	27.03	27.06	26.67	26.78
TNRD [43]	26.62	29.48	27.10	25.42	26.31	25.59	26.16	28.93	25.70	26.94	26.98	26.50	26.81
WNNM [16]	26.45	30.33	26.95	25.44	26.32	25.42	26.14	29.25	27.79	26.97	26.94	26.64	27.05
IRCNN [45]	26.88	29.96	27.33	25.57	26.61	25.89	26.55	29.40	26.24	27.17	27.17	26.88	27.14
DnCNN [26]	27.03	30.00	27.32	25.70	26.78	25.87	26.48	29.39	26.22	27.20	27.24	26.90	27.18
FFDNet [28]	27.03	30.43	27.43	25.77	26.88	25.90	26.58	29.68	26.48	27.32	27.30	27.07	27.32
ADNet [46]	27.31	30.59	27.69	25.70	26.90	25.88	26.56	29.59	26.64	27.35	27.17	27.07	27.37
MLEFGN (Ours)	27.15	31.00	27.63	25.77	27.01	26.05	26.56	29.85	27.37	27.40	27.32	27.35	27.54

AVERAGE PSNR (dB) RESULTS OF DIFFERENT IMAGE DENOISING METHODS ON **GRAY-SCALE** IMAGES (**BSD68**) WITH NOISE LEVELS $\sigma = 15, 25, 35$, and 50

Method	<i>σ</i> =15	σ=25	σ=35	$\sigma=50$
BM3D [15]	31.08	28.57	27.08	25.62
EPLL [54]	31.21	28.68	27.16	25.67
WNNM [16]	31.37	28.83	27.30	25.87
TNRD [43]	31.42	28.92	N/A	25.97
NLED ⁶ _{7×7} [44]	31.43	28.93	N/A	N/A
MLP [20]	31.50	28.96	27.50	26.03
DnCNN [26]	31.73	29.23	27.69	26.23
FFDNet [28]	31.63	29.19	27.73	26.29
ADNet [46]	31.74	29.25	N/A	26.29
N ³ Net [55]	N/A	29.30	N/A	26.39
MLEFGN (Ours)	31.81	29.34	27.85	26.39

AVERAGE PSNR (dB) RESULTS OF DIFFERENT IMAGE DENOISING METHODS ON **GRAY-SCALE** IMAGES (**URBAN100**) WITH NOISE LEVELS $\sigma = 15, 25$, AND 50

Method	<i>σ</i> =15	σ=25	$\sigma=50$
TNRD [43]	31.98	29.29	25.71
BM3D [15]	32.34	29.70	25.94
IRCNN [45]	32.49	29.82	26.14
DnCNN [26]	32.68	29.97	26.28
NN3D [58]	N/A	30.09	26.47
FFDNet [28]	32.42	29.92	26.52
N ³ Net [55]	N/A	30.19	26.82
WNNM [16]	32.97	30.39	26.83
MLEFGN (Ours)	33.21	30.64	27.22

AVERAGE PSNR (dB) RESULTS OF DIFFERENT IMAGE DENOISING METHODS ON COLOR IMAGES (KODAK24 [49], CBSD68 [50], AND URBAN100 [51]) WITH NOISE LEVELS $\sigma = 10, 30, 50$, and 70. Best Results Are Highlighted in Red Color

Method	Kodak24 [49]				CBSD68 [50]				Urban100 [51]			
Noise Level	σ=10	σ=30	σ=50	σ=70	$\sigma=10$	σ=30	σ=50	$\sigma=70$	σ=10	σ=30	σ=50	σ=70
TNRD [43]	34.33	28.83	27.17	24.94	33.36	27.64	25.96	23.83	33.60	27.40	25.52	22.63
RED [56]	34.91	29.71	27.62	26.36	33.89	28.46	26.35	25.08	34.59	29.02	26.40	24.74
MemNet [57]	N/A	29.67	27.65	26.40	N/A	28.39	26.33	25.08	N/A	28.93	26.53	24.93
CBM3D [15]	36.57	30.89	28.63	27.27	35.91	29.73	27.38	26.00	36.00	30.36	27.94	26.31
IRCNN [45]	36.70	31.24	28.93	N/A	36.06	30.22	27.86	N/A	26.53	30.28	27.69	N/A
DnCNN [26]	36.98	31.39	29.16	27.64	36.31	30.40	28.01	26.56	36.21	30.28	28.16	26.17
FFDNet [28]	36.81	31.39	29.10	27.68	36.14	30.31	27.96	26.53	35.77	30.53	28.05	26.39
MLEFGN (Ours)	37.04	31.67	29.38	27.94	36.37	30.56	28.21	26.75	36.42	31.32	28.92	27.28

Fig. 8. Visual comparison of MLEFGN with DnCNN [26] and FFDNet [28] on gray-scale images (noise level: $\sigma = 50$).

Fig. 12. Visual comparison of image edges extracted by different methods. Noise levels of gray-scale and color images are set to $\sigma = 75$ and 50, respectively.

05

Summary

- We verified the importance and effectiveness of multi-scale image featurs for image restoration.
- We verified the importance and effectiveness of image edge priors for image restoration.
- According to the above strategies, we have designed a series of lightweight image restoration models that can achieve better performance with fewer parameters.

06

Discussion

A model is difficult to suitable for multiple different degradation modes.

THANKS